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The method of exact power-series expansions has been extended to include both nearest-neighbor and
next-nearest-neighbor interactions in the Heisenberg model. The series expansions for the susceptibility in
zero magnetic 6eld and the free energy in zero magnetic 6eld have been derived to the 6fth power in re-
ciprocal temperature for the simple cubic, body-centered cubic, and face-centered cubic lattices. For the
special case when all interactions are equal (equivalent-neighbor model), an additional term has been ob-
tained in these expansions. For purposes of discussing the susceptibility and magnetic speci6c heat, the
series expansions have been derived for lattices in which third-neighbor interactions are included, but only
for the equivalent-neighbor model. Estimates of critical points are given, and the Pade-approximant method
is used to study the dependence of the critical properties (temperature, energy, and entropy) on the relative
strength of the 6rst- and second-neighbor interactions. It is found that the variation in the critical point is
well represented by

T,(n) =T, (0)$1+m&aj,

where a =Je/Jq and lies in the range 0 ~&a ~&1, and T,(0) is the critical temperature of the nearest-neighbor
model. The values of m& are 0.76, 0.99, and 2.74 for the fcc, bcc, and sc lattices respectively. Both the second-
neighbor model and the equivalent-neighbor model are used to investigate the behavior of X0 for values of
T near T,. It is found that all the coeKcients in the magnetic-speci6c-heat series expansion are positive for
the equivalent-neighbor model, and that for lattices with large coordination numbers, reliable estimates of
the critical point may be obtained using this function.

I. INTRODUCTION

"UCH previous work has been done on the critical
~ ~ behavior of the Heisenberg model of a ferro-

magnet when it is assumed that exchange interactions

(—2JS; S;) exist only between nearest-neighbor spins
on the lattice. The most powerful theoretical approach
towards obtalnlng estimates of crltlcal constants ls
that introduced by Kramers and Opechowski. ' In this
method exact series expansions in ascending powers of
reciprocal temperature are derived for the partition
function and related, thermodynamic functions for
various lattice structures. In recent years much work

'H. A. Kramers, Commun. Kamerlingh Qnnes Lab. Leiden,
Supp&. No. 83. W. Opechowski, Physica 4, 181 (1937); 6, 1112
(1939).

has been done in extending the series expansions for
the zero field susceptibility Xo and magnetic speci6c
heat C„ to a high degree of approximation. ' For the
case where the spin variable S may take an arbitrary
value the most extensive calculations have been per-
formed by Rushbrooke and Wood. ' These authors
obtained the 6rst six coefficients in the susceptibility
series, and. the first 6ve coeKcients in the magnetic
specific-heat series. Recently a more powerful method
of deriving these coef6cients has been developed by

' V. Zehler, Z. Naturforsch. AS, 544 (1950). H. A. Brown and
J. M. Luttinger, Phys. Rev. 100, 685 (1955).M. F. Sykes, thesis,
Oxford, 1956 (unpublished). C. Bomb and M. F. Sykes, Proc.
Phys. Soc. (London) 169, 486 (1956).

s G. S. Rushbrooke and P. J. Rood, Proc. Phys. Soc. (London)
A68, 1161 (1955);Mol, Phys. 1, 257 (1958).
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Bomb and Wood4 for the case S=-,'. This new method
has been used to derive the series expansion of thermo-
dynamic properties for loose-packed lattices to a higher
degree of approximation. For these lattices the first
eight terms in the susceptibility and the first seven
terms in the magnetic specific heat have been derived.

Two ferromagnetic salts for which the isotropic
Heisenberg model with a value of S=-', should be ap-
propriate are CuK2C14 2H&O and Cu(NH4)2C14. 2H20.
Experimental measurements of the critical constants
of these two salts have recently been made by Miedema,
van Kempen, and Huiskamp. ' The bcc lattice is a good
approximation to the structure of these two salts. The
theoretical estimates of the critical constants for this
lattice have been compared with these experimental
values by Domb, Sykes, and Wood. ' The results show
that the experimental value of (kT,/qJ) is 20'%%uo higher
than the theoretical estimate, and both (E„E,)/kT, —
and (5„—S,)/k have experimental values 20% lower
then the theoretical values.

It is likely that in these salts more-distant-neighbor
interactions are present and are too large to be ignored
in the theory. The above discrepancy between experi-
ment and theory would certainly be taken into account
by including second nearest-neighbor exchange inter-
actions in the theoretical approach.

In many magnetic compounds it seems likely that
the exchange interactions between second- and third-
nearest-neighbor spins in the lattice are too large to be
neglected. Low-temperature measurements of the
magnetization in zero field and the speci6c heat of EuS
have been compared with spin-wave calculations by
Charap and Boyd. ~ These authors obtained reasonable
agreement between the theoretical and experimental
curves for both these properties using values of the
nearest-neighbor exchange intergral J~ and the second-
nearest-neighbor exchange integral J2 given by Jq/k
=0.2&0.01 J2/k= —0.08&0.02. Wojtowicz' has ex-
tended the diagrammatic techniques of Rushbrooke and
Wood and obtained the high-temperature series ex-
pansion for the magnetic specific heat to the 6fth power
in reciprocal temperature for the Heisenberg model
where first- and second-neighbor interactions are
present. By evaluating the truncated series expansion
for the specific heat over a temperature range 0,44
((T,/T)(0.94, Wojtowicz has attempted to fit the
high-temperature specific-heat measurements of EuS
made by Moruzzi and Teaney, ' using the values of J&

C. Domb and D. W. Wood, Phys. Letters 8, 20 (1964). C.
Domb, Advarlces iN Physics (Francis R Taylor, London, 1960),
Vol. 9 pp. 149-245. C. Domb and D. W. Wood (to be published).' A. R. Miedema, H. van Kempen and W. J.Huiskamp. Physica
29, 1266 (1964).

6 C. Domb and A. R. Miedema, Progress im I.om Temperature
I'hysics (North-Holland Publishing Company, Amsterdam, 1964),
Vol. 4, p. 296.

7 S. H. Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964).
8 P. J. Wojtowicz, J. Appl. Phys. 35, 991 (1964).' V. L. Moruzzi and D. T. Teaney, Solid State Commun. I, 127

(1963).

and J2 determined by Charap and Boyd. With such a
small number of terms in the specific-heat series the
error in truncating the series will increase rapidly for
values of (T,/T) )0.'I. It would be interesting to see if
a closer 6t could be obtained by calculating a sequence
of Pade approximants to the specific heat series.

Wojtowicz and Joseph" have derived the high-tem-
perature susceptibility series to the fourth power in
reciprocal temperature for the Heisenberg model in
which first- and second-neighbor interactions are pres-
ent, and for an arbitrary spin value. Using experi-
mental measurements of the high-temperature sus-
ceptibility of gadolinium these authors attempted to
find unique values of J& and J2 which would give a
best fit over a temperature range 0.39&T,/T&0. 78, by
evaluating the truncated susceptibility series for
various values of J& and J2. They reported that all
values of J& and J2 satisfying

Jg/k+0. 621Js/k —0.030(Jg/k)'= 2.801
2.22 &~Jg/k &&3.12

—0.5& Ju/k&1

gave equally good fits. It would be particularly inter-
esting in this case to evaluate the sequence of Pade
approximants to the susceptibility and to similarly
compare these functions with the experimental data.

In this paper we discuss the effect of more-distant-
neighbor interactions on the critical and thermodynamic
properties of the Heisenberg model with a value of
S=~. Exact power series expansions for thermodynamic
properties have been derived using the cumulant method
of Domb and Wood, which is briefly described in Sec.
II. All critical and thermodynamic properties that are
discussed fall under two headings. The 6rst of these will
be referred to as the second-neighbor model. In this
model, exchange interactions —J&S,'S; and —J2S~ S~
are present between first- and second-neighbor spins,
respectively, and J2/Jq is in the range 0&&J~/J&&~1.
The second case will be referred to as the equivalent-
neighbor model. In this model, exchange interactions
are present between first-, second-, and third-nearest
neighbor spins and are all equal. For the second-
neighbor model the free energy P in zero magnetic
field and the susceptibility in zero magnetic field have
been expanded to the fifth power in reciprocal tempera-
ture. For the equivalent neighbor model six terms in
these expansions have been derived.

It is generally found that the coefficients in the series
expansions increase in smoothness as the coordination
number g of the lattice increases, and as the magnitude
of the second-neighbor interactions increases. To obtain
information about the critical and high-temperature
(T)T,) thermodynamic properties from the truncated
series expansions two extrapolation procedures have
been used. The Pade-approximant method has been

"P. J. Wojtowicz and R. I. Joseph, Phys. Rev. 135, A1314
(1964).
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used to investigate all the properties that are discussed,
and where the coef6cients in the series expansions show
a smooth behavior the ratios of successive terms in the
expansion have been studied; this is referred to as the
ratio method. " In Sec. III both these methods have
been used to estimate the critical temperatures kT,/J
of the equivalent-neighbor model three-dimensional
lattices. The estimates of KT,/J obtained from the
two methods are in very close agreement. Some con-
sideration is also given to the two-dimensional equiv-
alent-neighbor model lattices. Including more-distant-
neighbor interactions in the equivalent-neighbor model
is equivalent to increasing the coordination number of
the lattice. The fcc lattice with 6rst-, second-, and
third-equivalent-neighbor interactions has a coordina-
tion number g =42. By examining the critical tempera-
tures of three-dimensional lattices for the nearest-
neighbor model, the second-neighbor model when
J&/Ji ——1, and the equivalent-neighbor model it is
found that for large values of q(q) 12) the critical tem-
perature is accurately given by the relation

J/k T.= (2/q) L1+ (6/q) ].
In Sec. IV the variation of the critical temperature

with a gradual increase in the second-neighbor exchange
interactions over a range 0&~Jp/Ji&~1 is discussed.
Both Pade-approximant and ratio methods again give
results which are in very close agreement. In recent
papers Bomb and Sykes, " Baker," and Gammel"
et ul'. have examined the behavior of the ferromagnetic
susceptibility of the nearest-neighbor Heisenberg model
for values of T near T,. These authors found that the
susceptibility behaves as

Xp(T) A/L1 —
T/ ]T&.

The value of p has been estimated by these authors
using Pade-approximant methods and ratio methods.
In Sec. V we have examined this asymptotic behavior
for the second-neighbor model and the equivalent
neighbor model three-dimensional lattices. In Sec. VI
the effect of more-distant-neighbor interactions on the
inverse susceptibility curves above the critical tempera-
ture is examined using the Pade-approximant method.
The inverse susceptibility is found to be very insensitive
to the presence of second-neighbor exchange interac-
tions. This insensitivity probably explains why Wojto-
wicz and Joseph" were unable to obtain unique values
of J~ and J2 in comparing their results with experi-
mental data.

The critical energy (E„E,)/kT, and the crit—ical
entropy (S„—S,)/k provide information about the

"G. A. Baker, Jr., Phys. Rev. 124, 768 (1961);129, 99 (1963);
J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963);
M. F. Sykes and M. E. Fisher, Physica 28, 919, 939 (1962);
C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961)."C.Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).

"G.A. Baker, Jr., Phys. Rev. 129, 99 (1963)."J.Gammel, W. Marshall and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963).

nature of the specific-heat curve above the Curie tem-
perature. These two critical constants are suitable for
comparison with experimental work. . The thermal
properties of a variety of ferromagnetic materials have
been compared with the theoretical estimates of both
the Heisenberg and Ising models with nearest-neighbor
interactions by Bomb and Miedema. ' The thermal
properties of the second-neighbor model and the equiv-
alent-neighbor model are discussed in Sec. VII.

The high-temperature (T)T,) magnetic specific heat
of the equivalent-neighbor-model lattices has been
examined using Pade-approximant methods in Sec.
VIII. For the nearest-neighbor-model three-dimensional
lattices (S=-', ), the series expansion of the speci6c heat
is very erratic and consists of positive and negative
terms. For the equivalent-neighbor-model lattices, the
coefficients in this expansion are all positive and much
smoother. The presence of a singularity in this function
is very clearly indicated by the Pade approximants.

For all the thermodynamic functions discussed in
this paper we have derived the high-temperature series
expansions for an arbitrary spin value S. We are also
examining the critical behavior of the general-spin
Heisenberg model where more distant-neighbor inter-
actions are present. These results are being prepared
for publication.

II. HIGH-TEMPERATURE SERIES EXPANSIONS

For the Heisenberg model where S=-,' the Hamilto-
nian may be put in the form

Equation (1) relates to a system of X spins each of which
occupies a site of a regular lattice structure, where the
sites are labeledi=1, 2, 3, ~ ~ E.The Pauli spin opera-
tor c; corresponding to the spin on the ith lattice site
has a component cr„ in the direction of the external
magnetic field H. The energy of each spin in the mag-
netic field is —mme„- where m is the magnetic moment
on each lattice site. The exchange energy between the
ith and jth sites is ,J(i,j)—e;—e;,where J'(i,j) is the
exchange integral between sites i and j.

The partition function for the assembly is

Zir(P, H) =(exp( —PX)), (2)

where P= 1/kT and ( ) denotes the trace. A high-
temperature series expansion in ascending powers of
P is obtained for the partition function by expanding
the exponential in (2). The series expansion is then in
the form

Z~(PH) = 1+P(X)+P'(X')/2!+ P"(X")/r!+

For the case where only nearest-neighbor exchange
interactions are considered, ZN(PH) may be expanded
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in ascending powers of E, where E=PJ and J is the
nearest-neighbor exchange integral. For the second-
neighbor model, J(i,j)=Ji between nearest-neighbor
spins (n.n.) and Jp between second-nearest-neighbor
spins (n.n.n.). For the equivalent neighbor model,
J(i,j)=J between. first-, second-, and third-nearest-
neighbor spins.

The Hamiltonian for the second-neighbor model is
of the form

X=——',Ji[Q 0"o"+n P ep e ]—mH P e (4)

where n= Jp/Ji. For practical purposes of deriving the
coeKcients in the series expansions of thermodynamic
functions, it is simpler to obtain a series expansion for
InZiv(P, H). This may be expanded in the form'

lnZN(p, H) = Q Pjpj(p, H). (5)

The diagrammatic interpretation of (5) is as follows.
The symbol (l,j) denotes a connected linear graph of
l lines, and j serves to distinguish topologically distinct
graphs with the same number of lines. The summation
in (5) runs over all connected linear graphs. The total
number of independent ways the graph (1,j) can exist
on a particular lattice is denoted by I'&~. The functions
g~'(P, H) are power series in ascending powers of P
and are unique for each graph (l,j). The form of the
expansion (5) applies to any system of E spins. By
applying this form of the expansion to the graphs them-
selves the functions p, & (P,H) can readily 'be obtained as
functions of the partition functions of 6nite clusters of
spins.

As an example of this procedure, consider the initial
terms of (5) for the in6nite lattice. The interactions
between nearest-neighbor spins i and j are represented
graphically by,—., and between second-neighbor spins

k and m by g
—

~~

—. The graphs appearing in Fig. 1

are the first five terms in (5)
which now becomes

(6)

and these may be obtained by applying (5) to the
diagrams themselves, which are now considered as
finite clusters of spins. Ef fi& denotes 1nZ~(P, H) for

Fxo. 1. One and two line diagrams in the expansion (5).

1nZ~(/3H) =Pi Qi +Pi pi +Pp pP
+ p'A'+ '4P+ ( )

The series expansions gi&'(P, H) are in the form

the finite clusters we obtain

p —y p

fl 4'1

fp'=248+4 p',

2

fp'= 2q&i'+4p'

(7)

From Eqs. (7) all the p&'(P, H) in (5a) may be found. ,
and from (6) lnZ&(P, H) for the infinite lattice may be
arranged as a power-series expansion in P such that the
coeKcients of P" involve only graphs of / lines where

The thermodynamic functions we shall discuss in the
following sections are related to two series expansions
readily obtainable from (5) when expanded in powers
of P. These are the expansions of the free energy F in
zero magnetic field, and the susceptibility per spin xo
in zero magnetic field. For the second-neighbor model
these expansions are in the form

and

p e„(n)E"=7 1n2+cV P
kT 2"y t

kT j„(n)E"
xp ——1+g

(8)

where E=Ji/kT, and the coe%cients j,(n) and e„(a)
are polynomials of degree r in 0.. We have derived the
polynomials in (8) and (9) for values of r up to and
including r=5. The labor involved in calculating these
polynomials increases rapidly with r. For the calcula-
tion of jp(n) more than 150 different graphs have to be
considered. It is very important to have some reliable
check on the series expansions (8) and (9). Our results
have been checked in two ways and have been found
to agree in both cases. The 6rst checking procedure we
adopted was to derive the series expansions (8) and (9)
for a cluster of eight spins at the corners of a cube, where
first-neighbor interactions were considered along the
edges of the cube and second-neighbor interactions
along the face diagonals, by using the exact solution of
the partition function. "Using our calculated values of
the gi'(P, H) functions, we recalculated the same series
expansions for the cube; and agreement was found. As
a further check. we have derived the series expansions
(8) and (9) for an arbitrary spin value 5, using the
diagrammatic methods of Rushbrooke and Wood.
Substituting 5=—,'we again obtain agreement.

For the equivalent-neighbor model the coefhcients
in (8) and (9) (e„and j„) are simply numerical coeK-
cients of E', where E=J/kT. We have derived the
first six coeKcients for this model in both expansions.
The series expansion coeKcients for the second-

"K. M. Corson, I'erturbatioe 3fethods irl, the Qearttum 3fe-
chanics of rI;Electrorl, Systems (Blackie and Son, Ltd. , London,
195j.).
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neighbor model and the equivalent-neighbor model are
collected together in Appendixes I and II.

III. CURIE TEMPERATURES OF THE EQUIVALENT-
NEIGHBOR MODEL

For the equivalent-neighbor model six terms in the
susceptibility series expansions are available for all
two- and three-dimensional lattices, vrhere the expan-
sion is of the form

(10)

.95

FIG. 2. Ratio plots for the equiv-
alent-neighbor lattices (a} corre-
sponds to the fcc (1,2,3), q=42,
(b) corresponds to the bcc (1,2,3),
g=26, (c) corresponds to the sc &~
(1,2,3), g =26, (d) corresponds to
the fcc (1,2) and sc (1,2), q=18,
(e} corresponds to the bcc (1,2},
g=14, (f) corresponds to the fcc
(1), e=» .70-

.5,4

For this model the following notation is used to refer to
a particular lattice. The face-centered-cubic lattice
with equivalent 6rst-, second-, and third-neighbor in-
teractions is denoted by fcc (1,2,3) and the body-
centered-cubic lattice vrith erst- and second-equivalent-
neighbor interactions by bcc (1,2). The three-dimen-
sional lattices that have been considered exhibit a very
vride range of lattice structure vrith values of the co-
ordination number ranging from g=14 for bcc (1,2)
to g=42 for fcc (1,2,3). For these lattices the coeS.-
cients in (10) display very smooth behavior and provide
a reasonable basis for extrapolations using the ratio
methods developed by Domb Rnd Sykcs ' for thc IslIlg
model susceptibility series. It is natural to try to 6t the
susceptibility in the region of the critical point (E K,)
by an expression of the form

X,=A/EK —K,ji+s, (11)

where A is a constant and E',=J/kT, . If the expression
(11) is valid the coefficients A„ in (10) will have the
asymptotic form

(12)

vrhere C is a constant. The ratios of successive cocK-
cients in (10) will be of the form

g-
1+-

A„g EC„. g
(13)

and hence a plot of 1s versus 1/n should tend to a
straight line as I increases. When the coeKcients in
the susceptibility are smooth this plot quickly settles
down to a straight line whose intersection with 1/n=0
determines the critical point E, and whose slope de-
termines g.

In Fig. 2 vre have included plots of all the three-
dimensional lattices vrith two and three equivalent-
neighbor interactions. To compare the behavior of
different lattices we have plotted 1s„/q versus 1/n. As
the coordination number of the lattice increases these
plots exhibit a de6nitc curvature. A similar effect vras

reported. by Fisher and Gaunt" vrhen considering the
hypercubical lattices for the Ising model. Fisher has
pointed out that the curvature could be reduced by
plotting Its /q versus 1/n+)'s, where k is a small positive

"M. E. Fisher and D. S. Gaunt, Phys. Rev. IBB, A224 (1964}.

or negative integer or fraction. For the equivalent-
neighbor model lattices a slight improvement vras
obtained by plotting the graphs with 4=1. Follovring
Domb and Sykes, accurate estima, tes of the critical
points for the lattices in Fig. 2 have been obtained
using the follovring procedure. Estimates of g vrere
obtRlned from the grRdlcnts of thc plots in Flg. 2, Rnd
the functions

p =n1s./g(n+g) (14)

TAsLE I. Estimates of the Curie points IC, {=J/kT, } of three-
dimensional lattices for the equivalent-neighbor model.

fcc sc
(1,2) (1,2)
18 18

bcc fcc sc bcc
(1,2) (1,2,3) (1,2,3) (1,2,3)
14 42 26 26

Ratio method 0.1475 0.1477 0.2031 0.0545 0.0948 0.0941
Padb approxi- 0.1475 0.1476 0.2048 0.0545 0.0950 0.0946

mant method

calculated. for each lattice. The function P„ tends to
1/rJK, as n —+ oo. For a particular lattice an estimate
of the critical point can be obtained by plotting p,„/g
versus 1/n and P versus 1/n on the same graph; both
plots intersect 1/n=0 at the common limit 1/qK, . If
the value of g in (14) is a good estimate the plot of
P„versus 1/n will approach the limit 1/qK, horizon-
tally. Even if the estimate of g is in error, the limit of
P„ is still 1/qK, ; however, in this case the approach
to the limit is not horizontal. Estimates of the critical
temperatures of the equivalent-neighbor-model lattices
in Fig. 2. obtained in this vray are quoted in Table I.

Estimates of E, for the lattices in Fig. 2 have also
been obtained using the Pade-approximant method. "
The LM,Z1 Fade approximant to the susceptibility
Xs(E) is given by P(K)/Q(E), where P{E)is a poly-
nomial P p,K' of degree 3f and Q(E) is a polynomial

P rJ„K" of degree E. The coeflicients p, and q, in the
tvro polynomials are chosen such that the series ex-
pansion of X,(E) agrees with the expansion of
P(K)/Q{K) for the first X+iV+1 terms. These coeffi-
cients can be found by equating the coeKcients in the
identity

& (K)Q(K) P(E)=AKsr+~+'+—BK~+—~+s+ (15)

vrhere qo
——i.These calculations have been performed on
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.2 .t 0
I/n

FIG. 3. Ratio plots for %'l.ich
(s) corresponds to the fcc (1),
q=12, (b) corresponds to the tri-
angular lattice with 2 equivalent
neighbors, (c) corresponds to the
simple-quadratic lattice with 2
equivalent neighbors, (d) corre-
sponds to the triangular lattice
with nearest neighbors only, (e)
corresponds to the simple-qua-
draticlattice with nearest neighbors
only.

an electronic digital computer vrhich has been pro-
grammed to calculate the sequence of PM,N] Pade
approximants to any function such as Xs(E), which is
given as a, power series of the form

near the critical point, which contains a simple pole
at E, and a residue —(1+g). We have examined the

PM, Nj sequence of approximants to the logarithmic
derivative of the susceptibility series of lattices in
Fig. 2. Estimates of E, have been obtained by selecting
the first singularity on. the positive real axis. These
results are compared vrith the ratio method results in
Table I. The two methods give results vrhich are in
very close agreement.

%e have repeated the above ana1ysis of the suscep-
tibility series for the two-dimensional lattices when two
equivalent-neighbor interactions are present (Ji=Js).
The ratio plots for the simple quadratic and triangular
lattices vrith nearest-neighbor, and tvro equivalent-
neighbor interactions present are shown in Fig. 3. The
ratio plot for the fcc lattice with nearest-neighbor inter-
actions is also shown for comparison. At first sight it
appears that the plots b and. c in Fig. 3 are smooth
enough to be extrapolated to intersect 1/v=0 at a
finite critical temperature (T,)0). This would imply
the existence of ferromagnetism (spontaneous magneti-
zation) for two-dimensional lattices with Heisenberg
coupling betvreen the spins. In contradiction to this
are the results of spin-wave theory which are that the
Heisenberg ferromagnet does not give rise to spon-
taneous magnetization in one and tvro dimensions

(T,=O) The divergence .of the Bloch'r integral for the
magnetization in one and tvro din1ensions indicates that
there is no stability attached to the ferromagnetic
ordered state.

» F. @loch, Z. Physi 74, 29S (1932).

xo(z) = Z ~„&".
r=o

If the reduced susceptibility diverges at the critical
point in the form of (11), Baker" has suggested that
the Pale approximants to the logarithmic derivative
of Xo should 6rst be examined. This has the form

(1+a)

This result is supported by an alternative argument
put forward by Peicrls'8 who derived the changes in
energy and entropy of an ordered spin system produced.

by introducing domains of reverse orientation. For
Heisenberg coupling between spins on a two-dimensional
lattice the energy of the doma, in border can be reduced
by increasing the size of the Bloch wall. "If at the border
there exists a transition layer in vrhich the spins reverse
their direction gradually the energy of the reversed
domain becomes independent of its size, and. no spon-
taneous magnetization is possible. In the same way
Peierls vras able to shovr that the two-dimensional Ising
nets have a spontaneous ma, gnetization at low enough
temperatures. The essential difference between the
Ising and Heisenberg interactions is that for the Ising
model the entire change of spin direction must occur
across a single atomic spacing.

The results of both the above arguments are still
valid vrhen the exchange interactions extend. beyond
nearest neighbors to any 6nite range. The ratio plots in
Fig. 3 for the nearest-neighbor lattices (d. and e) be-
come erratic after two or three terms in the suscepti-
bility series. It is very likely that the equivalcnt-
neighbor-model lattices vrill show a similar effect when
more terms in the series expansions for plots b and c
are included. Ke conclude that the plots b and c in
Fig. 3 are not in fact validly extrapolated to obtain
nonzero critical points. Evidence for the diferent be-
havior of the Ising and. Heisenberg models in tvro di-
mensions was obtained by examining the Pade approxi-
mants to the corresponding susceptibility series for
the equivalent-neighbor-model lattices (b and c in
»g. 3). It was found that the approximants to the
Ising model series gave consistent estimates of J/kT„
vrhereas no clear indication of a singularity on the
positive real axis was found for the Heisenberg-mod. el
sexlcs,

To consider how a gradual increase in the strength
of the second-neighbor interactions affects the nature of
the ratio plots y„versus 1/n we have examined the
ratio of successive coeKcicnts in the susceptibility
series for the second-neighbor model. The ratio Js/Ji
provides a measure of the relative strengths of the
6rst- and second-neighbor interactions. For this purpose
we have selected the sin1ple cubic lattice, vrhich for the
case of nearest-neighbor interactions only (a=O) gives
a very irregular ratio plot. In Fig. 4 the ratio plots
is„versus 1/e are shown for values of n from 0 to 0.25.
It is clearly seen that as 0. increases a relatively small
admixture of second-neighbor interactions is sufEcient
to render the cocfEcoents A„quite smooth. It appears
generally that at about a=D.25 the second-neighbor
interaction is suKcicntly strong to produce a smooth
rRtio plot Rnd thRt this sn1ooth bchRvlor continues to
exist for values of n&0.25. Using these ratio plots

~8 R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936); G. H
Kannier, E/emits of Solid State Theory (Cambridge University
Press, London, 1959).
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4.0 TanLz II.Pade approximant estimates of Jq/kT, for the second-
neighbor model for values of n in the range 0~&a.~&1, using the
series for (xo)'/'.

Fn. 4. Ratio plots for the
simple-cubic lattice with sec-
ond-neighbor in t er actions
present.

A„
An-i

a SlS

0

accurate estimates of E, for various value of 0. can be
obtained by extrapolating the plots to intersect 1/rs=0.

It is interesting to consider hom the Curie point of
a lattice varies with q in the limit of large q. For small

q the eGect of lattice structure mill play a dominant
role in locating E„but as q increases the efkcts of
lattice structure diminish [compare E, for sc (1,2) and
fcc (1,2) for which g=18].The problem has been con-
sidered in detail by Sykes and Dalton" for both the
Ising and Heisenberg models. For the Heisenberg model
a good approximation for E, is obtained by

E.= (2/V)LI+ (6/V) j (17a)

for values of g)12. Reasonable results (within 1%)
are obtained for q=12 and. the accuracy rapidly in-
creases with q. The asymptotic formula (17a) is useful
for including even higher neighbor interactions (4, 5,
6 ~ equivalent-neighbor interactions) in the equiv-
alent-neighbor model. The accuracy of (1/a) is sup-
ported by calculations using the Green function theory
of ferromagnetism as developed, by Tahir Kheli."%e
have used the theory to calculate the Curie tempera-
tures of equivalent-neighbor-model lattices in which
up to tenth-neighbor interactions have been included.
Extrapolation of these results gives the asymptotic
equation

gE,=2+ (11.9/q) . (17b)

IV. VARIATION OF THE CURIE TEMPERATURE WITH
THE SECOND-NEIGHBOR INTERACTION

For the second-neighbor model we have investi-
gated the variation of E, (=Jr/kT, ) with n (=Js/Jr)
for values of 0. in the range 0& 0.&~1.To determine the
Curie temperatures E', (n) both Pade-approximant and
ratio methods have been used. The sequence of (M,Ej
Pade approximants to the series expansions of (d/dE)
lnXp and (Xp)P~' have been calculated for 20 values of
a in the above range, and the appropriate singularities
of each approximant have been selected. " For a par-
ticular lattice the sequence of estimates of E,(a) from
the sequence of fM,E]Pade approximants to both the

ts M. F. Sykes and N. W. Dalton (to be published).~ R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962)."For some function Il (x) which has an asymptotic behavior of
the form F(g)~(g g,) &, the function F(g)'»-will have a simple
pole at g=x, , which can be readily located by the approximants
to F(g)'~&.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

fcc lattice
933 P2j

0.2458 0.2464
0.2289 0.2293
0.2145 0.2148
0.2020 0.2023
0.1912 0.1914
0.1816 0.1818
0.1731 0.1732
0.1655 0.1656
0.1586 0.1587
0.1525 0.1525
0.1468 0.1468

sc lattice
L2,3j $3,2j
0.5686 0.5538
0.4357 0.4336
0.3531 0.3531
0.2979 0.2979
0.2583 0.2583
0.2284 0.2285
0.2051 0.2052
0.1864 0.1864
0.1709 0.1710
0.1580 0.1580
0.1470 0.1470

bcc lattice
L2,3j P,23

0.3914 0.3914
0.3564 0.3559
0.3279 0.3269
0.3044 0.3027
0.2887 0.2822
0.2621 0.2645
0.2482 0.2492
0.2350 0.2356
0.2231 0.2236
0.2123 0.2129
0.2025 0.2032

Fn. 5. The varca-
tion in the Curie g

point of the bcc, lat- ~Q
tice for values of 0. J
in range 0~&m~&1 ob-
tained by using Pade- 3.$
approximant and ratio
methods.

0 7$

above functions mas found to be convergent. For each
function the convergence of E', (n) increased rapidly
with n, and for a particula, r value of 0. both functions
gave consistent values of the critical point. The singu-
larities of the L2,31 and L3,2j Pade approximants to
(xp)PI' found for various values of n, which correspond
to the critical temperature E,(n) are listed in Table II.
We expect the values of E,(n) in Table II to be accurate
to within 2% over the whole range of a, and that the
error is probably much less than this for u&0.25.

For each lattice we have obtained estimates of E,(n)
using the ratio methods described in the previous sec-
tion. For each lattice and all values of 0. between 0 and
1 the estimates of E,(n) from the ratio plots were found
to be in very close agreement with the Pade-approximant
estimates. This is clearly illustrated in Fig. 5, where
kT,/J tis plotted again'st n over the range 0&~a&&1 for
the bcc lattice. Estimates of the critical temperature
kT,/J& from the ratio plots are slightly and consistently
less than the corresponding Pade-approximant estimates.

The variation of the Curie point with the strength
of the second-neighbor exchange interactions for the
three-dimensional lattices is shomn in Fig. 6. In this
diagram T,(n)/T, (0) has been plotted against Js/Jr,
where T,(0) is the critical temperature of the lattice
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3.0

2.0

).Cp p,5 ~ 1.0

FIG. 6. Variation of the Curie
point with the strength of the
second-neighbor interactions.

mt= gs/gi (21)

variation of the critical point with the strength of the
second-neighbor interactions is given by (20) with

mr=0. 76, 0.99, and. 2.74,

for the fcc, bcc and sc lattices, respectively, and with
all other m„=0.The mean-6eld theory of the Heisenberg
model predicts that T,(n)/T, (0) is exactly linear in n.
The corresponding values of m& from mean-field theory
are given by

j„(()) s
C1+2 b-~"3,

2"m~

(18)

where j„(0)/2"n! are the coef!Icients of E" in the
susceptibility series for the nearest-neighbor model.
The ratio of successive terms in the susceptibility
series for the second-neighbor model are now given by

(19)

where

l -(~)=Z. (~)/2m--t(~),

l -(0)=j.(0)/»j=i(0),
Pi(ts)=(b. , i

—b. i i),
Ps(n) = (b s—b„ I s) —b„ IPI(n), etc.

As Is~ ~ the sequence li„(u) —+AT, (a)/Ji, and by
virtue of (19) we obtain

where

T.(~)=1++ III~",
T, (0)

IIII= lim pi (ti), Iiss ——lim ps (Is) etc.

(20)

From Fig. 6 it appears that the sequence m„ is a
rapidly decreasing one so that only the 6rst few terms
in (20) are significant. By examining the erst five
polynomial coeflicients in (9) we find that Ps(ti)/Pi(II)
is of the order of 0.05 for e= 5 and is decreasing with e.
At this stage a reasonable estimate of m1 can be ob-
tained but more polynomials in. (9) are required to make
a reliable estimate of m2. To a good approximation the

when only nearest-neighbor interactions are present.
The most striking feature of the function T,(n)/T. (0)
is that it appears to have a very nearly linear variation
with n. For the three lattices in Fig. 6 the plots appear
to have a definite but very slight curvature. This effect
is most evident in the case of the simple cubic lattice.

We may use the ratio method to examine the equa-
tion of the curve in Fig. 6. The coefficients 2„in (10) for
the second-neighbor model are of the form

i-(~)=P a„~",
2n+t

TABI.E III. Estimates of IN& in (20) obtained from mean-field
theory, Green-function theory, and series expansions.

Lattice

Mean-6eld theory
Green-function theory
Series expansions

fcc

0.5
0.68
0.76

2.00
2.90
2.74

bcc

0.75
0.90
0.99

"R.A. Tahir-Kheli and H. S. Jarrett, Phys. Rev. 135, A1096
(1964).

"The estimates of Ia~ and AT,/J for the simple cubic lattice
using the Green function theory has been calculated by one of us
(@AD).

~For the nes, rest-neighbor model (a=0) the estimates of
AT,/J for series expansion are based on extrapolation of the
susceptibility series with nine terms for the bcc and sc lattices
and seven terms for the fcc lattice.

where q1 and q2 are the first- and second-nearest-
neighbor coordination numbers of the lattice. For the
lattices in Fig. 6 the values of tist given by (21) are
m1=0.5, 0.75, and 2.0 for fcc, bcc, and sc lattices,
respectively.

In a recent paper Tahir-Kheli and Jarrett" have
extended the Green function theory of the Heisenberg
model to include exchange interactions between second-
nearest neighbors for the bcc and fcc lattices. These
authors have examined the behavior of T, (cr) for rr in
the range —1&~rr~&2. The plots of T,(o)/T, (0) versus
n shown in Fig. 6 exhibit a greater curvature than the
corresponding plots predicted by Green function theory.
In Table III we have compared the values of m1 in
(20) obtained from series expansions, mean-field theory,
and Green-function theory for the sc, bcc, and fcc
lattices. "The values of m1 from the series expansion of
Xo represent of course the initial gradients in Fig. 6.
For the bcc and fcc lattices the Green function theory
estimates lie between the mean-6eld theory and series
expansion results. Tahir-Kheli and. Jarrett have also
calculated the Curie temperatures of the fcc and bcc
lattices at the points o.=0 and 0.=1. In Table IV we
have compared their estimates of kT,/Jt with our
estimates based on Pade-approximant and ratio
methods. '4 The interesting behavior of T, (cr) occurs
when 0, is in the range —1(o.(0, and Tahir-Kheli and
Jarrett were able to calculate the values of rr on the
negative axis for which T,(a) =0. We have examined
the series expansion for the susceptibility of lattices
in Fig. 6 for values of 0. in the range —1(n(0, but
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unfortunately the expansions become unreliab1e for
fairly small negative values of e. More terms are needed
in (9) to obtain reliable information in this region. The
details of these calculations will be presented elsewhere.

V. ASYMPTOTIC BEHAVIOR OF THE
SUSCEPTIBILITY

By using Pade-approximant and ratio methods it has
been fairly well established by Domb and Sykes, "
Baker, " and Gammel ef, al. ,'4 that for the nearest-
neighbor Heisenberg model the susceptibility at values
of T near T, behaves asymptotically as

Xs-A/L1 —7,/T j&. (22)

Various authors report that the index y is independent
of lattice structure and appears to be close to the value
y=3. All previous work on this question has been
confined to only three lattices with values of coordina-
tion number q=6, 8, and 12. These are the sc(1),
bcc(1), and fcc(1) lattices, respectively. In the equiv-
alent-neighbor-model lattices there exists a much

Th@1,z IV. Estimates of kT,/JI for the second-neighbor model
at the points =0 and &=1 in I ig. 6 obtained from Green-function
theory and series expansions.

Lattice fcc

Green-function theory
+=0 4.08
0!=1 6.87

1.75
6.85

2.60
4 94

Series expansion
0.=0
tx= 1

4.068
6.780

1.700
6.770

2.548
4.925

wider range of lattice structure to be examined with
values of q=6, 8, 12, 14, 1.8, 26, and 42. These are the
sc(1), bcc(1), fcc(1), bcc(1,2), sc(1,2) and fcc(1,2),
bcc(1,2,3) and sc(1,2,3), and the fcc(1,2,3) lattices,
respectively.

The ratio plots for these lattices are shown in Fig. 2.
The significant feature of these plots is that as the order
of e increases the gradients become nearly equal. If
the susceptibility has the form of (22) the gradients of
the plots tend to limiting value (7—1)/gE, . A first
approximation to E, is given by qE,=2. The plots for
lattices in Fig. 2 suggest that 7 is independent of
lattice structure. Estimates of the limiting gradients
in Fig. 2. give the result that 7=1.31+0,03 for all
these lattices.

Ke have also obtained estimates of y from the
residues of the singularities in the sequence of LM,Ã1
Padc approximants to the logarithmic derivatives of
the susceptibility series for all the lattices in Fig. 2.
These estimates are given in Table V. %c have often
observed that a small variation in the position of E',
given by the approximant can produce a large change
in the value of the residue. Although the values of y

TAaLz V. Estimates of y from the residues to the singularities
in Xs obtained from the [M,lV] sequence to (d/dE) log(Xs).

Lattice
g

[2,2]
[3,2]
[2,3]

fcc sc bce fcc sc bce
(1,2) (1,2) (1,2) (1,2,3) (1,2,3) (1,2,3)
18 18 14 42 26 26

1.374 1.380 1.582 1.297 1.339 1.537
1.375 1.379 1.261 1.261 1.351 1.348
1.375 1.382 1.403 1.255 1.348 1.388

VI. MAGNETIC SUSCEPTIBILITY ABOVE
THE CURIE POINT

Much previous work has been done on investigating
how the reciprocal susceptibility of thc Heisenberg
ferromagnet above the Curie point is affected by changes
in lattice structure and changes in the spin variable. ' "
It was reported, by Rushbrookc and Wood that a
striking feature of the reciprocal susceptibility of a
given lattice was its insensitivity to large changes in
the spin variable.

Tmr.z VI. Estimates of y for the second-neighbor model.

0.
0,2
0.4
0.6
0;8
1.0

sc
[1,3] [2,2]

~ ~ ~

1.333 1.333
1.332 1.335
1.330 1.344
1.319 1.342
1.397 1.384

bcc
[13] [22]
1.333 1.331
1.349 1.315
1.336 1.414
1.336 1.354
1.337 1.350
1.315 1.335

fcc
[1,3] [2,2]
1.323 1.330
1.326 1.336
1.329 1.339
1.330 1.337
1.328
1.313 1.332

in Table V show a fairly wide spread, wc regard these
results as consistent with y=-, for all the lattices.

The second-neighbor-model series expansions for
&s(n,E) have also been used to obtain estimates of y.
This has been d.one by forming a power-series ex-
pansion in E, for y, which on assuming the above
asymptotic form of Xo is given by

I:,(1 E/K, ) (—d/dE)ln Xs. (23)

Evaluating this series expansion for y at E=E, esti-
mates of y can be obtained. This has been done by
calculating the sequence of t M,Ãj Pade approximants
to the series expansion of y, and evaluating these func-
tions at the point E=E,. These calculations have been
performed for various values of n. Estimates of 7 ob-
tained. in this way are given in Table VI, where it can
be seen that y is close to 1.33 for each lattice. Similar
calculations have been performed for the nearest-
neighbor-model and equivalent-neighbor-model sus-
ceptibility series. For the nearest-neighbor-model bcc
lattice y was very close to the value -', and for the
equivalent-neighbor mod, el, estimates of y obtained werc
much more consistent and nearer to 3 than the esti-
mates in Table V. We conclude that the nature of the
transition in the susceptibility ls probably independent
of lattice structure.
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given value of the reduced temperature the inverse
susceptibility increases with u. A plot of m E./JXe
against the reduced temperature tends to a straight
line for large values of temperature. The equation of the
asymptotes to the curves in Fig. 7 is

m~x'4
0

m'E, /JXe ——T/T, Pg/2—; (25)

these intercept the temperature axis at the Curie-YVeiss

points T„given by

(26)

0
3.0 1,l 12 1.3 lA V lb &.7 18 N

Fro. 7. Inverse susceptibility of the fcc lattice with second-
neighbor interactions present.

To investigate the response of the inverse suscepti-
bility to the presence of second-neighbor exchange inter-
actions we may write the series expansion in the form

where q» and q2 denote the first- and second-neighbor
coordination numbers, respectively. The most striking
feature of the curves in Fig. 7 is the insensitivity of the
inverse susceptibility to the magnitude of the second-
neighbor interaction. Vfe conclude from this that the
theoretical susceptibility curves are not very suitable
for comparison with experimental data for the purpose
of obtaining estimates of J» and J2 for ferromagnetic
substances.

Using the same methods we have also examined the

JXp
(24)

kTc.3

where i=E,/E and P)= j&(a)E,(n)'. Expanded in this
way the susceptibility is a power series in reduced tem-
perature T/T, .

The sequence of LM, llij Pade approximants to the
series (24) have been evaluated over the range T= T,
to T=2T, and for various values of 0. between 0 and 1
for the three-dimensional lattices. By examining the
behavior of these Pade approximants we can pick out
the trend in the susceptibility curves obtained by
including successively higher order terms in (24). The
convergence was found to be quite rapid and we expect
the results to be accurate to within 2% except in regions
within 20% of T,. The changes in the susceptibility
curves above T, produced by varying 0, are similar for
all three lattices. In Fig. 7 the inverse susceptibility
of the fcc lattice is plotted against the reduced tem-
perature for values of 0,=0, 0.2, 0.4, 0.6, and 0.8. For a

Fxe. 9. The variation of the critical
energy with the strength of the sec-
ond-neighbor interaction, (f) bcc lat-
tice (g) sc lattice (h) kc lattice.

.2-

behavior of the susceptibility of the equivalent-
neighbor-model lattices, For comparison with Fig. 7,
in Fig. 8 are the plots of the inverse susceptibility for
the bcc(1), fcc(1,2), sc(1,2,3), and fcc(1,2,3) lattices,
for which the coordination numbers are 8, 18, 26, and
42, respectively. The inverse susceptibility has been
evaluated over the range T= T, to T=3T, The inverse
susceptibility increases by about 30%%uo at T=2T, for a
change in q from q=8 to q=42. As the coordination
number of the lattice increases the inverse susceptibility
becomes increasingly linear.

VII. CRITICAL ENERGY AND ENTROPY

2,Q-

Ifi+
&X,

,LQ

~1 2 Q . 3Q
Tjg

FIG. 8. Variations in the inverse
susceptibility with increasing co-
ordination numbers.

Bomb and Sykes" have recently examined the effects
of spin on the critical and thermal properties of the
fcc lattice with both Ising and Heisenberg nearest-
neighbor-exchange interactions. %'e have examined the
e6ects of more-distant-neighbor interactions on these
properties for the bcc, sc, and fcc lattices.

An expansion of the internal energy function
E„—E(E) may be obtained from the expansion of the
free energy E in zero magnetic Acid given in (8) from the
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relation
E„Z—(E) d F(—E)

J dE kT
(27)

The internal-energy function evaluated at E=E:,
represents the critical energy and is denoted by
(E„—E,)/kT, . This is obtained from (27) as a power
series in E,. The critical energy is a very important
critical parameter and represents the area below the
high-temperature specific-heat curve (T)T,) plotted
on a reduced scale of temperature T/2",

(28)

.25

Fxo. 10.The variation in the critical @&~
entropy vvith the strength of the
second-neighbor interaction (g) sc lat-
tice, (f) bcc 1attice, (h) fcc lattice.

.75
Q g .$ 1.Q

may be obtained as a power series in E. (see Appendix
II). The critical entropy provides another measure of
the area below the high-temperature speciic-heat curve
given by

5„—5, I "C,

k k g

(29)

For the second-neighbor model the va,riations in the
critical energy and entropy with 0. have been examined
for values of n in the range 0, =0 to 0.= 1.This has been
done by forming the sequence of $M,N] Pade approxi-
mants to the series (28) and (29) and evaluating each
approximant at E=E, for various values of e. The con-
vergence of the estimates for (8„—8,)/kT, and
(S„—S,)/k obtained in this way is generally fairly
poor. The reason for this is that for values of 0.&0.25
the series are erratic and consist of positive and negative
terms. As the value of a increases beyond 0.25 the terms
in the series are all positive but the coeKcients do not
show any smooth behavior as found in the susceptibility.
The convergence of the approximants at E=E, is much
better for the energy and improves greatly for both
properties for values of a greater than 0.25. The results
of this analysis are shown graphically in Figs. 9 and 10.

Evaluation of the powel' sel'1es (27) at E=E, provides
an estimate of this area.

The critical energy is also a useful parameter for
comparison with experimental work as it is independent
of the exchange integral. Similar considerations apply
to the critical entropy denoted by (S„—S,)/k, which

TABLE VII. Estimates for critical properties using the
polynomials g„{0,), j,(0.) g =1, -+ 5.

Property

Value of cg

sc
bcc
fcc

Critical
temperature

0 1
1.759 6.801
2.555 4.921
4.069 6.812

Energy
(8„—8,)/kT,

0 1
0.495 0.260
0.426 0.336
0.385 0.259

Entropy
(5 -S.)/k
0 1

0.203 0.159
0.212 0.191
0.204 0.158

Both (E„E,)/kT—, and (S„—S,)/k decrease smoothly
as 0. increases indicating that the area below the speci6c-
heat curve decreases and that C, approaches T, more
sharply.

To assess the accuracy of these estimates we have
compiled a table of critical constants for various lattices
obtained by using 6ve terms in the corresponding series
expansions. These are listed in Table VII. Similar
estimates obtained, from both ratio and Pade-approxi-
mant methods using more terms in the expansions (six
in the case 0.= 1 and nine in the case a=0) are given in
Table VIII. Using these tables for comparison the
critical energies and entropies of Table V (and those
included in Figs. 9 and 10) are probably between 5%
and 10% too low. In constructing Fig. 10, that part of
the curve between 0.=0 and a=0.25 has been drawn by
continuing the curves above 0.=0.25 through the esti-
mates at a=0 from Table VIII.

Bomb and Sykes" obtained a value of 0.265 for the
critical entropy of the fcc lattice. These authors think
that this estimate which differs from the value in
Table VIII by 0.045 may need revising. The critical
constants in Table VIII may be compared with
the experimental work of Meidema, van Kempen,
and Huisij:amp' who measured (E„—E,)/k T, and
(S„—S,)/k for the ferromagnetic salts CuK2C14 2H20
and. Cu(NH4)pC14 2H20.

TmLE VDI. Estimates for critical properties using six or more
terms in corresponding series expansion.

Property

Value of 0.

bcc
fcc

Critical
temperature

0 1
1.700 6.770
2.5477 4.925
4.0684 6.780

Energy(E„E.)/kT, —
0 1

0.595 0.312
0.460 0.357
0.430 0.310

Entropy
(5 —8,)/k
0 1

0.265 0.186
0.235 0.210
0.220 0.185

VIII. THE MAGNETIC SPECIFIC HEAT

Owing to the very poor nature of the magnetic
speciic-heat series for the nea, rest-neighbor model
(S=-,) it is difficult to obtain any clear indications of a
singularity in this function. For the nearest-neighbor
model, nine terms in expansion of the free energy in
zero magnetic 6eld for the loose-packed lattice are
available. 4 The higher order )M,Ãj Pade approximants
to the logarithmic derivative of C„ for the bcc lattice
indicate the presence of a singularity on the positive
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TABLE IX. The specific-heat singularity and its residue
obtained from I 1,2j of (d/dE') lnC, .

Lattice
bcc sc
(1,2) (1,2)

14 18

fcc sc bcc fcc
(1,2) (1,2,3) (1,2,3) (1,2,3)

18 26 26 42

Critical point
from C,

Residue at
singularity
in C„

Critical point
from X0

~ ~ ~ 0.1348 0.1375 0.1214 0.0963 0.05635

~ ~ ~ 0.3096 0.3281 1.290 0.6798 0.943

0.2031 0.1477 0.1475 0.0948 0.0941 0.0545

C,—=pc t
r-2

(3o)

where IC, is obtained from the susceptibility series. We
have calculated a sequence of Pade approximants to
(30) and evaluated them over a range T,/T from 0 to
1.5. Remembering that t=1 represents the true transi-
tion temperature and using the [2,3j approximant for
comparison between the lattices, it was found that the
specihc heat gave a transition temperature at the values
of t '= t, ' given in Table X.

These results clearly demonstrate that as q increases
t, tends to unity, where the speci6c heat and the
susceptibility predict the same transition temperature.

real axis. More terms in this series are needed before
any serious estimate of this transition temperature can
be made. Previous authors' "found that at high values
of spin the series became smoother, but extrapolations
are still unreliable. We have examined the specific heat
series for the equivalent-neighbor-model lattices using
six terms in (8).

To locate the transition temperature in the magnetic
specific heat we have examined the L1,2j Pade approxi-
mant to the logarithmic derivative of the specific-heat
series. These results are given in Table IX. Except for
the bcc(1,2) lattice there is a very clear indication of a
singularity in the approximants. An important feature
of the results in Table IX is the fair agreement between
the critical points obtained from the approximants to
the specific heat and susceptibility series; the latter of
course are very reliable estimates of the transition tem-
peratures. The two estimates converge rapidly with
increasing coordination number.

The speci6c heat may be expanded as a power series
in reduced temperature t(= T/T, ) by writing the series
in the form

I I

9 1 I

I

t

I

t.3 .5 ' .3

Fxe. 11.The specific-heat
curves above the Curie
point, (i)fcc (1,2), (g) bcc
(1,2,3), (b) icc (1,2,3).

IX. SUMMARY

In this paper we have discussed some of the effects
of more-distant-neighbor interactions on the critical
and thermodynamic properties of the Heisenberg model

of a ferromagnet. The theoretical approach used is the
one originally introduced by Opechowski where high-

temperature (T)T,) power-series expansions are de-

rived for all the thermodynamic functions. We have
shown that for the three-dimensional cubic lattices the
coeKcients in some of these series expansions behave

smoothly and provide a basis for accurate extrapola-
tions. By applying the Pade-approximant and ratio
methods" to these expansions we have discussed the
effects of second-neighbor interactions and in some cases
second- and third-neighbor interactions on the thermo-

dynamic functions for values of T near T,.

9"

In Fig. 10 these evaluations are plotted for three
lattices to illustrate this effect.

The data available are not sufEcient to attach any

significance to the residues of the singularities in the
approximants, which are included in Table IX. To
determine the nature of the transition in the speci6c
heat, more terms are needed in the series expansion (8).
The specific heat curves in Fig. 11 are in accord with the
consideration of Sec. 7: that the area below the curves

decreases as q increases, and that the curves become

sharper in the critical region. For comparison we have

repeated the above calculations for a Bethe lattice with

q=42. The approximants gave no indication of a singu-

larity on the real axis. In Fig. 12 an approximant for
this lattice is compared with the corresponding approxi-
mant for the fcc(1,2,3) lattice, which has the same

coordination number.
The mark. ed difference in the curves f and g illustrate

the dominant eGects of the lattice structure in de-

termining the onset of ferromagnetic ordering.

TABLE X. Values of t, ' for the equivalent-neighbor model.

bcc sc fcc sc bcc fcc
Lattice (1,2) (1,2) (1,2) (1,2,3) (1,2,3) (1,2,3)

q 14 18 18 26 26 42

1.33 1.31 1.15 1.15 1.05

)e.

Cv
F,5

3"

l

&~8
.6 .4

Fxo. 12. Eftects of the
lattice structure on the
specific-heat curve, (f) fcc
(1,2,3) lattice (g) Bethe
lattice with q =42.
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In Sec. III it is shown that the coefficients in the
susceptibility series for the equivalent-neighbor-model
three-dimensional lattices behave very smoothly. The
smooth behavior of these coefficients increases as the
strength of the higher neighbor interactions increases.
This effect is clearly seen in Fig. 4 where the ratio plots
for the simple cubic lattice are shown for various values
of a (=Jg/Ji). It can be seen from Table I that the
estimates of the Curie points (J/kT, ) of the three-
dimensional equivalent-neighbor-model lattices ob-
tained by using both Pade-approximant and ratio
methods are in very good agreement.

In Sec. IV we discussed the variation of the Curie
temperature T,(n) with the relative strengths of the
first- and second-neighbor interactions J2/Ji for values
of Ji and J2 in the range 0& J~/Ji &~1. In this range it
was found that to a good approximation T,(a) is given
by the linear relation

T„(o.) = T, (0)[1+m,J,/J, ].
Both the mean-field theory and the Green-function"
theory of ferromagnetism predict a similar variation
of T, (n) for positive values of the exchange integrals.
The values of kT,/Ji and mi obtained from series
expansions, mean-field theory, and Green-function
theory are compared in Tables III and IV. This anal-
ysis shows that the Green-function theory gives fairly
reliable estimates of critical constants. The estimates of
m& predicted by the mean-field theory are between 15%
and 30% in error.

In Sec. V we used both the equivalent-neighbor-
model and the second-neighbor-model series to investi-
gate the high-temperature susceptibility for values of T
near T,. It has been shown by previous authors" "
that in this region Xo has the asymptotic form

xo-A [1—(T,/T) ]-&.

By using ratio methods and Pade-approximant tech-
niques we obtained estimates of p for a wide range of
lattice structures. These estimates are shown in Tables
V and VI, where the coordination number of the lattices
varies from q=6 to q=42. For this range of lattice
structure the index y appears to be independent of
lattice structure and has a value y= 1.31&0.03.

In Sec. VI we discussed the effects of second-neighbor
interactions (—2J~o1, o~) on the reciprocal suscepti-
bility curves in the high-temperature region (T)T,).
The response of Xo ' to the presence of second-neighbor
interactions is very small. The susceptibility is therefore
very insensitive to the relative strengths of the first-
and second-neighbor exchange integrals and conse-
quently not very suitable for comparison with experi-
mental work.

The thermal properties of the Heisenberg model
where second- and third-neighbor interactions are in-
cluded are discussed in Sec. VII. The variation of the

critical energy and entropy [(E„E—,)/kT, and
(S„—S,)/k] with the magnitude of the second-neighbor
interactions is shown in Figs. 8 and 9 for the three-
dimensional lattices. Estimates of these two critical
constants based on Pade-approximant methods are
listed in Table VIII. Although the smoothness of the
coe%cients increases rapidly with 0., the series expan-
sion for the entropy and energy do not provide a very
reliable basis for extrapolations, and consequently the
values of (E„E,)/kT—, and (S„—S,)/k in Table VIII
may be between 5% and 10% in error. In Sec. VIII it is
shown that as the coordination number of the lattice
increases the Pade approximants to the magnetic
specific-heat series give reliable estimates of the transi-
tion temperature but more terms in this expansion are
needed to determine the nature of this transition.

In this paper we have been concerned only with the
5= ~ system and for the case where both Jj and J2
are positive. We have also derived the expansions (8)
and (9) for the general spin case to the fifth order in
reciprocal temperature. These expansions have been
derived independently by Wojtowicz and Joseph" to
the fourth order in reciprocal temperature. We are
presently engaged upon the analysis of the general
spin series and these results will be published elsewhere.

A preliminary analysis of the region for which a&0
shows that the series expansions soon become erratic
for small negative values of 0.. We are presently examin-
ing the susceptibility series (9) in this region. We hope
that a more detailed analysis will enable us to investigate
this interesting region more accurately.
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APPENDIX I

The polynomial coeKcients of Eqs. (8) and (9) are
listed below.

a. The simple cubic lattice
—,
' ji——6n+3,
—,
' j2——120n'+ 144n+ 24,

-,' j3=3312n'+ 6912m'+2664a+ 264,

~ j4= 117 360u4+366 336n'+239 328n'

+52 416n+3960,

2 j5——5 104 416n'+21 764 160+4+21 043 200o.'

+7 583 040n'+ 1 196 160n+ 74 928.
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e2= 18a'+9,
ea ——108n'+ 216n—18,

e4——180n'+5760n' —576n —162,

eg —— 5—040n'+187 200n' —17 280n' 14 400n+2520.

fee (1,2)
q= 18

27
306

5 202
153 000

6975 864

sc (1,2)
q=18

27
306

5 202
153 000

7 028 280

bcc (1,2)
q=14

21
174

1 446
9 720

344 808

b. The body-centered-clbic lattice

—',ji——3n+4,
—,
' j2=24n'+96n+48,

g j8=264a'+2016a'+2520n+832,
—,
'

j&——3960n'+44 544n'+100 512ni+75 072n+18 400.

2 js=74 928n'+ 1 100 160n'+3 788 160n'+4 767 360n'

+2 558 400n+504 384,
e2

——9n'+12,
es ———18n'+ 216n —24,

ee ———162n'+ 2016n' —576n+ 168,

es ——2520a'+17 280a' 5760—nr 5760—n+1440

c. The face center-ed cubic -lattice

,'j r —3n+——6,
2 j2=24a'+144n+120,
—,
' ja= 264n'+3024n'+6552n+3312,
~p je——3960n4+66 816n'+268 128n +323 136n

+117360,
—',js——74 928n'+1 650 240n4+ 10 211 520n'

+21 816 000n'+ l7 917 440a+5 104 416.

e2 ——9n'+18,
el = 18n'+—216n+ 108,

ee= —162n4+576n +4608n+ 180,

e~ = 2520n'+5760n'+112 320n'+37 440n —5040.

APPENDIX II

e2
eg

84

86
86

icc (1,2,3)
q=42

63
2 106

144 810
14 983 560

2 025 047 448

sc (1,2,3)
q=26

39
714

27 834
1 479 240

105 115032

bcc (1,2,3)
q=26

39
714

23 514
1 300 680

98 908 632

$1
J2
2.3
g4
$5
J6

fcc (1,2)
q=18

576
26 304

1 558 800
113549 088

9 812 816 160

fcc (1,2,3)
q=42

sc (1,2)
q=18

18
576

26 304
1 558 800

113531 808
9 809 009 184

sc (1,2,3)
q=26

bcc (1,2)
q=14

336
11 264

484 976
25 586 784

1 600 639 968

bcc (1,2,3)
q=26

jl'1 42
J2 3 360
23 395 424
j4 61 287 120j 11 7/0 526 112
j6 2 695 241 747 616

26
1 248

87 008
7 922 000

889 245 216
118618 042 272

26
1 248

87 008
7 941 200

894 957 216
119970 832 800

Series for the Bethe lattice. Susceptibility series.

kT E'
x,=1+& j&

tJS 2'1 t

Equivalent-neighbor-motIel susceptibility series.

kT
xo ——1++ ji

PP 2'l!

Equivalent-neighbor mod. el zero-Geld
partition function.

00

iogzper spin = iog2+ 2 ei
$e 2 21»

Jl
J.2
J.s

Js
J5

42
3 360

402 864
64 473 360

12 897 844 512
3 096 087 564 192

26
1 248

89 648
8 612 240

1 034 251 296
149 008 068 /68

The expressions for the thermodynamic functions are
given by the following formulas; internal energy,
(E„E)//J= (B/BE)L(log Z(—E)$; speci6c heat, C,/k
=E'(B/BE)$(E„E)/Jj;entropy—

(5„—5) 1 C.(E)
-dE.

E

e2
8g
e4
8g

ee

q =42

63—126—20 790
209 160

37 064 664

q= 26

39—78—7 878
79 560

8497 944

co

iogzper spin= )og2+ P el
2't I


