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The determination of the form of tensors and matrix elements is greatly simplified by using the smallest
possible group of symmetry operations that is relevant. Whenever some indices are only permuted (aside
from + signs) by the symmetry operations, we show that complete symmetry information is contained in
the subgroup of operations that leaves these indices invariant or exchanges them. For a particular tensor
element TI23 this is the group of the indices 123. For a tensor function of a vector T„„(E)this is the group
of operations that leave the vector E invariant. For a force constant matrix E'„„"this is the group of the
bond mn. For an anharmonic force constant E„„q~» this is the group of the triangle connecting the atoms
mnp. For a matrix element V" '~" connecting three vectors k,k'k" of the Brillouin zone this is the common
group of the wave vectors, i.e., the group G, of elements that leave k, k' and k" invariant (modulo a re-
ciprocal lattice vector), in some cases augmented by the elements that permute k, k' and k".The proper use
of "exchange" elements is shown to be determined by the behavior of the operator V under time-reversal
and Hermitian conjugation. The results are valid in the presence of spin-orbit interaction.

1. INTRODUCTION

~ 'HIS paper will show that if one asks specie.c, local,
questions about a system possessing a large

symmetry group G, that only a subgroup H of G is
relevant to answering these questions.

For example, if we wish to calculate the number of
independent force constants E„„"appropriate to a
a particular pair of atoms m, e in a molecule, the
relevant group B' is the "group of the bond, " namely,
the subgroup of the group G of the molecule contain-
ing those elements R that restore the bond to itself.
These include ordinary elements that restore the atoms
to themselves

R(m) =m, R(e)=I (ordinary) (1.1)

and reversal elements that exchange the atoms

R(m) =e, R(n) =m (exchange). (1.2)

Moreover, the exchange elements should only be used
if the force constants obey a symmetry relation

mn fQ nm f +1—(1.3)

V „),
"~'~"= yg '(Vg" gm)*Pg. ,'dr k"='k+4' (1.4)

'For a detailed discussion of time reversal, see the author' s
forthcoming book, Symmetry Principles in Solid State Physics.

~ For a discussion of time reversal with specific application to
selection rules connecting different points in the Brillouin zone see
M. Lax, in Report of the Exeter International Conference on The
I'hysics of Semiconductors (Institute of Physics and the The
Physical Society, London, 1962), p. 395.

closely related to 8me reversa'l. "(If E ~" represented
the electric-dipole moment M„ induced on atom m in
Cartesian direction p when atom e is given the displace-
ment u," this symmetry would be absent. )

As a second example, we mention electronic or
vibrational transitions in crystals involving a change of
wave vector k. The selection rules for such processes
can be obtained by calculating the number of independ-
ent parameters (for fixed k, k', k") among matrix
elements of the form

where =' means congruent modulo a reciprocal lattice
vector, and each factor transforms as a Bloch wave, e.g. ,

Rv~.'=Z v»,"D' "'(R), (1 5)

where k is carried into Rk =—R k where R is the rota-
tional part of the complete space-group element (R

~
a).

In this case, the relevant group G, is the intersection of
the three groups Gl„G»., Gl,"of the corresponding wave
vectors (the "common group of the wave vector"). In
other words we select those R for which

Rk='k, Rk'='k', Rk"=k"
or brieQy

R(kk'k") =kk'k". (1.6)

This is the group chosen by Klliott and Loudon. ' (A
slightly larger group was introduced by Lax and
Hop6eld4 in order to permit the selection-rule calcula-
tion to proceed using only existing character tables.
Moreover, the equivalence of the Lax-Hopfield proce-
dure to that of Klliott and Loudon was established. 4)

If a special relation exists between k, and k' aed
between the basis vectors:

k='Qk' and qg, „'=—Qibg, „', (1.7)

where Q is a space group element, then Lax' has shown,
that one must also include exchange elements that obey

R(kk'k") =k'kk"

so that the complete set of elements used is G,+QG, .
One must then tak.e a symmetric or antisymmetric
product of the representation j with Qj according to
the behavior of the perturbation operator V under
time-reversal and Hermitian conjugation. "

In very special problems, all three basis vectors and
wave vectors can be related, and it will be necessary to
include al/ possible exchoege elements such that

R(kk'k") = any permutation of kk'k". (1.9)
3 R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 146

(1960).
4 M. Lax and J. Hopfield, Phys. Rev. 124, 115 (1961).
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An example of such a process is the use of a quartic
anharmonic term in a face-centered cubic lattice
to cause the decay of a 1'=(0,0,0) photon into an
X= (1,0,0), a Y'= (0,1,0), and a Z= (0,0,1) phonon
where

(1,0,0)+ (0,1,0)+ (0,0,1)= (1,1,1)=' (0,0,0) .

Birman' and Zak' have criticized the Lax-HopGeld4
and Elliott-Loudon' procedures because they do not
make use of the full™space group. This criticism is
misleading, however. The subgroup procedure attempts
to calculate directly the number of independent
constants in, for example, V„,q"~'"" for Gxed k, k', k"
whereas the use of full space-group-character formulas
calculates the number of independent parameters in the
complete set of matrix elements V„„),~~~"'~"",a diferent
question in principle. If the two results were to diGer,
the subgroup procedure would provide the correct
(and the full group an incorrect) answer to the original
question. The proof of the equivalence of the subgroup
and full-group procedures given in Sec. 3, can be
regarded then, not as a justification of the subgroup
procedure, but rather a proof that the two sets of Inatrix
elements have the same number of independent
parameters.

BlxIIIRn Rlso clltlclzcd thc sUbgioUp ploccdUlcs of
Lax-HopGeld and Klhott-Loudon on the grounds that
they did not provide procedures for taking the syrn-
nletric or antisymmetric Kronecker product of represen-
tations. The character formulas for the symmetric and
antisymmetric product formulas and the time-reversal
considerations needed to determine which of these to
use, have already been published. ' However, Birman'
has remained unconvinced that our subgroup proce-
dures including time reversal are equivalent to the use
of the full-space group including symmetric or anti-
symmetric products. It was thought worthwhile, there-
fore, to present an exphcit proof in Sec. 3 that covers
not only space groups, but a wide variety of cases in
which subgroup procedures are useful.

Section 4 will develop the concepts of the group of
the bond and the group of the triangle for dealing with
harmonic and anharmonic force constants in rnolecules
or crystals. Section 5 will specialize our general results to
selection rules connecting di6er ent points in the
Brillouin zone.

The reader who is not interested in the justihcation
but the use of our procedures can proceed directly to
Secs. 6—9 where applications are made in Sec. 6 to
obtain the Herring criterion, in Sec. 7 to obtain two-
phonon selection rules, in Sec. 8 to obtain harmonic

~ J. L. Birman, Phys. Rev. 127, 1093 (1962); Dl, 1489 (1963).
See also I. V. V. Raghavacharyulu, Report No. 116, Quantum
Chemistry Group, Uppsala University, Uppsala, Sweden (un-
published), for the derivation of selection rules using the full
space-group and little-group theory.' J. Zak, J. Math. Phys. 3, 1278 (1961).' J.L. Birman, J.Phys. Chem. Solids, Suppl. I, 669 l1965l; and
discussion by M. Lax which follows this paper.

and anharmonic force constants in crystals and in
Sec. 9 to obtain the form of tensors using the group of
the indices, and the group of an external Geld vector or
tensor. A discussion is also given of magnetic tensors
such as piezomagnetic and magnetoelectric tensors since
these illustrate the case in which time-reversal E is not
a member of the group, but appears in some combina-
tion QZ.

V,"=RV, = PV, "b(—n', R(n))D;,""(R)

V,B(0)D, R(a)a(R) (21)

If, therefore, we restrict our attention to the subgroup
H= G„deGned by

RsB if R(n) =n, (2.2)

we obtain all the relations

V. =2" V" D". (R) (2.3)

between members of the set V, (fixed n, varying s),
where D,.,~(R) =D;,~~(R) is the matrix representative
of E. in the subgroup G . Thus, these are the only
elements ~eLeeuet for Gxing the relative sizes and number
of independent parameters among the V," (fixed n).

Once the V,~ are determined, the V,~, P/n can be
determined in terms of the V„"by choosing an E. such
that R(n)=P and inverting the matrix in (2.1). Thus
the V„~ introduce no new parameters. The number of
parameters S among all V„"& & is then the same as the
number S among V„ for uey owe 6xed 0,. A corollary
remark is then that X is independent of 0. since any
one of the 0, could have been made our standard choice.
These results constitute an informal proof that the
questions posed in the subgroup and full group proce-
duI'cs RI'c equivalent Rnd thcll RIlswcrs idcnt1CRl. A
direct proof of the latter statement will be given in the
next section.

When e represents a compound set of symbols such
as kk'k" and relations are available between Va"'a"

and V~'~"" through time reversal we can, in this
section and the next 'interpret k'kk" as not distinct

2. SELECTION OF THE RELEVANT
SYMMETRY ELEMENTS

The displacement vectors in a molecular vibration
u„and the basis vectors for a space-group irreducible
representation y~„' are both described by parameters ns

or k that are simply permuted by the group operations,
(and not taken into a linear combination of such
objects). Thus a matrix element E„„~"or Vs„q»'a"
can be written briefly in the form V, where O.=me or
n=kk'k" is an index that suffers only permutations,
and s= pv or pent are indices that need not have this
special property. Thus, a symmetry requirement
imposed. by an arbitrary element E. of the full group 6
takes the form
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from kk'k", i.e., regard R(n) =n for the elements that
exchange k and. k'. In this way, the group G, will
include whatever exchange elements are needed. The
matrix elements D;,»(R) that must be used for these
exchange elements will contain certain symmetric or
antisymmetric combinations, as discussed in Sec. 4,
but the nature of this symmetrization process is
parallel in the subgroup and full group procedures and
will not disturb a comparison between these two.

3. FORMAL PROOF OF THE EQUIVALENCE OF THE
SUBGROUP AND FULL-GROUP PROCEDURES

With a meaning for R(n) that includes exchange
elements, the number of independent parameters among
the set V,~ for 6xed 0. is given bys

Since there is a certain amount of arbitrariness in
the choice of basis vectors in the conjugate subspaces,
we can choose for convenience

(3.6)

C()(R)=P,(XV...RXV,») =C.(X-'RX) (3.7)

a trace result that is independent of our arbitrary choice
(3.6). By the~group rearrangement theorem, we can
now write

QC (R)()(n,Rn)= QC (X—'RX)()(n,X-'RXn)

= P Cp(R)()(P,RP),

1X=—QC (R),
g~ RsG(x

(3.1)

where g is the order of the subgroup G and

C-(R)=Q, D„-(R) (3.2)

is the character of the representation of R in the basis
V,» (fixed n). The number X is given by (3.1) since
(3.1) gives the number of times the identity representa-
tion is contained in the space spanned by the V.~
(f)Ized n).

From the first part of (2.1), however, we can deter-
mine the character of E.in the space of all V,~ by setting
0, =0., s =g ln thc matrix clcn1cIlt and summlxlg. Thc
average of this character over the complete group G
gives the number of parameters among all V,» (n
varying as well):

1
E= gP g(n, R(n—))C"(R)

1, 1
=-Zg- —ZC (R)

g a g~ Zsga

(3 3)

%e shall show, below, that g and X independent of 0,

(see also the remarks in Sec. 2). The number of terms
in the sum is then g/g„and we 6nd

where we have used l)(n,X 'RP)=l)(Xn, RP)=i)(P,EP).
Thus g,E, (andjhence X ) is independent of n.

Our proof of (3.4) and the identity of the subgroup
and full-group answers is now complete.

is assumed to be invariant under the (possibly inhomo-
geneous) space-group operations (8~ v) that take the
equilibrium positions X~ into new equilibrium positions

Xm' —(Xm)l —S.Xm+v= X8(»s) (4 2)

where m'=S(es) is the name of the new position and
S is the 3&&3 matrix of the rotation. The complete
posltloxls arc cal rlcd into

(X»a+.um)~ —S.(Xmy ups)+. v (4.3)

X8(ss)+u18 (»I) —X8( ss)+S,um
n~8 (m) —S.um

i.e., the rotated vector S u" is the displacement
deposited at the new position S(m). The new potential
energy is then

4. GROUP OF THE BOND

The potential energy of vibration of a molecule or
crystal

1 p umKmn~n, » 1 p I waR mnN n, (4 1)

(3 4) or
V —x P(S.u ).K8( )8( ) ~ (S u") (4 5)

which was to be established.
To see that g is independent of 0,, we note that if

Xn=p or X 'p=n and if ReG then XRX—'p=XRn
=Xn=p so that

(3.5)

is a conjugate subgroup with gp
——g .

8 See Chap. 4 of Ref. 1.

S,pE„„""=E'„,""=Q E .„.8(")8(")S~ S„.„
p'v

=2&'"""A "'" -"(S), (4 6)
where

'n, 'y' ', m p (S)=&(~ S(ts))5(B S(N))S& P'„(4.7)

in complete analogy with our more abstract Eq. (2.1).
If we make no use of E„„~"=E„„",the character of
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any element of the group of the molecule (crystal) is

x(&)= Z ~( P'( ))~(,&(.))C™(~), (48)

pR mn R nm fx' mn —~ f (4.10)

then an operator R that exchanges m and I can be
combined with P to yieM a relation between E„„"
and other members E„„"of the same set:

RPX „"=RK„""=PE .„m™b(m'R(e))
)&()(e',R(m))R„.„R„„(4.11)

using Eq. (4.6). The character can be obtained by
setting m'=m, n'=e, p'=p, , v'= v and summing:

C""(&)=LC(&)j'=(Z.~,)' (4.9)

is the character that results if restrict our attention to
the bond mn, i.e., to the E„, " for a Gxed mn.

If E„, "has a known symmetry under the operation
F ("fHp") that flips the indices,

yyB(n)B(jy)B(Na)gygygy (4.17e)

for the sylmnetric (f=+1) or antisymmetric (f= —1)
product representations. This is the same result as we
would have gotten if we had simply used (4.15) and
divided the result by 2. The factor of 2 arises
because E„„"and E„„"are not independent whereas
E„„"and E,„are independent basis functions in
constructing our representation.

The extension of these ideas to a third-rank tensor
E„„), "y that is symmetric (f= 1) on all interchanges
m/l +~ Ny, mp ~~pX, ey ~+- pl(, or antisymmetric (f=—1)
on such pair exchanges can be obtained immediately
by writing

mny R', ,„,R(m)R(n)R(y)R, R, R&,& (4 17a)

—fR, ,„, R( n) R( m) R( y) R, R, R„,„(41'/b)

=fE .„. R( )R(")"( )R ~ R„.„R ~ (4.17c)

—f R. . . R( m)B( )yR( )nR, R, R,l (4 1/d)

X(RF)= p ()(m,R(N))()(yl,R(m))C""(R), (4.12)
fS, '0

C""(R)=C (R') =P R„Q,„.
.R(y)R(m)R(n)R, R, R&,& (4 1'7f)

The form (4.17b), for example, yields restrictive
lnformatlon on Em"y only if R(n) m, R(m)=N, the
last, (4.17f), only if R(p)=m, R(m)=n, R(e)=p. The
detailed form of the matrix is obtained by using just
these ordinary and exchange elements of the group of
the mmp /riungle. With respect to this group, the
character associated with (4.17) is obtained by permut-
ing the dummy indices p', v', X' until each E has the
form E„„.), , setting now p, 'v'P'= p, vX and summing the
diagonal elements:

Eclllatlolls (4.8) allcl (4.12) call be llsed fol' ally
element R, or 8 in the full group of the molecule (or
crystal). The structure of these formulas indicate that
for a given mn, the only relevant elements are those that
have the bond invariant, or exchange the ends. The
general procedure of Sec. 3 (which has been carried
out in detail for this applicationy) shows that one can
work directly with the group of the bond, including its
exchange elements. If Q is a particular reversal element,
we can use the abbreviation C ""y(R)=Jl(R)(C (R)$'+fJg(R)C (R')4 (R)

+J3(R)C (R'), (4.18)J(R)=I)(m, R(m))()(N, R(e)),
J(RQ) =b(m, R(e))l)(n, R(m)),

(4.14) where
Jl(R) =8(m,R(m))5(n, R(ll))i9(p, R(p)) (4.19)

and write the number of force constants in bond me
selects the ordinary elements,

via (3.1) in the simplest possible form:

/)/ „= — Q (/C (R)j'J(R)+fC {R')J(RQ)}, (4.15)

where the factors J(R), J(RQ) insure that the 6rst sum
contains only ordinary elements, and the second sum
only exchange elements.

For the special ease in which m=n, there is no
distinctioh between ordinary and exchange elements,
and the two representation Eqs. (4.7) and. (4.11) are
not independent. The average of these two equations
yields the usual result

A(R) =S(m,R(~))S(~,R(m))~(p, R(p))
+S(m,R(p))S(e,R(N))~(p, R(m))
+5(m, R(m))l)(n, R(p))b(p, R(e)) (4.20)

selects those elements that interchange any pair of
atomsq and

Ja(R) = lI(m, R(N))5(N, R(p))I)(p, R(m))
+()(m,R(p))b(e, R(m))()(p, R(n)) (4.21)

selects those elements that produce eyelic exchanges.
The number of independent parameters if E is invariant
under the group operation is

P f(C(R)$2+fC(R2)}
2 g~ B~g~m

' See Chap. 5 Of Ref. l.

(4.16)

PC- (R).
g~~& &

(4.22)
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simply restricts us to that subgroup of elements that
leaves the atom m invariant. For f=+1, (4.23) is
recognizable as the usual triple symmetric product.

For the case m=eNp, the last four lines of Eq. (4.1/)
do not contribute since any interchange of m (or e)
and p changes E~ & into Z»~ and leads one out of the
space of the E„„q "& (Axed mmp) in which we take the
character. The average of the first two terms then
leads to

C"-~(R)=-', ( [C(R)j'+fC(R'))
XC (R)5(m, R(m)b(p, R(p)). (4.24)

For contrast with (4.18) and (4.24) let us write the
character for the case

&may fg &neap (4.25)

and E possesses no particular symmetry under the
interchange of m and p or of e and p. In this case

C """(R)= {[C (R)j'8(m, R(m))8(n, R(e))+C (R')
Xb(m, R(e))8(e,R(m)))C (R)5(p,R(p)) (4.26)

is simply the product of the representation generated by
E„„"with that generated by Ez&.

To apply these results to lattice vibrations, we must
replace m by a double index ni where 0. is the "name" of
the particle in the cell, and i is the cell index. The pure
lattice translation (s

~
t) simply tells us that

R -s=(.~t)R -»=Z -+ P~'=R' -P(j—i)

is a function only of the difference in cell indices. Once
this is accepted, the operator (S~ v+ t) yields the same
end result as (S~v). Thus character sums over all
group elements including translations will simply yield
a factor S (the order of the translation group), but this
E also appears in the order of the relevant group and
cancels. One can thus take sums simply over the
representative elements (S~ v), and then divide by the
number of such representative elements.

Since all calculations are done modulo an arbitrary
lattice translation, conditions such as 8(m,R(e)) will
be replaced by 8(a,S(P)) where P is carried into S(P)
by (S~ v), but not necessarily in the same cell. With
this understanding, all of the formulas of this section
can be applied directly to lattices.

The special case et= I=p can be handled directly by
taking the average of the right-hand sides of Eq. (4.17)
since the E's with diferent superscripts are no longer
independent. The result is

j.
C """(R)=—([C(R)]'+3fC (R')C (R)

31
/2C (R'))J (R), (4.23)

where

J(R)=8(m, R(m))

5. SELECTION RULES CONNECTING DIFFERENT
POINTS IN THE BRILLOUIN ZONE

The matrix element (1.4) transforms under R as

RP hk'k" g P, ,„',Rk, Rk', Rk "D, iRkk(R, )
p'r'X'

XD, q gw, R'(R')D, ERR",lx" (R)4 (5 I)

since each factor transforms as in (1.5). Thus, the
character generated by this representation is

x(R)=x'"(R)x'"'(R)x""(R)*~(R) (5 2)
where

j(R)=5(k,Rk) 5(k', Rk')5(k",Rk"), (5.3)

where y'~(R) is the character of R in representation, i
in G~, the group of the wave vector k, etc. If x(R) were
to be regarded as a character in the full-space group,
the right-hand side of of (5.2) would have to be summed
over all the points in the stars of k, k', and k". Since,
however, we are interested in matrix elements involving
the particular k, k', and V', we must restrict ourselves
to the elements of G„ the intersection of G~, G~., and
Gz . These are the elements for which J(R) is unity.

An element (S~ v+t) has a character x that differs
from that of (S~ v) by a factor exp[i(k+k' —k") ~ tj.
A sum over all t merely yields the selection rule k+k'
='t", which we have assumed from the start. With this
choice, the sum over t yields a factor E which also
appears in the denominator, when we divide by the
order of the group. Hence we can, as in the case of the
group of the bond, take all group sums over the set of
representative elements (S

~
v).

If k and k' are two points of the same star, k='Qk'
and i and j are descriptions of the same irreducible
representation of the full-space group, "i.e.,

0'&u =Au =QA', u

then we would expect in the full-space group to use
either the symmetric or the antisymmetric product
representation. Which of these is appropriate depends
on the behavior of Vq under time reversal, and whether
the fq„~ is a spinor or not.

We shall assume" that Q obeys Qk"='k" and also
that Qk=k' so that Q' is in G, . The matrix element
(1.4) can be rewritten in the form

where we write V briefly for (U&"z )*,and the left-hand
side transforms identically as (1.4), since Ep„' trans-
forms as D„„'(R)*because of the antilinear nature of

"In general, of course, Qtg', „& can be some linear combination
of P&, „&, but it is always possible to choose the base vectors in
accord with (5.4). The 6nal character will depend only on the
spaces spanned and not on how the basis vectors of each space
are labeled."If the full-space group contained no such element, it would
be impossible to relate V~'"" to t/~'~" and hence to itself by time
reversal (see below). The character formula (5.2) would then
provide complete information, and the use of symmetric products
would lead to nothing new.
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the time-reversal operator E, and D'(R)* is restored to
D'(R) when it is removed from the left-hand side
("bra position") of the closed product. The form (5.5)
of the matrix element is valid in the presence of spin-
orbit coupling. The antiunitary property of E permits
the right-hand side of (5.5) to be rewritten as

(E ViP
&'

KQKiP ') =K'(KiP„&,VQiP'„'), (5.6)

where the (omitted) subscript k' is now understood to
be automatically associated with j, and

V=(KVK ')t=KVtK '=FVF—'. (5.7)

The operator F represents the combined action of
Hermitian conjugation and time reversal. If V depends
only on position and momentum its action can be
written in Dirac notation as

2 Lx"(R)x"'(R)x""(R)*~(R)
2g~ 8

+K'x"'(R')x"""(RF)*~(RQ)3, (5 19)

and the relation (5.4) implies that

x'"(F)=x'"'(Q 'RQ) . (5.20)

If we specialize to the case in which E commutes with
the Hamiltonian so that F can be diagonalized, then

therefore be written

x(RF)=E'x' '(R')x""(RF)*J(RQ) (5.17)
where

J(RQ) =b(k, Rk')b(k', Rk)b(k", Rk") . (5.18)

The number of independent constants among the
V„„g@&~'&~' ~" is then

ViP(r) = (r
~
V

~

r')dr'iP(r') —= V(r,r')dr'iP(r'). (5.8) x""(RF)*=fx""(R)* (5.21)

In this case, time reversal reduces to complex conjuga-
tion and V=(Vt)~=U, i.e.,

FV(r, r')F-'=—V(r, r') = V(r', r), (5.9)

so that F Aips the indices r, r here, just as it Qipped
the indices nze in E ".

If the Hamiltonian of the problem commutes with
E (and hence F) then F can be diagonalized

V= fV, f=+1. (5.10)

The proof that follows, however, requires ority that QK
commlte with the IIumiltoeiae; E need rot.

Insertion of the exchange operator R (a member of
QG, ) into the right-hand side of (5.6) and comparison
with (5.5) yields

(QKiP ' ViP ') =K'(RKP„', V (RF)RQiP„'), (5.11)

where

6. THE HERRING CRITERION

Since Q and K both reverse k, it follows that QKip»&
provide a set of states of wave vector k that are degen-
erate with iPi,„'. If these states are independent of i',.',
additional degeneracy at k due to time reversal will
be produced. These states will be independent if
(QKiP„',f,')=0, a selection rule, Eq. (5.5), in which
the perturbation operator V is unity, so that f=1,
xm(R) =1, and

N = ', (A+K'b)- (6.1)

By setting V equal to the identity operator, we see
that the representation generated by (QKiP„')tiP„& has
the character

x(R) =x'(Q 'RQ)x'(R)

x (RF) =K'x'(R') ReQG,

a result that can also be established directly using
(QKiP„')tiP„' as basis functions. "

R94'= Z 4" 'D."(RQ) (5.13)

V(RF) =—RVR—'= R(Vy")*R-'
—:P (Vy~ ) Dg~i(RF)*, (5.12)

where
1

A =—P x&~(Q
—'RQ)x&" (R)b(k,Rk),

gj R
(6.2)

R4"'=2 Q6'D"'(Q 'R) (5 14)

since RQ and Q
—'R are members of G, fzq. (5.14) can

be verified by multiplying it by Q
' on the left). We

insert (5.12)—(5.14) into (5.11) to find the matrix
generated by EF:

(Q«. ;(V -)V, )=Z(QK~.', (V -)*~,"~
X&„,i, „,i,(RF), (5.15)

ti „„);„„i,(RF) =K'D„.„ (Qt-'R) D„j'(RQ)

XD),.i~(RF)*, (5.16)

where the right-hand side of (5.15) contains the same
set of matrix elements as the left, because we have
used ReQG, . The character in this representation can

1
b= Px'~(R')b( —k—Rk)

gg R
(6.3)

The values of 3, b and N for the three types of (irreduc-
ible) representations are":

Type of
representation A

0
1 (6.4)
0.

If QKiP' and P' are orthogonal because they belong to

I' See Ref. 1, Chap. 10.
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inequivalent representations then x&(Q 'RQ) *and g&(Z)
are orthogonal, i.e., A =0. In this case b and E must
also vanish. "Added degeneracy due to time reversal
is therefore produced when b=0 and when bE'= —1,
i.e., type-2 representations without spin, and type-1
representations with spin.

The classification of representations into three types
by 6=+1, —1, or 0 was shown by Herring" to be
equivalent to direct application of the usual Frobenius
criterion to the full-space group.

7. TWO-PHONON SELECTION RULES

Lax and Burstein' using inversion symmetry
demonstrated that electric-dipole absorption in diamond
with the creation of a pair of identical phonons is
forbidden. They overlooked the same selection rule in
NaCl crystal because considerable care is needed in a
direct proof which will be presented in Appendix A.

The diamond problem has been reconsidered recently
by Birman' using the full-space group of the diamond
lattice, without realizing that inversion and time
reversal are sufhcient to guarantee the selection rule
at any k. Birman indeed establishes this two-phonon
selection rule in zincblende (in the absence of inversion)
at points of high symmetry. An approximate selection
rule is then probably valid at general k for this structure,
but an absolute selection rule at general k in any
structure is guaranteed only by inversion and time
reversal. Burstein, Johnson, and Loudon" have applied
similar techniques to the rocksalt structure, and
Szigeti" has applied elementary parity arguments to
the rocksalt structure. Loudon, "realizing that inversion
was the key element provided an argument valid for
all crystals possessing inversion symmetry. But Loudon
made use of all the wave vectors in the star, and of all
translational elements. Moreover, he stated that his
conclusion was valid at general wave vectors, but not at
k of special symmetry.

It may be worthwhile, therefore, stating our result
as a theorem, in the most general possible form:

Theorem 7.1:In a crystal possessing a center of inver-
sion, a phonon at any vector k and its time-reverse

phonon (at —k) yield a product representation at
k=0 that is even under the operation IF, where I is
inversion and F is the combination of Hermitian
conjugation with time reversal. Since the electric
moment is even under F and odd under I it is forbidden.
Magnetic dipole radiation is also forbidden since it is
odd under F and even under I.The electric-quadrupole
moment, or the polarizability that enters the Raman
effect are both even under I and F and are thus allowed.

"C.Herring, Phys. Rev. 52, 361 (1937).
~4 M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).
'5 E. Burstein, F.A. Johnson, and R. Loudon, Phys. Rev. (to be

published).
~6B. Szigeti, Proc. Roy. Soc. (London) A252, 217 (1959).
'7 R. Loudon, Phys. Rev. 137, 1784 (1965).

where X"(R) is the character under R of the representa-
tion m generated by the electric moment, magnetic
moment, polarizability tensor, etc. Thus a Hermitian
operator will yield a nonvanishing matrix element only
if it is even under the combination of inversion and time
reversal.

The trivial nature of this proof, as compared to the
use of the full-space group, was emphasized by the use
of this very example, at the Copenhagen Conference on
Lattice Dynamics. ~

8. FORCE CONSTANTS IN CRYSTALS

The third-neighbor force constants in a diamond
structure provide a nontrivial application of our
method of the group of the bond. (The first- and second-
neighbor force constants have been previously dis-
cussed. ") If one atom is at the origin, a typical third
neighbor can be placed at (~~a) (—1, —1, —3) where u
is the edge of the cubic cell. The only symmetry element
that leaves this atom invariant is the reflection plane
y». (We follow here the notation of Herring" and of
Lax and Hopfield. ') The inversion element (i~ ~) is an
element that interchanges the diamond sublattices,
i.e., aside from an irrelevant lattice translation, it
reverses the bond. So does (52;„~~), the product of
(i

~
~) with p». Thus our character formula (4.15) yields

Indeed, the reflection plane y-„requires our quadratic
form to be symmetric under the interchange of x and y,
i.e., to have the form

p, v

v p
0 0

(8.2)

with 5 parameters. We shall show that inversion requires
5=0. Indeed, we can show that for any odd-neighbor
interaction, the matrix must be symmetric. Kith the
sublattices labeled by 1 and 1, inversion yields the

~8 See Ref. 1, Secs. 9.3 and 9.4.
' C. Herring, J. Franklin Inst. 233, 525 (1942).

If a matrix element vanishes because of some sym-
metry element (or group of elements) the conditions
that lead to the vanishing must still be obeyed even if
additional group elements are added. Thus at uey
point h, we can see what vanishings are produced by
inversion symmetry alone —even if other symmetry
operations are available. The proof of our theorem is
now a trivial application of our character formula
(5.19). The only elements available are the identity,
and inversion as an element that exchanges k and —k
so that (5.19) reduces to

(7.1)
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&Asr.z I.C C,E)=character of E in three space for elements of Ce,.

&Izyzs &ezys

/&Os gtszs ID»

e(E) e(lt'.2) a{Le(E)g'+e(R') }e(R) e.
3 3 18 1
0 0 0 2

relation
lil j I 111)—g 1jig

PV PV

& "(i-i)=&;"(f-i)=& "(i-i), (8.4)

where the second step uses the symmetry of E under
P, Eq. (4.10), and Eq. (8.4) utilizes translational
invariance. The desired symmetry in pv has been
established.

As a second example, let us consider cubic anharmonic
interactions between erst neighbors in a diamond
structure that are linear in the displacements (N,s,w) of
the atom at the origin, and quadratic in the displace-
ments (z,y,s) of the atom at (s'a) (1,1,1).The group that
preserves this bond is the subgroup C3„with threefold
axis Ss,„,in the [1117direction, and the three reflection
planes y~„, y„-„y&,. The number of independent param-
eters can be computed immediately with the help of
(4.24) and Table I

E=-s'[18X1+OX2+2X37=4. (8.5)

As is evident in Eq. (4.24) no exchange elements
enter, but the symmetry of the quadratic form has been
used, It is easy enough to write down cubics that are
symmetric, i.e., xy=yx and invariant under the cyclic
exchanges 63 „„83,„, ', and. the pair interchanges

ygyy IO~gz7 gaza The reSult iS

a(Nx'+ny'+w )+sb[u(y'+ )+s( v+s)+z( w+sny')7

+c[(st+n) ay+ (n+ w) ys+ (w+N)sz7
+d[stys+vsx+wxy7. (8.6)

Having found four invariants, we can stop.

Q. THE FORM OF TENSORS

1. Gmgy of the Indices

Let a tensor T„,q ~ ~ be invariant with respect to a
group G containing a subgroup H of all elements that
simply permute the indices prX (aside from sign).
Then all information in H concerning the vanishing of a
particular set of elements T„„&,. (fixed ttrh, other
indices may vary) is contained in a subgroup of H
we shall call the group of the indkes, s namely, those
elements that leave pvP invariant.

For example, let us consider a third-rank tensor o„„q
invariant under the tetrahedral group T. Does the
element 0-122 vanish' To test this we need only use that
subgroup of T that leaves 1 and 2 invariant, namely the
group D2. Under a twofold rotation C» about the y
axis, (one element of Ds), a and s change sign, thus

r122 =—f7122=0. For an arbitrary element o'tsar, C2y
tells us that

( 1)mr+ms& (9.1)

where e1 is the number of 1's and n3 the number of 3's
among pent. Since et+rts+es ——3, we can conclude that
0„„~——0 unless 2 appears an odd number of times, The
use of C2 tells us that I must appear an odd number of
times. The use of C2, tells us that 3 must appear an odd
number of times. Thus, with respect to D2 the possible
nonvan1shlQg components are (0'yss~|rsst, o'sts) and (o'sts~

as», o'tss) The elements of T Ds ca—nnot cause any
elements to vanish, but the threefold rotations show
that the first three constants are equal to one another,
and the second three constants are equal to one another.

If r„,q is known to be symmetric with respect to pv,
(as it would be for the piezoelectric tensor) only one
independent constant remains. In the presence of such a
symmetry, one can use elements that interchange p,

and u to get a vanishing. There are no such elements in
T, but for the group 0 we could use the element C2,„
that carries xys into yxs to obtain

t7123 &213 (9.2)

so that 0-„„~ is necessarily antisymmetric in gv and the
piezoelectric tensor must vanish for the octahedral
group O.

We see then, that when a tensor has known sym-
metries under interchange of certain indices, the group
cf the srsdsces must be augmented to include the appro-
priate exchange elemeets

The number of independent parameters in such
tensors can be evaluated by well-known character
techniques. 'We shall therefore illustrate the use of these
techniques in the less well-known magnetic tensors.

2. Magnetic Tensors (Odd Under Time Reversal)

Cobalt fluoride (CoFs), a rutile structure, 's belongs
to space group" D4sr'= E4s/mern from the point of view
of x-ray crystallography. However, when the antiferro-
magnetic order" displayed in Fig. j. is taken into
account, the fourfold screw axis 42 and the mirror
plane m „do not restore the crystal to itself unless the
spins are simultaneously reversed, i.e., the complete
magnetic space group~' is E4s'/mlm' where the prime
indicates an ordinary element combined with time
reversal. (This group also applies to MnFs and FeFs.)
We should like to show that under the corresponding
point group, 4'/mmm', psesomageetssm is allowed. "

~03ee, for example, 7, Nagamiya, K. Yosida, and R, Kubo,
Advan. Phys. 4, 1 (1955) for a discussion of the structure and
magnetic properties of iron group Quorides. Also J. Nakamura
and H. Taketa, Progr. Theoret. Phys. C'Kyoto) 13, 129 (1955)."R. %. G. %yckoG, Crystal Skrlcfgres I'Interscience Publishers
Inc. , New York, 1963},Vol. 1.

n R. A. Erickson, Phys. Rev. 90, 779 (1955)."I. E. Dzialoshinski, Zh. Eksperim. i Teor. I'iz. 33, 1454
(1958) LEnglish transl. : Soviet Phys. —JETP 6, 1120 (1958)].
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fz but time reversal is not a group element in this magnetic
material, or else e„„q would vanish identically. Thus

w /
6231 4z 6231 ~zE6231 ~z6231 6132 ~ (9.8)

r 5~~~O F

Co

Fedos. 1.The magnetic structure of CoF2 (and MnF2, and FeF2)
is displayed. The x-ray structure is tetragonal with principal axis
in the s direction. The Quorines (black balls) are nonmagnetic.
The cobalt atoms (white balls) have spin up at the vertices of the
unit cell, and spin down at the body center. The magnetic fourfold
screw axis 42' is parallel to the s direction through an origin
halfway between a pair of equivalent cobalts, e.g., through
(~/2, 0,0).

E6231 6231 p (9 7)

Since the piezomagnetic tensor e„„q is even under
inversion, symmetric in p, v and odd under time reversal,
the character generated by an arbitrary element 8 is

X(R) =k{LC'(Rh)7
+4 (Rhm) }4(A) t.&(R)—1(RQ)7, (9 3)

where E1 is the proper rotation that corresponds to E,
j(R)=1, 0 according as R is or is not an ordinary
symmetry element, and Q is one element associated
with time reversal, e.g., 4,=C4, in the present example.
If we write

D4h D2h+C4s'D2h (9.4)

then the last factor J(R)—J(RQ) is plus one for the
elements of D2h and minus one for the ("reversal" )
elements of C4, D2y, . Indeed, we can ignore inversion
although, since it places no restriction on e„„q and
consider instead the smaller group

D4 D2+C4, Dh, —— (9.5)

where, of course, our formula (9.3) accounts for the
fact that the latter elements are to be used with time
reversal.

Since C(R)= —1 for R=any twofold rotation, the
number of independent parameters in e„„q is

N= i~+(1)+3x(2,)—2x(4,)—2x(2,„)7
=-', X-'((9+3)3+3(1+3)(—1)

—2(1—1)—2(1+3)(—1)}=2. (9.6)

Under D2 above, we saw that a third-rank tensor
symmetric on its erst two indices reduces to three
independent parameters

6123 6213 y 6231 6321 y 6312 &132 ~

Under time reversal

0 0 Qgh

0 0 Qmh

.Q. Q . o
(9.11)

'4 J. P. Remeika, J. Appl. Phys. 31, 263S (1960)."D.L. White, Bull. Am. Phys. Soc. 5, 189 (1960)."G. T. Rado, Phys. Rev. Letters 13, 335 (1964);The Proceed-
ings of the International Conference on Magnetism, Nottingham,
1964, Proc. Phys. Soc. Suppl. (to be published}.

~~ E. A. Wood, Acta Cryst. 13, 682 (1960)."S. C. Abrahams, J. M. Reddy, and J.E. Bernstein, J. Chem.
Phys. (to be published)."See Ref. 1, Sec. 4.2."S.C. Abrahams, J. M. Reddy, Phys. Rev. Letters 13, 688
(1964).

"Rado, Ref. 26 stated his point group as 2'm'm but it would
have been written m'2'nz if the conventional abc order of the
operators had been followed.

Thus the three independent parameters are reduced"
to two.

A recently grown crystal'4 GaFe03 is unusual in that
it is piezoelectric, '4 mh ferrimagnetic"" (speci6cally, it
has a canted antiferromagnetic order) and magneto-
electric": an applied electric field generates a magnetic
moment, and an applied magnetic field induces an
electric polarization. Wood2~ has established the x-ray
space group to be C2,'=Pc21n, and Abrahams, Reddy
and Bernstein" have established the structure. The
space group Pc21e is compatible with four possible
magnetic space groups: Pc21e, Pc21'e', Pc'21m', Pc'21'e.
The first group is ruled out because the point group
C~„——m2m (with no magnetic elements) can have no
net magnetic moment. ' Since the net magnetization
is along the c axis of the crystal, and such a magnetic
vector can exist normal to a mirror plane m, but not
normal to m', a mirror plane combined -with time
reversal, Abrahams and Reddy'0 were able to conclude
that the magnetic space group is Pc'21'e, and the
corresponding magnetic point group" is m'2'ns with
elements 1, m, ', 2„', m, (as deduced by Rado).

Since the magnetoelectric tensor Q,; transforms as
EN;, i.e., it is odd under time reversal, and behaves as
the product of an ordinary and pseudovector, the
character generated by Q;; is

X(R) =4 (R)4 (Rh)Lj(R)—J(RQ)7 (9.9)

and the number of independent elements is

N =4)4 (1)4 (1)+4(m, )4 (2,)—4 (m, )4 (2,)
—4'(2.)4'(2.)7

=h'f3 3+1 (—1)—(1)(—1)—(—1)'7=2, (9.10)

where J(R) has selected the ordinary elements with +
sign, and J(RQ) the primed elements with —sign. The
symmetry element nz, reverses H1 and H2 but not H3,
and thus reduces Q@ E+; to the form
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,and Q;;=m, 'Q, ,= —m,Q;; yields the condition

0 0 Q
0 0 Q22

, Qst Q22

APPENDIX A: TWO-PHONON ELECTRIC-DIPOLE
ABSORPTION

The second-order electric moment M can be written
briefiy as a power expansion in the displacements'4
u~' (of particle n in cell i)

0 0
0 0

31 82

Q12 0 0 0
Q p p Q (9 12) or explicitly as

0 0 Qs2 0

M=+ C~'»u~'u»

M&, =Q C„„&, '»u„'N„o&.

(A1)

(A2)

leaving the desired two constants. The form of this
tensor is in agreement with Rado's experimental results.

For a recent thorough discussion of crystalline tensors,
including "magnetic" tensors, the reader is referred to
Birss. 32 Magnetic space groups are discussed by
Opechowski and Guccione. "

Under the space-group operation (R~ v) we have

EM=+ C~&s&Ru~ '& '&Ru&2 '~s&&

P g&2&a&»2~a&&Ru~&RuP&

which leads to the condition

C„,&, '»=C„„&,~&~'&s "»R„.Q„.„R&, &,

(A3)

3. Tensor Function of a Vector

The conductivity tensor, o-„„of a cubic material is
isotropic: O.„„=o-b„„.This is no longer true if the electric
field is strong. In this case, the invariance requirement
takes the form

If normal coordinates qi, , t are introduced by the
transformation' '4

u '=S "2 p qk, 2bg (k) exp$ik X 'j

o„„(E)=o„„(RE)R„„R„„
where X ' is the equilibrium position of particle ai,

(9 13) then the second-order moment takes the form"

and the study of o„„(E)for fixed E and arbitrary p& is
facilitated by using the grot' of the t&eotor R, namely
those rotations for which R E=E. Thus if E is in the
z or 3 direction of a cubic crystal, the appropriate sub-
group of 0 is the group C4, with axis in the z direction,
and o„„(E2)will have the form of the usual conductivity
tensor in a material of tetragonal symmetry namely:

where

and

M= p q2, ;*qs,,H;12,
t; tk

(A6)

H2 12= Q br (k)* S o(k) b1o(k)
a,P

(A7)

S~&2(k) =P; C '» expPik (X»—X")] (A8)

otr(E2)
0
0

0 0
or&(E2)

0 oss(E2)
(9.14)

The symmetry condition (A4) on C can be translated
into a corresponding symmetry condition on S(k):

S„„1~s(k)=S„.1 ~&~&~&»(R.k)R„~„E„.„E),.&, . (A9)

Threefold rotations in 0 can cause no vanishings, but
provide relationships of the form

%11(E1)E2)ES)=%22(E3)E1)E2)=oss(EsqEsqE1) (9.15)

for an arbitrary E= (E1,E2,E2), or more specificially

o11(O,O,E)=o 22(E,O,O) =oss(O, E,O) (9.16)

for the case under discussion.
In the presence of strain e, electric and magnetic

fields, we can replace" (9.13) by a more general relation

o„„(e,E,B)=o„.„.(RsR ', R E, R $)R„.„R„.„. (9.17)

Vanishes can then only be produced by rotations such
that RsR-'= e (the group of the strain tensor), R E
=E, R S=S simultaneously.

22 R. R. Birss, Rept. Progr. Phys. 26, 307 (1963).
'3W. Opechowski and Rosalia Guccione, in Mugeetkm, edited

by G. Rado (Academic Press Inc. , New York, 1965, to be
published), Vol. 2, Part A; and W. Opechowski (to be published).

b1„o(k)=b,„o(k)* (A11)

(i.e., to be diagonal under IE) and insert (A10) into
(A7) we obtain

B, ,&&'= —p b„(ks) „„S, &(ok)b1 „(l'2)*
(A12)

Thus H« ——0, i.e., the term q&, t*q&, t which creates a
phonon at k and destroys one at k (or creates one at
—k) is absent.

Applying the inversion operator we obtain

S„„(k)= —S„. &2(—k) = —S„„'(k)*
= —S"1'(k) (A 1o)

where the second step uses complex conjugation (i.e.,
time reversal) and the last step uses the Hermitian
nature of S. The 6nal relationship has thus used the
operator IF.

If we choose the phases of our symmetry vectors to
obey'


