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in yield should also have been observed in the Cu(110)
crystal unless a competing process, tending to increase
the yield, is operative and electively cancels the
decrease in yield due to the shortening of the focused
collision sequence with temperature. In the case of the
Cu(111) crystal this implies that the shortening of
focused collision sequences is the predominant e6ect.

Two other interpretations regarding the effects of
thermal vibration of lattice atoms should be mentioned.
An oscillating atom in the lattice has a higher proba-
bility of being found at the end points of its travel than
at the center. The effect of thermal oscillations thus is
such that lower lying atoms, which were previously
shielded from bombarding ions by surface atoms,
become more and more exposed as the amplitude of
vibration increases. The net result would be an increase
in the probability of collision between an ion and a
lattice atom and an increase in the sputtering yield. ' ' "
This effect may not be small since according to Menzel-
Kopp and Menzel, ""amplitudes of vibration of surface
atoms of Cu and Ag are roughly Ave times as great as
for atoms in the interior of the metal.

The other effect attributable to increased lattice
vibration is the decrease in effective binding energy of
the surface atoms with increasing target temperature.
Increased vibration is of course accompanied by an

~'I A. L. Southern, W. R. Willis, and M. T. Robinson, J. Appl.
Phys. 34, 153 (1963).

'8 Chr. Menzel-Kopp and E. Menzel, Z. Physik 142, 245 (1955)."Chr. Menzel-Kopp and E. Menzel, Z, Physik 144, 538 (1956).

increased average energy of the surface atoms. There-
fore, surface atoms need receive a proportionally smaller
amount of energy in a collision to be ejected from the
surface. This too would tend to increase the sputtering
rate. The efI'ect of binding energy on sputtering thresh-
olds, for example, has been considered by Harrison and
Magnus on."

The effect of temperature on the channeling
process"" would be similar to the e6ect on focused
collision sequences. That is, the increased vibration
would result in a decrease of the distance an atom could
travel in a channel of the crystal, resulting in a decrease
in the sputtering yield.

The changes in yields reported here are generally
quite small, in some cases not much larger than the
maximum expected experimental uncertainty. How-
ever, the eGect is a very real one and in view of the
variant behavior of different crystal planes warrants
further theoretical and experimental investigation.
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An analytic solution is given for the equations of a linearized Frenkel —Kontorowa one-dimensional dis-
location. It is shown that the motion of the defect with velocity v excites lattice vibrations with k given by
co(k) =ok, where co (k) is the dispersion of the lattice waves. At high velocity there is only one k excited (in
one dimension) appearing at the back of the defect, so that the frictional force is very small, one order of
magnitude smaller than the Peierls force. At low velocities, however, there are many waves excited appearing
both ahead and behind the moving defect, and the frictional force increases to the point of making steady-
state nonthermally activated motion impossible.

1. INTRODUCTION

'HE motion of singularities in a lattice, whether
foreign particles or imperfections of the lattice,

remains as yet a rather mysterious subject.
First of all, there is the low-velocity motion, under a

small applied force, which is described by assuming that
the energy received by the singularity during an ele-

*Work supported by the U. S. Atomic Energy Commission,
Contract No. AT-(40-1)-2488.

mentary jump is dissipated rapidly into the solid in the
form of lattice waves. The motion has then to be
thermally activated in so far as every elementary jump
has to be independently excited. There is no question
that this assumption appears to 6t many of the experi-
mental conditions; however, to our knowledge, no
simple justiication has been given for the fact that
lattice waves are capable of rapidly dissipating the
energy under these conditions.

Secondly, and more important to us, is the question
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Fze. 1. The Frenkel-Kontorowa model of a dislocation. The
potential illustrated is the one used in this paper.

of the possibility of a high velocity motion in which the
singularity is allowed to acquire enough kinetic energy
to be able to move through the lattice in a continuous
fashion losing as much energy as it receives from a rela-
tively small applied force. Such a possible motion was
6rst considered years ago by Frank' in the case of a
screw dislocation moving in a continuous elastic
isotropic medium; he concluded that, provided the
velocity was smaller than the sound velocity of shear
waves, there was no mechanism for the dissipation of
energy in the continuum so that the dislocation should
be able to move at any velocity without the help of an
external force. This is not correct, as pointed out by
Leibfried' if we consider a hot solid, as the singularity
will feel a resistance due to the scattering of the waves
already excited in the solid. But even if a cold solid is
considered, there should be an emission of sound waves
due to the effective vibrations of the core of the dis-
location as it moves through the lattice with periodicity
u. Hart' estimated the frequency of these vibrations to
be =oikr / vaand the applied force necessary to com-
pensate for the radiation loss to be very small and
proportional to e '. This estimate implies therefore the
possibility of a high velocity motion; however, the
many simplifications introduced in it made it worth-
while to consider the problem again.

%e will show in this and other papers that to discuss
the radiation produced by a moving singularity, it is
necessary to consider the discrete nature of the lattice
itself. In general, the frequencies excited in the medium
by a moving singularity are given by the relation
&o(k) = v k where k is the wave vector of the lattice
wave. Then, provided the dispersion relation &o(k) of
the lattice and its periodicity in k are taken into
account, it is easy to see that the high velocity con-
tinuous motion is possible because the range of possible
excited wave vectors is small. This range increases
rapidly for low velocities making energy dissipation
very easy and a continuous motion impossible. In two
or three dimensions there will never be a single fre-
quency excited as was assumed by Hart. '

In this paper, we will discuss our problem on the
simplest possible lattice model of a moving singularity,
namely the classical Frenkel —Kontorowa4 model of a
one-dimensional dislocation. There is a substantial body

i F. C. Frank, Proc. Phys. Soc. (London) A62, 131 (1949).' G. Leibfried and H. D. Dietze, Z. Physik 126, 790 (1949).' E. W. Hart, Phys. Rev. 98, 1775 (1955).
4 J. Frenkel and T. Kontorowa, Phys. Z. Sowjetunion 13, 1

i1938); repnbiished J. Phys. USSR 1, 137 (1939).

of literature on this problem, particularly the papers
by Frank and van der Merwe. ' These authors, however,
made a continuous approximation on the equations
which resulted in eliminating the possibility of radiation
being excited. Their conclusion therefore was that the
singularity could move at any velocity, below the sound
velocity, without the need of an applied force. Our
treatment will solve the problem analytically without
making any continuous approximation and will bring
out both the necessity of radiation as well as its magni-
tude and its frequency spectrum.

In a recent paper, published while this paper was in
preparation, %'einer' gives an approximate treatment
of the motion of a Frenkel —Kontorowa dislocation, using
a slightly more complicated potential than the one used
in the present paper. He 6nds, as we do, that fast
dislocation motion is possible at a stress considerably
below that required to initiate motion. His treatment
neglects the existence of radiative (nonlocal) modes and
determines the energy loss as a result of an imperfect
transfer of energy forward between successive local
modes. This treatment appears to give reasonable
answers, when the dislocation moves fast and there is

only one radiative mode; it cannot, however, correctly
describe the low velocity motion when many radiative
modes are excited. Attention should also be called to a
previous paper by %einer and Sanders~ which considers
in particular the low velocity, thermally activated
motion of the Frenkel —Kontorowa dislocation. This is

clearly the only possible (classical) motion of this model
at low velocities.

The type of treatment followed in this paper can be
extended to the more general problem of the motion of
singularities in three-dimensional lattices; this will be
dealt with in a subsequent paper.

2. DESCRIPTION OF THE MODEL

The model illustrated in Fig. 1, consists of a line of
atoms, mass m, with harmonic nearest-neighbor inter-
actions of spring constant mes~'. The atoms are subject
to a periodic potential, with the period equal to the
equilibrium distance between neighboring atoms u. The
model may be visualized as a chain of balls connected.

by springs resting on a washboard. A potential valley
containing two (or no) atoms instead of one constitutes
a defect. The displacement of the eth atom from the
equilibrium position in the eth valley at the time ], is

N(n, 1) Using th.e finite difference operator and its
adj oint

h.f(x)=f(x+a) f(x), h.if(x) = f—(x a) J(x), — —

as a convenient notation, the potential energy may be

' F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. (Lon-
don) A198, 205 (1949); A198, 216 (1949); A200, 125 (1949);
A201, 261 (1950).' J. H. Weiner, Phys. Rev. 136, A863 (1964).

7 J. H. Weiner and W. T. Sanders, Phys. Rev. 134, A1007
(1964).
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written as
V=P„PmpprsLhru]s+ U(u) ),

m$ii+rorsIirthru+pepsu$= o,
=o'+meop 8 )

——,a&N&-, a,1 1

—s'es(u(3a/2.

The continuous approximation mentioned in the intro-
duction replaces the second difference in the previous
equation by a second derivative.

3. STEADY-STATE MOTION

Steady-state motion of one defect with velocity v

clearly means that if the e=0 atom moves from the 0th
valley to the 1st valley, passing the discontinuity at
u= a/2 at f =0, then the nth atom moves to the (n+1)th
valley at (=ace/s. The equation of motion is then

m[u+tpr IirtIiru+G)p u j=o+Qmpep S(f res/5),

where
S(x)=1 x)0, S(x)=0 x(0,

and u(es) =a/2 at t= are/s. We should emphasize that
we are assuming the amplitude I of every atom to be
small enough that at no time is there more than one
defect in the entire chain. The solution of the previous
equation depends on e and t only through the variable
x=ue —vt, which means that the displacement is
stationary from the point of view of an observer moving
with the defect. In terms of x the equation of motion
can be written as

where

and

mL(x)u(x) =o+rrmeppsS( —x),

L(x) = s'(d/dx)'+(pish, th.+pops,

u(0) =-,'a.

The solution of this equation may be found by Fourier
analysis. Indeed, we write

where
L(x)e~»= L(k)e'"

L(k) =pps —s'k',

where U(u) = U(u+a) is the periodic potential. To
make the problem pseudolinear, we consider a potential
which is piecewise parabolic, instead of the usual sine,

U(u) =-,'mpppsus,
( u ~

(-,'o, .

We also introduce an external force 0-, independent of
position, which acts on each atom. This is equivalent to
tipping the washboard and allows steady state motion
of the defect. It acts on our defect in a manner similar
to that of a shear stress on a dislocation in a crystal.
The equation of motion is then

21/a

Fm. 2. Dispersion plot for sound waves in the Frenkel-
Kontorowa model. Frequency co as a function of wave number k.
The radiative modes, solutions of u=ek, are given by the inter-
sections between co(k) and the straight line.

Using the representation of a step function, we obtain
as a solution

aa)p' " e'~ dk
u(x) =

mrop' 2' „kI.(k)

provided only that the contour passes above the pole at
the origin of the complex k plane. It should be men-
tioned that Eq. (2) can be rigorously justified, following
Titchmarsh. ' This solution is completely speci6ed once
the contour is entirely determined. The choice of con-
tour is dictated by physical considerations. It must lie
close to the real axis, so that the solution will not diverge
for large x. The zeros of L(k) determine of course the
nature of the solution. There are two kinds of zeros: (a)
A finite number of real zeros, which will be discussed in
the next section and which represent the wave numbers
of the acoustic radiation emitted by the defect. (b) An
infinite number of complex zeros, which correspond to
exponentially damped localized modes, which have zero
amplitude at large distance from the defect and which
describe the structure of the crystal around the defect.

The integral (2) can easily be evaluated by the
method of residues, so that the solution comes out as a
superposition of real waves and localized waves on one
side of the defect and another similar superposition on
the other side of the defect. This was to be expected on
purely physical grounds. The Fourier analysis allows
us to match the two superpositions around the defect
in an elegant way.

4. THE CHARACTER OF THE ACOUSTIC
RADIATION

A plane wave exp(i( a&f+kars) }wi—th real k moving
in the undisturbed crystal has a frequency given by (1)
and if this is to be a part of our solution, of the form
exp(ikx), we must have

pp(k) =ok,and eo(k) is the usual dispersion relation in the perfect
lattice,

tps =co '+ 4pp ' sin'-'ku.
E. C. Titchmarsh, Introduction to the Theory of I&'ourier

(1) INfegrals (Oxford University Press, New York, 1937).
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FIG. 3. Force r on a moving dislocation as a function of velocity
v. o.z, the Peierls force, is the force required to initiate motion;
m1u the velocity of low frequency sound waves in the limit m0 ~ 0.

the contour must pass below (above) a zero of L(k)
when kL'(k) is positive (negative). This determines
completely our solution.

For certain critical velocities, the straight line in
Fig. 2 becomes tangent to the curve &o(k). Two distinct
modes of radiation merge. As the slope of the curve ~(k)
is the group velocity, we see that the group velocity is
equal to the defect velocity at tangency. The amplitudes
of the corresponding modes diverge and our solution
blows up.

5. RESISTANCE TO MOTION

The equation u(0) =-,'a has not been used to deter-
mine the solution. Instead, it is used to determine the
driving force 0. e(0) is calculated from the series of
residues and the value for 0. is

o=mmo'Q (1/kIL'(k) I),

where the sum extends over all real positive roots of
L(k). Thus the driving force is related to the radiation
alone. Note that the choice of contour makes 0. positive.

and therefore L(k) =0. The phase velocity of the excited
radiation must be equal to the velocity of the defect.
Equation (3) is illustrated in Fig. 2. The curve is ~(k),
and the straight line has a slope v. At low velocity many
modes are excited; at high velocity only one.

To determine the contour of integration, we impose a
condition on the radiation emitted by the moving de-
fect. All radiative modes with group velocity e, greater
than the defect velocity v must appear only ahead of
the defect, all those with e, smaller than v only behind.
Noting that

dc@ 1 1dL
Vg= = 'V+———

)
dk 2v k dk

It is easy to show that formula (4) for o. could equally
be derived from the conservation of energy; i.e., the
work done on the crystal by the external force o- appears
as radiation at the two sides of the defect.

A plot of 0. as a function of v is given in Fig. 3, for the
particular value ~0/ao& ———,'. The force 0 is asymptotic to
o-o=-,'nuoo'u, the applied force required to make the
perfect chain move as a whole. On the same 6gure, we
indicate the value of the Peierls force

0'a=a'o~o/L(~o+~P)] I

in our model, namely the force required to start the
defect moving. We notice first that e=co~u, which
corresponds to the sound velocity, does not show any
critical behavior as it would if ~0 —+0. On the other
hand, there are singularities at all the resonances in
amplitude every time the group velocity and the phase
velocity coincide. This occurs more frequently at low
velocities. Note that large amplitudes will violate our
original assumptions about which atom is in which
valley at what time. Thus the solution is not valid near
a resonance, or for e larger than about co~a. This leaves
one region of physical interest, roughly -,'(a/~, u(1,
for the case co«~&. In this range there is only one
radiative mode which appears behind the defect. The
possibility of motion at a lower velocity has not been
carefully considered, but if allowed mathematically, it
would likely not be physically interesting, as such
motion would probably have o) fT&.

The minimum 0.» indicated in Fig. 3, called by
Weiner' the dynamic Peierls force, is the force required
to sustain motion. It lies well below the force 0-~ required
to initiate motion: roughly o zo/00= (0'z/0'o)'.

The resonance phenomena depend entirely on the
periodic dependence of frequency on wave number, and
hence on the discrete character of the lattice. A con-
tinuous approach is clearly inadequate to describe the
nature of the radiation. In the continuous approxima-
tion, which appears reasonable as (oo/(oy ~ 0, no radia-
tion is emitted; the defect is free to move at constant
velocity with no driving force. Hobart's' more subt)e
approach considers a defect in a discrete lattice and
radiation in a continuum. The results are fundamentally
incorrect: the continuous model leads to the wrong
frequencies as we have already indicated in the
introduction.

It remains to comment on the significance of the
singularities for v, =v. We believe that these infinities
are connected with the pseudolinear potential assumed
in this paper as well as with the one dimensionality of
the problem. This will be examined subsequently.

'R. Hobart, U. S. Air Force Once of Scientific Research
AFOSR-647, 1961 (unpublished).


