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The electrical resistivity hp and the thermoelectric power AS of lattice defects in metals consist of a term
which depends on the density of the electron states and the electron velocity, and a term which is a function
of the electron-scattering cross section of the defects. In metals with an anisotropic Fermi surface, calcula-
tions of Ap and AS can be improved considerably if the term depending only on the geometry of the Fermi
surface is taken from an experiment which measures its average value over the Fermi surface, rather than
from the free-electron model. Calculations of Ap and AS, in which the Fermi-surface term was obtained
from the experimentally determined electric size effects, were carried out for vacancies in gold. The term
containing the electron-scattering cross section was calculated with the free-electron approximation. The
values of hp and AS obtained in this way are in good agreement with the experimental results. The value
of hS calculated by using the Fermi-surface term from the free-electron approximation deviates appreciably
from the experimental value.

INTRODUCTION cause of the difhculties of such a calculation, a more
simple method using additional empirical information
on the terms containing the density of the electron
states and the electron velocity is desirable.

The average value over the Fermi surface of the terms
in hp and hS, which contain the density of the electron
states and the electron velocity, can be obtained experi-
mentally from the size effect' on the electrical resistivity
and the thermoelectric power. In the present paper the
electrical resistivity and the thermoelectric power of
lattice vacancies are calculated. The terms which are
only functions of the geometry of the Fermi surface are
taken from the experimentally determined electrical size
effects. The vacancy is represented by a repulsive
square-well potential. The electron-scattering cross sec-
tion and its dependence on the electron energy are ob-
tained with the free-electron model. The calculations
are carried out for gold, for which the most experimental
data are available. Gold is, furthermore, particularly
interesting since in this metal the Fermi-surface term
obtained from the thermoelectric size effect' deviates
strongly from the free-electron value.

~ 'HE electrical resistivity Ap of lattice defects in
metals depends on the electron-scattering cross

section of the defects, the density of the electron states,
and the electron velocity. The latter two quantities are
functions of the geometry of the Fermi surface only.
The change AS of the thermoelectric power due to
lattice defects is a function of the derivative of hp with
respect to the energy of the conduction electrons. The
thermoelectric power of lattice defects is, therefore,
given by the variation of the electron-scattering cross
section of the defects with the electron energy. It is also
dependent on the derivative of the density of the elec-
tron states and of the electron velocity with respect to
the energy of the conduction electrons. The latter two
quantities are again only functions of the geometry of
the Fermi surface.

The electrical resistivity' and the thermoelectric
power' of lattice defects in metals has been calculated
in the past in a series of papers. The terms containing
the electron-scattering cross section of the imperfections
have been calculated with the free-electron model in
most of these papers. All of the calculations, mentioned
above, assumed an isotropic Fermi surface for deter-
mining the terms containing the density of the electron
states and the electron velocity. However, in metals
with an anisotropic Fermi surface the assumption of a
spherical Fermi surface may lead to serious errors in
the calculation of hp and AS, even if the free-electron
model is valid for calculating the term containing the
electron-scattering cross section of the lattice defects.
In a rigorous treatment, the electrical resistivity and
the thermoelectric power of lattice defects should be
calculated by integrating over the Fermi surface. Be-

METHOD OF THE CALCULATION

We assume that the metal has a single isotropic group
of conduction electrons. The electrical resistivity is
then given by4

P=
2e'e(E)e(E)l(E) sr

Here e is the absolute magnitude of the elementary
charge and e the density of the electron states. v, l, and
E are the velocity, the mean free path, and the energy
of the conduction electrons, respectively. The electrical
resistivity of lattice defects is, then, for small defect
concentrations*Based on work performed under the auspices of the U. S.

Atomic Energy Commission.
~ References regarding the numerous calculations on the elec-

trical resistivity of lattice defects may be obtained from K. Fischer,
Phys. Status Solidi 3, 2035 (1963) and from J. M. Ziman, Advan.
Phys. 13, 89 (1964).' M. F. Abeles, Compt. Rend. 237, 796 (1953);F.J.Blett, Phys.
Rev. 100, 666 (1955); 103, 1905 (1956).

31K;o (E)
hp= (2)

2ests(E)e(E) er
' R. P. Huebener, Phys. Rev. 136, A1740 (1964).
4A. H. Wilson, The Theory of 3fetals (Cambridge University

Press, Cambridge, England, 1958).
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X; is the number of defects per volume and 0 the
momentum-transfer cross section of the imperfections.

For a single isotropic group of conduction electrons
the thermoelectric power is4

ir'ko'T 8 lnt(E) 8 ln[e(E)o(E)]
+ . (3)

3eEp 8 lnE 8 lnE

Here, k~ is Boltzmann's constant, T the absolute tem-
perature, and E& the Fermi energy. The change in the
thermoelectric power due to lattice defects for small
defect concentrations (hp((p) is then given by'

hp 8 1nhp/8 lnE
AS= S—

p 8 lnp/8 lnE

We are here only concerned with the electron-diffusion
component of the thermoelectric power and do not
consider at all the phonon-drag component. With
Eqs. (I), (2), and (3) we obtain from Eq. (4)

~'kryo'T 2 p
AS=- —Ep

3e p

values, the quantities o(Es) and {g lno(E)/g lnE}z
remain to be evaluated for the calculation of Ap and hS.
For determining o (E) and. its derivative with respect to
the electron energy we use the free-electron approxima-
tion. We assume further that the scattering potential
associated with the lattice defect is spherically sym-
metric. The momentum-transfer cross section of the
lattice defects, as obtained by the partial-wave method,
is then given bye

4x ~
o =—Q t sin'(g) i—g() .

k' &=&

Here k is the magnitude of the wave vector of the
electrons at the Fermi surface. g~ are the phase shifts of
the asymptotic solutions of the radial part of the
Schrodinger equation caused by the perturbation asso-
ciated with the lattice defect. Here / is the angular-
momentum quantum number.

With Eq. (8) we find the derivative

8 lnE

8 lnE 8 1nB

8 lno (E) 8 ln[e(E)o(E)]
X

Ap
S (5) P t sin[2(g[ ]—r/$)g(ad[, /8 E—gr/J/gE)E

l,=j
+

As seen from Eq. (5) the quantity d,S depends on the
derivatives {8 lno (E)/8 lnE}~r and {8ln[e(E)e(E)]/
8 lnE}Js~. To simplify the further discussion we intro-
duce the notation

A —= {-',e'e(E)o(E)}sr

8 1n[e(E)i (E)j

In a metal with an arlisotropic Fermi surface, Eqs. (1)
to (5) are still valid provided the quantities A, t(E),
and o.(E) and their derivatives with respect to the elec-
tron energy are taken as average values over the Fermi
surface. As mentioned above, for calculating the elec-
trical resistivity and the thermoelectric power of lattice
defects the free-electron values of A and 8 have been
used in the past. However, the average values of A
and 8, which depend only on the geometry of the Fermi
surface, may deviate appreciably from the free-electron
values. By using the free-electron values of these
quantities, one may introduce appreciable errors in the
calculation of d p and AS. These errors can be eliminated
if a more correct value of the quantities A and 8 is used
in the calculation.

The average value over the Fermi surface of A and 8
can be obtained directly from experiment through the
size effect on the electrical resistivity and the thermo-
electric power. ' Using these experimentally determined

5 R. P. Huebener, Phys. Rev. 135, A1281 (1964).

Q t sin'(rl ( i—g,)
l=1

ELECTRICAL RESISTIVITY AND THERMOELECTRIC
PO'WER OP LATTICE VACANCIES IN GOLD

Since the electrical resistivity' and the thermoelectric
power" of lattice vacancies in gold have been meas-
ured recently with relatively high accuracy, this system
is well suited for checking the results of theoretical
calculations. We represent the vacancy by a repulsive
square-well potential. The radius u of the square well
is taken as the atomic radius of gold. The height Vo of
the repulsive square well is obtained from the Friedel
condition' by assuming that one elementary charge is
associated with the scattering potenti'al of the vacancy.
The magnitude of the wave vector of the electrons is
determined from the Fermi energy with the free-electron
model. The parameter values used in the calculation of
the electron-scattering cross section of the vacancy are
summarized in Table I. The quantity kaa given in
Table I i:s defined by

ko'a'= 2m Voa'/k'

where m is the free-electron mass, and A is Planck's con-
stant divided by 2w.

t1 K. Huang, Proc. Phys. Soc. (London) 60, 161 (1948),Eq. (48).
~R. P. Huebener and C. G. Homan, Phys; Rev. 129, 1162

(1963).
8 J. Polack, Czech. J. Phys. 813, 616 (1963);814, 176 (1964).' J. Friedel, Phil. Nag. 43, 153 (1952). -,
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ALE I. Parameter values used for calculating the electron-
scattering cross section of lattice vacancies in gold.

5.51 eV 1593X10 s cm 1.9192

kpu

1.7870

The phase shifts q~ were calculated using the formula
given by Mott and Massey. "For obtaining the deriva-
tives Brit/BE the value of ka given in Table I was varied
by about &0.001% and the corresponding phase shifts
(t)~&At}~) were determined. The derivatives Bt)~/BE
were approximated by the average value of the ratio
ht)~/hE obtained for the positive and negative change
hE. The deviation of this average value of Dti~/AE from
the values calculated for the positive and negative
energy variation was less than 0.01%. The calculations
of the phase shifts ti~ and of the derivatives Bti~/BE were
carried out on a CDC-3600 computer.

The average values over the Fermi surface of the
quantities A and 8 were taken from the experimentally
determined size effect on the electrical resistivity and
the thermoelectric power in gold. ' These average values
and the corresponding values calculated from the free-
electron model of a metal are given in Table II.

The calculated and the experimental values of the
electrical resistivity and the thermoelectric power of
vacancies in gold are summarized in Table III. The
table also includes the calculated values of hp and 65
which are obtained using the quantities A and B from
the free-electron model.

TmLz II.Average values over the Fermi surface of the quanti-
ties A ={2e'm(E)v(E)/3}@v, and J3={81nge(E)v(E) j/8 1nL&'}@@

in gold.

A (10» n-~ cm~)
J3

From the
electric size

effects~

1.04~0.17—1.05+0.19

From the
free-electron

model

1.20
+1.0

a See Ref. 3.

"N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisiows (Clarendon Press, Oxford, England, 1952), p. 38.

DISCUSSION

As seen from Table III, the electrical resistivity and
the thermoelectric power of vacancies calculated with
the values of A and 8 from the electric size effects are
in good agreement with the experimental results. The
value of hp obtained with the function A from the free-
electron model is also in agreement with the experi-
mental value. However, the thermoelectric power calcu-

lated with the function J3 from the free-electron model
deviates appreciably from the experimental result. The
error introduced into the calculation by using the free-
electron value of 8 is still more pronounced in the
quantity 8 1 nhp/8 lnE, which is wrong by an order of
magnitude and also has the wrong sign. This drastic
error is, of course, due to the large difference between
the values of 8 obtained from the free-electron model
and from the electric size effect (Table II). In the case
of vacancies in gold, the first term in Eq. (5) is smaller

by an order of magnitude than the second term. There-
fore, the thermoelectric power 65 is relatively insensi-
tive to an error in the quantity 8 1 nhp/8 lnE.

The value of 8 1 nhp/8 lnE calculated with A and 8
from the free-electron model and given in Table III is
in disagreement with the value of —0.3 calculated by
Abeles. ' Abeles used the same parameter values of ku
and koa as the present calculation and obtained the
functions A and 8 from the free-electron approximation.

T~x,z III. Calculated and experimental values of the electrical
resistivity, the thermoelectric power, and the derivative 8 lnhp/
8 lnE for lattice vacancies in gold.

Calculated with A and B
from the electric size
e8ects

Calculated with A and B
from the free-electron
model

Experimental value

8 in'
8 in'

1.66 +0.27 —7.45 &1.16 +0.36 &0.19

1.44 -20.0 -1.69
1.8 +0.4a -9.24 ~0.19b +0.071+0.032b

& See Ref. 7.
b See Ref. 5.

Therefore, his value of 8 lhn/p8 lnE seems to be
affected by a numerical error in the calculation.

The present calculation indicates that the use of the
free-electron value of the function 8 leads to an appreci-
able error in the calculation of the thermoelectric power
of lattice vacancies in the noble metals. The calculp, tion
of the thermoelectric power of lattice vacancies can be
improved considerably if the average value of the
function 8 over the Fermi surface, as obtained experi-
mentally from the thermoelectric size effect, is used.
The free-electron approximation seems to work reason-
ably well for calculating the scattering cross section of
vacancies and its dependence on the electron energy.
These conclusions can be expected to be generally valid
for defects in metals with an anisotropic Fermi surface.
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