
PHYSICAL REVIEW VOLUME 138, NUM 8 ER 3A 3 MAY 1965
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Ultrasonic wave velocities for 14 diBerent modes were obtained on two differently oriented single-crystal
antimony cubes from the time between successive unrectiied radio-frequency pulse echoes. This redundant,
set of data was Gtted by a least-squares technique to Voigt theory to yield the six room-temperature adia-
batic elastic-stiffness constants. In units of 10" dyn/cm', c»=99.4(1), css ——44.5(9), c4~——39.5(5), ese
=34.2(3), c13——26.4(4), and c14 +21.6(4), the positive sign for c14 following from our choice of positive
Cartesian axes. When similarly treated, Eckstein, Lawson, and Reneker's bismuth data yield in these same
units: c11=63.22, c33=38.11,c44= 11.30, esp=19.40, c18=24.40+0.09, c14=+7.20. Also included are a visual
method of Gxing the laboratory coordinate system in antimony by means of an imperfect cleavage plane,
a calculation of the pure-mode directions in the mirror plane, a simple formula for choosing the nonextra-
neous value of c&3 for trigonal crystals having six independent elastic constants without resorting to lattice-
stability criteria, and a calculation of the deviation of elastic-wave particle displacement and energy-Qux di-
rections from the propagation direction. For waves propagating in the (0,1,1) and (0,1,1) directions, the
particle-displacement deviations for antimony and bismuth do not exceed 15' and 13', respectively, and
corresponding energy-Aux deviations up to 45' and 27' are obtained.

I. INTRODUCTION
'

N the well-designed experiment of Eckstein, Lawson,
~ ~ and Reneker' (hereinafter referred to as ELR),
trigonal bismuth s six adiabatic elastic stiGness con-
stants were determined from measurements of acoustic-
wave propagation. An extension of their work to anti-
mony seemed natural, and a recently determined set of

antimony constants is desirable, considering both (1)
the fact that currently available antimony crystals are
purer and less strained than those available to Bridg-
man' and (2) the different measuring technique. The
design of our experiment is essentially that of KLR, but
our data are principally taken on just two differently
oriented specimens, and our method of calculating the
elastic constants differs in that we use a least-squares
procedure. (For completeness and clarity of presenta-
tion we incorporate the basic data and equations given
by KLR, and other material as appropriate; the reader
is nevertheless referred to KLR for points not covered,
and for additional references. ) In addition, an inspection
method of establishing laboratory axes in antimony is
described; a simple formula is given for obtaining the
nonextraneous value of c~s, the directions of pure-mode
propagation in the mirror plane are evaluated; and the
directions of particle displacement and energy Qux for
certain modes are calculated and compared with the
wave-propagation direction. ELR's 14 bismuth veloci-
ties are also reanalyzed by our procedures, and a com-
parison between the two similar elements is made.

In the next section of this paper, some well-known
crystallographic and cleavage data for antimony are
introduced to provide a background for presenting the
convention used for choosing coordinate axes in the
crystal. This is followed by sections on the design of the
experiment, experimental detail and the method of
calculation of the constants. In the remaining sections

~ Y. Eckstein, A. W. Lawson, and D. H. Reneker, J.Appl. Phys.
31, 1535 (1960).

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 365 (1925).

the limitations of our analysis, the elastic constants, and
acoustoelastic wave-propagation properties in aniso-
tropic antimony and bismuth are discussed.

II. CRYSTALLOGRAPHIC DATA AND CLEAVAGE
PROPERTIES OF ANTIMONY

Like bismuth, antimony s primitive cell is a 2 atom/
cell rhombohedron (Fig. 1) with one atom at each
corner and a ninth slightly displaced from the midpoint
in the (1,1,1) direction. The nearest-neighbor distances'
are 2.87 and 3.37A, the density is 6.7 g/cm', the
rhombohedral angle is 57'6', and the cell edge is 4.49 A
at room temperature. ' It is brittle. The principal
cleavage plane at room temperature is the (111) plane
and fracture occurs between atoms having the larger
nearest-neighbor distance; the secondary cleavage plane
is of the (211) type indexed in the primitive cell, ' ' and
is relatively imperfect. These latter planes, spoken of as
dominant secondary cleavage planes by one of us, '
intersect the (111)plane in lines giving the directions of
the three equivalent twofoM axes. These axes are normal
to the mirror planes which contain the trigonal and
bisectrix axes. The plane's position in relation to a
right-handed Cartesian coordinate system 6xed in the
crystal, or what is equivalent, the position of the plane's
Laue spot reflection, can be used (see Sec. IV) to dis-
tinguish between two possible choices for such coordi-
nate systems in which the signs of c&4 and certain
magnetoresistance coeS.cients~ change. Our choice of
coordinate system and the convention used to choose it

' W. L.Bragg, Atomic Strlctttre of 3f'ilerols (Cornell University
Press, Ithaca, New York, 1937).

4 C. S. Barret, P. Cucka, and K. Haefner, Acta Cryst. 16, 451
(1963).' C. Palache, H. Berman, and C. Frondel, Dona's System oj
3A'neralogy (John Wiley Bz Sons, Inc. , New York, 1955),Vol. 1.' Relative to a hexagonal cell, this plane is of the (10I4) type.
Referred to a larger eight-atom-containing nearly face-centered
cubic cell, it is of the (011) type (also shown in Fig. 1).

'Seymour Epstein, J. Electrochem. Soc. 109, 738 (1962);
Seymour Epstein and H. J. Juretschke, Phys. Rev, $29, ij.48
(1963).
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FIG. 1. Primitive and nearly cubic
rhombohedral cells, stereogram of (011)
zone (normal to the page) of the nearly
cubic cell, specimen orientation and
positive-sensed Cartesian axes, and posi-
tion of two pronounced cleavage planes of
antimony. a&, a2, and c3 are the rhombo-
hedral-cell axis vectors for the primitive
cell and the outward direction of the
projection of any one of them, u1 for
example, on a plane normal to the unique
I 111] direction is taken as +Y. o&+os
+us 1s chosen as +Z. A; are the cell edges
of the nearly cubic cell. +F is along
(2,1,1) and +X along L011j.

~PROJECTING POINT

are arbitrary. So that the signs of c14 for antimony and
bismuth can be directly compared, we adopt ELR's
specification for the positive-axes senses, as shown in
Pig. 1.

The axes senses in the specimens were determined
upon indexing a Laue diagram. (See Sec. IU.)

C11 C12

C12 C11

C13 C13

C14 ( 14

C13

C13

C33

0 0 0
0 0 0

C14 0
C14 0
0 0

c44 0
0 c44

0 C14

0
0
0
0

C14

C66

where css= (crt—ere)/2. For acoustoelastic waves propa-
gating with direction cosines l, m, e, in this order rela-
tive to the X, I', and Z axes of a right-handed coordinate
system, three values for the velocities (one longitudinal
and two transverse) satisfy the Christoffel determinant.
Symmetry, however, prevents one from choosing six of
the nine possible modes which would allow the direct
(and accurate) determination of the six constants on
one simply shaped oriented specimen. Consequently, it
is necessary to employ a minimum of two diRerently
oriented single-crystal cubes and more than the mini-
mum of six modes required in principle to determine six
constants. All but cts are best arrived at when (1) they
derive from velocities of three modes propagating along
each coordinate-axis direction on one specimen and (2)
the velocity data so obtained are self-consistent.
Accordingly, one of the two specimens needed is a cube
with faces normal to the principal axes. To determine

c» symmetry requires one to employ a mode propagat-
ing at any angle with the trigonal axis other than 0',
90', and 180' (plus four of the five previously discussed
constants). Two directions (45' and 135' with the F

III. DESIGN OF EXPERIMENT

As outlined by ELR and their cited references, the
six Voigt elastic stiRness constants for the class Mm are
represented by

axis in the F-Z mirror plane) exist for which cis makes
its maximum contribution to the effective stiffness con-
stant, and our second cube is oriented with faces normal
to these directions and normal to the X direction. To
insure that the five already determined values for the
constants are the same for this cube, velocity data are
obtained for its nine possible modes.

In all, 18 velocity measurements are required. Be-
cause one of them corresponds to a doubly degenerate
shear mode along the Z axis, and three others repeat the
modes along the X axis on the second orientation, only
14 velocities need be analyzed in detail. Clearly, these
must satisfy 8 redundancy relations for a meaningful
calculation of the six elastic constants. The 14 expres-
sions for the eRective stiRness constants pv are listed
in Table I. (The symbols vr through wi4 are chosen to
correspond to KLR's arbitrary assignment. ) Also in-

cluded are the wave-propagation and transducer-
polarization-direction cosines, the numerical values of
the averaged observed velocities, and the experimental
tolerances.

IV. EXPERIMENTAL DETAIL

The velocity of sound was determined by the ultra-
soni" pulse-echo method. A pulse width of approxi-
mately 2 psec wide was used and the distance between
the maximum amplitude of successive unrectified radio-
frequency pulses was used as a measure of the transit
time. ' Transit-time error eRects were also investigated
by means of the dummy-transducer method. Times
were measured on a Tektronix 585A oscilloscope whose
timing circuit was checked with a counter (Hewlett-
Packard 5248) and a quartz signal generator (Tek-
tronix Time Marker Generator 180-S1). An Arenberg
PG-65-C pulse generator, preamplifier PA-620-8, and
wideband amplifier WA-600-B were used to generate
and amplify the pulses. An X- or 7-cut-quartz trans-
ducer of 10- or 5-Mc/sec fund. amental frequency func-

S. Eros and J. R. Reitz, J. Appl. Phys. 29, 683 (1958).
o C. S. Smith and J. W. Burns, J. Appl. Phys. 24, 15 (1953).
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TABLE I. Effective stiffness constant equations and experimental antimony velocities.

Eq.
No.

EBective stiffness constant equations
(p, the material density)

Direction cosines of
propagation transducer

vector polarization

Experimental
velocity

10' cm/sec

(1)
(2)
(3)
(4)
(~)
(6)
(7)
(8)
(9)

(11)
(12)
(13}

P@P=&11

PV2 =2L(C66+C44)+ j(C46 C68) +4C14 j
p58 =VL(C66+C44) ((C44 C68) +4G14 j
p56 =C66=$(cll C12)

P54 =kL(cll+C44)+ ( (C44—Cll) +4C14 j
P56 = $L(cll+C66) —((c44—cll) +4c16 j
pPz =Cgq

P&8 =A4
2pv6 = 2 (cll+C$2) +G66—G16

+( (Scil )C$$ C16) +{C18+C66—C16)

2p511 =k(cll+C8$)+C46 C16

( ('Well 'kc83 C14) + (C18+C64—G14) j
PV10 = $ (C66+C44)+C16

p513 =
W (C66+C44) C16

2PV 1P=$ (C»+C33)+C44+C~4
+( (2 Cl1 2 C3$+C14) + (C1$+C66+C14) j

2p~14 —g (&ll+&33)+&44+&14

j (2cll 2C8$+C16) + (C18+C44+C16) j ~

100

010

001

0, 1/V2, 1/v2

0, —1/v2, 1/v2

100
001
010
100
010
001
001

100 or 010

0, 1/v2, 1/v2

0, —1/v2, 1/vZ

100
100

0, —1/V2, 1/v2'

0, 1/V2', 1/v2

3.92'2%
3.00+1.5 jo
1.53+2.6'Pg

2.23+1.5%
3.98~1.7%
2.24~2%
2.60~1.2'po

2.45&1.2%

3.12&1.9%

1.25~1'//0
2.87+4
1.54+10%

4.14&1.8%

l..50+6%

tioned as the transmitting and receiving transducer.
Measurements were taken betvreen 5 and 70 Mc. The
frequency which gave the sharpest pattern for a partic-
ular mode is the one at. which the velocity vras meas-
ured. These best frequencies vrere scattered throughout
this range. Morc than one frequency gave a decipherable
pattern for a given mode, but most frequencies did not.
It was, however, possible to obtain a crude check of the
frequency dependence of e&. This result together with
qualitative results for other modes at two frequencies
show no frequency dependence vrithin the specihcd
experimental tolerances.

Salol vras used. to bond the transducer to the speci-
men surface which was either a natural cleavage surface,
the (111)plane, for slab specimens, or a comparatively
rougher spark-cut surface for the tvro specimens whose
velocities were actually used to obtain the constants.
The slab specimens, cleaved. at opposite faces and of
varying thickness and width, were used primarily to
check the CGect of spark-cut surfaces on the coupling of
energy into and out of the specimens and on the reQec-
tion of energy at the back surface into the specimen. No
deleterious CGccts of spark cutting were seen. Another
experimental check is that our values for ej, e4, and vy

are within 4% of Eckstein's" 77'K velocities which are,
respectively, 3.85, 4.08, and 2.58 10' cm/sec.

Zone-refined antimony, Cominco Grade 69, 99.999%
pure, was the stock for our slabs and cubes. (Initially,
stock vrhich was very likely less pure was used and Rt
the fevr points vhere checks vrere made yielded essen-
tially the same results. )

The two differently orieIlted single-crystal cubes,

38 Y. Eckstein, Phys. Rev. 192, 12 (1963).

12 mm on edge, were prepared by spark cutting" their
faces within &1', as required for our experimental
design. Strains vrere checked for by x-ray (Mraction.

Back-reAection Laue diagrams mere used to choose
the positive X, I", and Z axes directions. They were
indexed by identifying spots belonging to the (011)zone
(111 tllc lllll'lol plallc) oil cacll side of 'thc (111)pole (scc
Fig. 1)—iri particular, the (311), (411), (511), (100),
(011), and (111)spots. (These indices are based on the
large, nearly cubic, rhombohedral cell containing 8
atoms; the notation is Vickers. )12

Part of Vickers' stereogram is reconstructed in Fig. 1
in order to shovr thc relative positions of the secondary
cleavage plane to the axes. This plane vras positively
identified by comparing the angle between the second-
ary cleavage plane and the (111)plane as measured on
cleaved. specimens, firstly with the estimated angle the
(011)spot makes with the (111)spot, and next with the
value for this angle given by Dana. ' Our observations
of secondary clcRVRgcs on n1RIly R11tlmony 1ods Rnd

slRbs show this plRnc to bc cRs1ly obscrvRblc Rnd to
slant in a unique direction. Accordingly, a convenient
way of identifying the right-handed coordinate system
used in the crystal is shown in Fig. 1. Kith the planes
sloping downward to the right, the positive I" axis is
directed from left to right, positive X toward the ob-
server, and positive Z upvrard.

V. EXPERIMENTAL ANALYSIS AND RESULTS

Our velocity values, shovrn in Table I, represent
averages of the average velocity calculated from meas-

"H. J. Ehlers, D. F. Kolesar, Rev. Sci. Instr. 34, 1054 (I)
(1963).

n W. Vickers, J. Metals 9, 82/ (1957).
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urements of the time between successive echoes made
over periods of weeks. They are rounded oG to the last
significant figure and the tolerances represent the larger
of the Quctuations in these or the accuracy of a specific
measurement. Transit-time errors attributable to the
transducer, determined after aQ the velocity data were
completed, are about 1%.They are not applied because
(1) they could not be systematically obtained, (2)
except for e~'s they are less than the over-all velocity
tolerances speciaed. for each velocity, and (3) we have
no information on the Quctuations in the transit-time
correction measurements themselves. Taken at face
value, a 1% average correction to the velocities would
scale the antimony stiffness values by 2%.

Before the numerical evaluation of the constants was
carried out, the general features of the velocity data
vere examined for consistency with the equations of
Table I as follows: e&0 being greater than e» clearly Axes

c14 as positive for the axes senses chosen. In turn, this
requires that vtg'+vt4' be greater than vg'+ v»', vg') vto",
v j3 Q v3 j and mi~') e9', which is indeed the case within
experimental error. These inequalities are compatible
with assigning the larger velocity value of two coupled
modes, normally associated with the longitudinal mode,
to the positive radical of the relevant expressions, i.e.,
in the pairs eq and e3, e4 and vq, e9 and @11, and @12 and
@14, the erst velocity is the greater one. Next, the eight
redundancy relations, a more sensitive and detailed test
of the data than the trace relations used by ELR, were
evaluated; one obtains that vtt = 1.25&1%for antimony
is incompatible with the others in this formalism.
Consequently, attempts to fit to it and its inclusion in
a least-squares function are meaningless and it is ignored
in our calculation of antimony's constants. A possible
reason for e11 s incompatibility is discussed in the section
on elastic-wave refraction.

Generally stated, our least-squares procedure is based
on adjusting each of the 14 squares of the velocities
within experimental error so that they give a minimum
deviation from the central experimental-velocity-
squared values and, when inserted in Eqs. (1) through
(14), yield a common value for each of the six stiffness
constants.

The least-squares function used is

where the subscripts u and 0 signify adjusted and ob-
served, and Av; is the experimental uncertainty in the
ith velocity. This task is simplified by initially selecting
those velocities and combinations of velocities which
are related to the smallest number of stiffness constants
and then extending the selection in steps to include more
and more velocities until all the constants are obtained.
As more velocities are included, the previously obtained
values are readjusted when necessary. Specifically, first
vg y vg 1 vlg +vis and vg +vg are adjusted and c44 and
c66 obtained. With these values and e10'—~13' and
82 v3', a common value for c&4 is obtained, usually upon
readjustment of the previously obtained velocities and
constants. After this, c» is similarly obtained but from
vtg, vg'+vgg, and (vgg —vg')', and cgg from vP, vg'+ vtt', and
vtg'+vg4'. Finally ctg is obtained from (vg' —vttg)' and
(vtg' —vt4')', again readjusting the already obtained
values as necessary. Because each of the functions from
which c13 is calculable yields two values, the common
one is, of course, the proper one. (Antimony calculations
involving incompatible vtt are omitted. )

The results of this procedure for antimony and for the
complete bismuth data of EI.R, and the results of other
workers and their procedures, are presented in Tables
II, III, and IV. These are next discussed.

VI. DISCUSSION

A. Nature and Limitations of Fit

In the course of fitting the antimony data, it became
clear that the 14 equations of Table I intersect in a
well-defined region of a 6-dimensional stiffness-constant
space and that only a very narrow range of values for
the constants is possible. The bounding limits of this
region are, roughly, such ths, t a change greater than 5%
in almost any constant appears sufhcient to bring one
or more of the 14 velocities outside the experimental
range. Accordingly, the basis for choosing the constants

TAm, z II." Elastic sti8ness constants at room temperature.

Cll C12 C13 C14 c44 c66 Source

Bl

»4(1)
99 31

81.00
79.20
63.22

63.50

30.9(1)

11.00
24.70
24.42

24.70

62.90 35.00
Units: 10@dyn/ctn'.

26.10
24.40
~.09
24.50
21.50
21.10

+18.00
+11.00
+ 7.20

+ 7.23
+ 7.20—4.23

43.60
42.70
38.11

38.10

44.00

33.60
28.50
11.30

11.30

10.84

26.4(4) +21.6(4) 44.5(9) 39.5(S)
44.59

34.2 (5)

35.00
27.30
19.40

19.40

13.37

This work, least squares
Kckstein, transmission

technique at 77'K
Leventhal b echo technique
Bridgman, ' static technique
ELR,~ least-squares recalculation

ELR,~ transmission technique
Kor's e recalculation of FLR
Bridgman, o static technique

a See Ref. 10. bSee Ref. 13. eSee Ref. 2. d See Ref. 1. eSee Ref. 14.
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T~LE III. Elastic compliance constants at room temperature.

Sll S12 —S18 —S14 S88 S66 Source

16.2
17.7
25.74
26.9

Units: 10 @ cm'/dyn.

Sb

Bi

6.1
3.8
8.01

14.0

5.9
8.5

11.35
6.2

12.2
8.0

21.50—16.0

29.5
33.8
40.77
28.7

38.6
41

115.90
104.8

44.6
43
67.51
81.2

This work, least squares
Bridgman~

ELR, least-squares recalculation
Bridgman'

a See Ref. 2. b See Ref. 1.

T~LE IV. Calculated and experimental limits of velocities.

V2

V8

V4

V5

V6

V7

VS

Vg

V10

Vll
V12

V18

V14

Units:

Lower
exp limit

3.84
2.95
1.49
3.91
2.20
2, 19
2.57
2.42
3.06
2.75
1.24
4.06
1.38
1.41

10' cm/sec.

Sb
Least-squares

calculation

3.85 (2)
2.96(0)
1.50(1)
3.98(5)
2.26(0)
2.20(4)
2.58(0)
2.43 (0)
3.17(0)
2.95 (6)
1.86(6)
4.17(5)
1.50(9)
1.56(2)

Upper
exp lhnit

4.00
3.04
1.57
4.05
2.27
2.28
2.63
2.47
3.18
2.98
1.26
4.21
1.69
1.59

Lower
exp limit

2.518
1.541
0.851
2.553
1.398
1.016
1.957
1.063
2.063
1.505
1.144
2.400
0.907
1.049

Least-squares
calculation

2.540
1.552
0.851
2.559
1.407
1.026
1.971
1.073
2.067
1.517
1.147
2,437
0.912
1.508

Bl
ELR

calculation

2.545
1.63$
0.667
2.565
1.406
1.026
1.571
1.073
2.109
1.518
1.071
2.491
0.910
0.937

Upper
exp limit

2.562
1.559
0.859
2.589
1.416
1.028
1.987
1.085
2.101
1.539
1.156
2.482
0.913
1.061

was relaxed to obtaining a near-least-squares minimum
fit. We estimate our values, presented in Table II, to be
within about &2% of a true least-squares minimum
Q.t and we note that such a Qt would be as uneven as the
fit presented.

When applied to ELR's bismuth data, our procedure
yields essentially one set of constants except for c»
which may range within &0.09 of the value given
without causing any one velocity to be calculated
outside its experimental limit. That one set of values
obtains is readily evident from the facts that our values
differ little from KLR's, yet five of their calculated
velocities are outside the experimental range and just
one of ours is at the lower experimental limit. This fit is
characterizable as even and quite good, considering the
very small velocity tolerances ELR specify.

B. Comparison of Constants and Direct
Calculation of c&3

Included in Table II with our constants are c~~ and

c» calculated from Kckstein's" 77'K velocity data for
antimony, ELR's bismuth constants values, bismuth
and antimony values calculated from Sridgman's' early
isothermal compliance measurements, unpublished
antimony values of LeventhaP' and some calculated
bismuth values of Kor."Agreement with Kckstein's c&~

"E.Leventhal, MS thesis, Polytechnic Institute of Brooklyn,
New York, 1959 (unpublished).

'4 S. K. Kor, Physica 28, 837 (1963).

and c» for antimony has already been pointed out in
Sec. IV (by noting that his st and ez and ours are the
same); and except for ctt, agreement with Leventhal is
fair. Although the nature of our original stock and our
method of preparation are preferable to Leventhal' s,
we cannot account for the discrepancies on the basis
that our crystals are purer and less strained. We have
already noted that ev and vs were also obtained on
cleaved surfaces and that these values agreed well with
the values obtained on our cube. The purity of the
cleaved specimen was less than that of the cube (al-
though very likely still purer than Leventhal' s). Fur-
thermore, e9 and v~~ were again measured after the speci-
men was (accidentally) damaged. A 3-mm transducer
was placed next to the cracked region where no visible
signs of damage were obvious; no change in the velocity
values were found.

Our recalculation of the bismuth constants yields
essentially ELR's values within about 1% or less. Com-
pared to Bridgman's results, our individual constants
fit poorly for both antimony and bismuth, even allowing
for the large cumulative error introduced for some of the
constants by the inverse tensor transformation and the
negligibly small isothermal corrections. Uniform and
over-all agreement is not necessarily to be expected
since some of his individual values are adjusted to 6t
his linear and volume compressibilities. On the other
hand, the compressibilities calculated from our data do
agree with his directly measured unadjusted compressi-
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TgaI.E V. Linear and volume compressibilities.
Units: 10 13cm~/dyne.

This work

4.1
17,5
25.8

Sb

3ridgman'
(Ref. 2)

5.40
16.84
27.64

KLR,
recalculated

6.38
18.07
30.83

3ridgman'
(Ref. 2)

3.59
16.13
29.31

a Isothermal values; isothermal-adiabatic correction is negligible.

where the symbols have their previously de6ned mean-

ings. In principle, this expression can be used to calcu-
late c» directly, the extraneous root introduced by the
quadratic already having been eliminated. Ke em-

phasize that properly calculated velocities and con-

stants must be inserted unless one is wiHing to accept an
uncertainty of 100% or more, and note that the value

of c13 is, as it should be, independent of the convention
used to determine the sign of c~4 as the signs of the
velocity function in the numerator and c&4 change
together. Kith this formula, it is necessary neither to
employ the sign considerations outlined by Mayer and
Parker" nor the conceivably less-discriminating strain-

energy stability criteria. "An analogous expression for
c» in hexagonal systems, where c&4 is identically zero, is
not possible.

C. Elastic-Wave Refraction

In our attempt to understand v~ 's incompatibility
for antimony, the 45' and 135' data were further
analyzed in terms of the theory of plane elastic waves

in aelotropic media. "Particle displacement and energy-
Qux directions, and the pure-mode direction in the I'-Z
mirror plane, are calculated for both antimony and
bismuth and compared with each other, and with the
propagation and transducer-polarization directions. An
outline of the calculation and the energy-Aux expres-

'5%'. G. Mayer and P. M, Parker, Acta tryst. 14, 725 (1961)."G. A.Alers and J.R.Neighbors, J.Appl. Phys. 28, 1514(1957);
L. J. Teutonico, f'bid 32, 119 (1961.).

"M. J. P. Musgrave, Proc. Roy. Soc. (London) A226, 339
(1954); P. C. Waterman, Phys. Rev. 113, 1240 (1959); P. E.
Borgnis, iNd. 9S, 1000 (1955);A. E. H. Love, A Treatise oe the
Mathematical Theory of Elasticity (Dover Publications, Inc.,
New York, 1944).

bilities (Table V) within appropriately calculated
tolerances,

Agreement with Kor's nominal value for cps is not
expected for it is extremely sensitive to the velocities.
Kor calculates c13 from particular KLR velocities with-

out erst adjusting them to be compatible with the
others. Consequently, our value for c~3 is to be preferred.

c13's extreme sensitivity can be appreciated from the
following formula:

p (&12s +~14m ) p (o9s +~lla )

sions obtained are given in the Appendix; the results
of this calculation, summarized in Fig. 2, are next
discussed.

Our analysis shows that the unit displacement eigen-
vcctors associated with thc 've Rnd spy IQodcs, A9 Rnd
A", deviate by —4' for antimony and —5.2' for
bismuth from the transducer polarization directions
used to excite these modes. This small value is favorable
for exciting the ei» mode in antimony, giving rise to the
three well-dehned pulses displayed by the oscilloscope.
This sRmc dlsp1Ry obtains with clthcr thc 3-IQIQ-

diameter oI' thc 2-ln. -squaI'c tI'Rnsduccl s. Thc coI'-

responding deviations for A" and 2" are +14.6' for
antimony and +12.4' for bismuth. These deviations
are not of a nature which would explain our egregious
nj~, nor do the pure shear-mode directions in the I'-Z
plane which are 117'for antimony and j.07 for bismuth.
HowcvcI' thc deviation of thc encl gy Aux ol rRy
velocity, from the normal is about 45'. For our dimen-
sions, energy is deQccted from a side before reaching the
opposite reQecting face. Upon deflection the energy is
refracted into spurious modes, giving rise to the pulses
displayed. No pulse was found that corresponds with
ej j calculated. . This is d.ue to the fact that in relation to
the large intrinsic attenuation of antimony not enough
energy fiows along the wave-normal direction to reach
the opposite face and to be echoed back to the trans-
ducer for detection.

Ke note that the smaller the Qux deviation angle, the
more numerous and better defined are the echoes, and
that spurious pulses exist for almost every mode.
Conical refraction c6'ects along the triad axis, predicted
by Waterman, '~ verified by Papadakis on rock salt and
calcite, " and noticed by KLR in bismuth, did not
interfere with obtaining decipherable echo patterns.
For antimony the conical semi-angle in 28'40'; for
bismuth, 32'30'.

Refraction CBects were observed. for either the 3-IQm-

diam or —,'-in-square transducers as sender-receiver.
Many of the displays obtained with the larger one con-
tained more spurious pulses than most displays ob-
tained with the smaller one, depending apparently upon
the propagation direction and the mode.

It is not possible for us to comment on the, cGects of
the large deviation angles in bismuth since we do not
have precise information on KLR's specimen geometry.
We can only remark that the combined eRects of
specimen size, refraction, and attenuation are not as
severe as they are in antimony. AH of KLR's velocities
are compatible and Eckstein" reports that his antimony
echo displays are not as clean as they are for bismuth.

D. General Comments

Our experiment and. analysis are based on p1anc
clastic waves in extended. media, and our specimens are

' E. Papadakis, J. Appl. Phys. 34, 2168 (1963).
19 Y. Eckstein (private communication).
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Fio. 2. Energy density Qow, displacement, propagation and pure-mode directions in F-Z mirror plane. 8z' is the angle between the
vectors X and s where s is any of the vectors A& and P&. The signs for b~' indicate placement at opposite sides of E with +5 counter-
clockwise. Parts (a) and (b) are for antimony, (c) and (d) for bismuth; (a) and (c) are for the 43' modes, and (b) and (d) for the 135'
modes.

of finite dimensions. For isotropic circular bars the
dilatational and distortional wave phase velocities have
been shown by Pochhammer' "to depend on the ratio
of the cross section radius to wavelength ct/), and upon
two functions of the Lame stiffness constants. Chree"
extended Pochhammer's results to noncircular, normal

"A. E. H. Love, A Treatise on the Mathematical Theory of
L&'lusticity (Dover Publications, Inc. , New York, 1944), p. 287.

«' H. Kolsky, Stress Waves in Solids (Dover Publications, Inc. ,
New York, 1963), p. 54.

««A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, Inc. , New York, 1944), p. 290.

cross-sectioned cylinders and to nonisotropic media. In
the absence of an exact treatment giving the longi-
tudinal and two transverse phase velocities in aniso-
tropic cubes it is reasonable to assume that the size of
the correction for each phase velocity would be different.
If these corrections are large in relation to the experi-
mental errors, fitting the plane-wave formalism of
redundancy eight to the 14 corrected velocities is not
assured. That we are able to do so, however, suggests
that the corrections are not signiGcant. Our large
minimum value of about 25 for h/X, where )'t is the radius
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The displacement
I i= —Ti'll. (A1)

u= pA exp(j(a)t —K r)) (A2)

has components u; where i runs from 1 to 3 correspond-
ing to the x, y, s or x~, x~, xq directions. A, K, and r are
in this order the particle displacement eigenvector of
unit magnitude, the wave propagation vector, a,nd the
6eld point vector, and have components A;, E;, x;. p is
the scalar amplitude of the displacement; T; has com-
ponents I;;, j=1,2,3. These are related in the usual
way to the strains e„, through the stiGness constants by

Xij= &ij ra(1+~ra)&rs/2 (A3)

summed for r,s=1,2,3; 8„, is the Kronecker delta. In
terms of the displacements,

Bij„Bji,)
e„,= + i (1+&,.).

ax, ax i
(A4)

For a particular mode g, the components of displace-
ment, written as

I;&=pgAp exp' (o)t K& r)5, —(A5)

are substituted into (A1) and (A4), and the result of
substituting (A4) into (A3) in turn put into (A1). We
finally obtain

gG)

I'"= C;;„,A, t7A „gl,g, (A6)

of gyration of our noncircular section, suggests that
these corrections would also be negligible for data with
much narrower tolerances than we are able to specify.
Our data cannot directly support this conclusion for it
is possible that our large tolerances result in part from
these e6ects.

UVithin the context of the above considera, tions, we
believe our experiment to be a reasonable compromise
as regards both the use of the plane elastic wave
formalism in extended media for our 6nite sized speci-
mens, and the use of predominantly energy-refracting
modes in determining the elastic constants. Judging
from the topological 6tting procedure presented, we
estimate that the values given are accurate to within
about 5/o.

APPENDIX I

In this section, we outline the general procedure used
to calculate the energy Qow components and present the
expressions obtained for the 45' (l,m, e::0,1/V2, 1/V2)
and 135' (l,es,tt::0, —1/K2, 1/v2) propagation direc-
tions.

The ith Cartesian component of energy Qow, P;, is
given by Love" as the negative of the scalar product of
the component of the stress tensor on the surface normal
to the ith direction, T;, with the particle displacement
velocity u:

where l, ', the cosine of the angle between Kg and the s
coordinate axis, is l, m, or e for the gth mode, as s= 1, 2,
or 3. This expression is valid for crystals of any sym-
metry. It differs from Waterman's" Eq. (5.1) in that it
is written directly in terms of the stiffness constants.
(The four-index notation is reduced to the two-index
notation in the usual way: ij —& a, rs —+ 6; 11~ 1,
22 -+ 2, 33 —& 3, 23=32 -+ 4, 13=31-+ 5, 12=21 —& 6.)

Our results for K with direction cosines (o,m, jj) are
the following: For g= 10, A"= (1,0,0) for antimony and
bismuth and

+10 0

10~ 2

(jjjcee+ jicw),

(A7)

l~ 2

y'3— (mcii+nci4) .

For g=9 and 11, we have A'= (0, 0.7513, 0.6599),2"= (0 —0 6599, 0.7513) for antimony and (0, 0.7696,
0.6385) and (0, —0.6358, 0.7696) for bismuth;
m= ji= 1/v2.

I'kg= 0, (A10)

P2g- (EtÃi:» SC»3—~ 2g~ 2g+ L
—j@2&»

2'vg

+rj{cw+ c») ]Au'A g'+ jjjciiA,&A,g), (A] 1)
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The method of exact power-series expansions has been extended to include both nearest-neighbor and
next-nearest-neighbor interactions in the Heisenberg model. The series expansions for the susceptibility in
zero magnetic 6eld and the free energy in zero magnetic 6eld have been derived to the 6fth power in re-
ciprocal temperature for the simple cubic, body-centered cubic, and face-centered cubic lattices. For the
special case when all interactions are equal (equivalent-neighbor model), an additional term has been ob-
tained in these expansions. For purposes of discussing the susceptibility and magnetic speci6c heat, the
series expansions have been derived for lattices in which third-neighbor interactions are included, but only
for the equivalent-neighbor model. Estimates of critical points are given, and the Pade-approximant method
is used to study the dependence of the critical properties (temperature, energy, and entropy) on the relative
strength of the 6rst- and second-neighbor interactions. It is found that the variation in the critical point is
well represented by

T,(n) =T, (0)$1+m&aj,

where a =Je/Jq and lies in the range 0 ~&a ~&1, and T,(0) is the critical temperature of the nearest-neighbor
model. The values of m& are 0.76, 0.99, and 2.74 for the fcc, bcc, and sc lattices respectively. Both the second-
neighbor model and the equivalent-neighbor model are used to investigate the behavior of X0 for values of
T near T,. It is found that all the coeKcients in the magnetic-speci6c-heat series expansion are positive for
the equivalent-neighbor model, and that for lattices with large coordination numbers, reliable estimates of
the critical point may be obtained using this function.

I. INTRODUCTION

"UCH previous work has been done on the critical
~ ~ behavior of the Heisenberg model of a ferro-

magnet when it is assumed that exchange interactions

(—2JS; S;) exist only between nearest-neighbor spins
on the lattice. The most powerful theoretical approach
towards obtalnlng estimates of crltlcal constants ls
that introduced by Kramers and Opechowski. ' In this
method exact series expansions in ascending powers of
reciprocal temperature are derived for the partition
function and related, thermodynamic functions for
various lattice structures. In recent years much work

'H. A. Kramers, Commun. Kamerlingh Qnnes Lab. Leiden,
Supp&. No. 83. W. Opechowski, Physica 4, 181 (1937); 6, 1112
(1939).

has been done in extending the series expansions for
the zero field susceptibility Xo and magnetic speci6c
heat C„ to a high degree of approximation. ' For the
case where the spin variable S may take an arbitrary
value the most extensive calculations have been per-
formed by Rushbrooke and Wood. ' These authors
obtained the 6rst six coefficients in the susceptibility
series, and. the first 6ve coeKcients in the magnetic
specific-heat series. Recently a more powerful method
of deriving these coef6cients has been developed by

' V. Zehler, Z. Naturforsch. AS, 544 (1950). H. A. Brown and
J. M. Luttinger, Phys. Rev. 100, 685 (1955).M. F. Sykes, thesis,
Oxford, 1956 (unpublished). C. Bomb and M. F. Sykes, Proc.
Phys. Soc. (London) 169, 486 (1956).

s G. S. Rushbrooke and P. J. Rood, Proc. Phys. Soc. (London)
A68, 1161 (1955);Mol, Phys. 1, 257 (1958).


