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formula of Eck, Scalapino, and Taylor' for the height
of their resonance-shaped peak in low Q junctions is
essentially the special case of Id p Q evaluated at
kl.=mw.

From the regular spacing of the current steps, from
their dependence on magnetic field, and from the other
sects described, it seems probable to us that high-
frequency electromagnetic fields exist within these
junctions. Coupling of these fields to a detection
instrument in the outside world would constitute proof
of their existence. A preliminary attempt has been made

to do this, using a transmission line smoothly tapering
from the 10 A separation of the junction to the macro-
scopic dimensions of a coaxial cable or wave guide.
No ac power as large as 10 " W was detected, even
though one junction was tunneling a current of 30 mA
at 20 pV. These experiments are continuing with greater
emphasis on eGecting smooth impedance transformation
and reducing line losses.

We wish to acknowledge helpful conversations with
I.Giaever and M. Tinkham and the technical assistance
of Mrs. Ethel Fontanella.
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We describe experiments on tunneling into SnIn and PbBi alloys near their upper critical Gelds. In this
regime, a theory by de Gennes predicts gapless superconductivity with a density of excited states whose
energy scale is Geld-independent. We have experimentally investigated this density of states in detail, both
in the superconducting sheath regime near H, 3 (Geld parallel to the surface) and in the vortex regime near
B,q (field normal to the surface). We find excellent agreement between theory and experiment for the shape
of the tunneling characteristic and reasonable agreement for its normalization.

energy, $(0) is the density of states at the Fermi sur-
face in the normal metal, and r is a function only of
temperature, given implicitly by

I. INTRODUCTION

ECENTLV, de Gennes' and Maki' have shown
that the domain of validity of the linearized

Landau-Ginsberg' equations may be extended to arbi-
trarily low temperatures in dirty supercomductors for
the calculation of the geometry-dependent nucleation
field H„(H,2, the bulk upper critical Geld or the
nucleation field for surface superconductivity, ' H,&).
De Gennes' was further able to derive an expression
for the density of states of excitations relative to the
Fermi energy which is valid for fields just below B„,
i.e., for small

I
6

I

ln(T/T, )=g (,') p(2+k/4~-k, —T,), (I.2)

where To is the critical temperature in zero field and

The following points should be noted in connection
with (I.1):

(1) The frequency dependence of the density of
states (I.1) is quite different from the BCS density of
states'X(r,ei) L(2eir)' —1j

=1+21~(r) I'~
N(0) L(2eir)'+1]' X( )/X(0) =( /L —(~/a)~j ). (I.4)H„H—

&1 I, (I 1)
E H„

where ko is the excitation energy relative to the Fermi
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' J. Bardeen, L. Cooper, and J. SchrieBer, Phys. Rev. 108,
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Both forms have the same asymptotic behavior at
large ~e, but the piling up of states at &=6 in (I.4) is
smeared out. Note in particular that the density of
states (I.1) shows no gap in the excitation spectrum
LE(ei) Gnite for a& —+Oj. A dirty superconductor near
its upper critical field is predicted to be a gapless
superconductor.

Early tunneling experiments displaying this type of
gapless superconductivity have been performed by
Tomasch' prior to the appearance of the theoretical
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formula (I.1). We decided to repeat and extend those
measurements, and to carry out a complete comparison
of the results with (I.1). We used Al-AlqOs-S sand-
wiches where 5 was the dirty superconductor, in this
case SeIn and PbBi alloys. The current-voltage char-
acteristics of the junctions were measured as functions
of temperature and magnetic Geld. The experiments
were carried out both in Gelds perpendicular to the
plane of the sandwich near H, 2 and in parallel fields
near H, 3. We Gnd excellent qualitative and good quanti-
tative agreement with (I.1). In fact, these nonmagnetic
alloys in high fields appear to give us one of the cleanest
experimental situations where gapless superconductivity
can be displayed.

(2) Another remarkable property of (I.1) is that the
density of states measured at one point r depends only
on the order parameter A(r) at the same point. ' We
have not been able to verify this property directly.
However, we have calculated theoretically the values
of h(r) at the junction surface, and 6nd reasonable
agreement between these values and the ones which
are required in (I.1) to account for the tunneling
characteristics.

The theoretical calculations which are necessary to
compare our experimental results with (I.i) are ex-
plained in Sec. II. Part A contains a calculation of the
theoretical tunneling characteristics based on (I.1). In
Part B we discuss the Geld dependence of the gap
parameter ~h(r) ~in both parallel and perpendicular
fields just below the respective critical fields. Section
III is devoted to the experimental procedure: Part A
deals with the sample preparation, Part B contains a
discussion of critical fields, Part C concerns the tunnel-
ing measurements. The results and comparison with
theory are discussed in Sec. IV.

II. THEORY

A. Current-Voltage Characteristics

Here we present a calculation of the tunneling cur-
rent as a function of the voltage applied across the
junction when the excitation spectrum has the density
of states given by (I.1). If we denote by 8I the differ-
ence between the tunneling current in the normal and
superconducting states, then

8I=C 8Ã o) L) — ho) eV do), II.1

where C is a constant that depends on the junction,
81V(&u) is the difference between the normal and super-
conducting densities of states for excitations with
energy Ace relative to the Fermi energy, V is the applied
voltage, f(h&o) is the Fermi distribution function. The
density of states (I.1) can be rewritten as

b,V(~) =X(O) + . (11.2)
4k' (a&

—i/2r)' ((a+i/2r)'

Then BI becomes

bI= —(I /V)G(V), (II.3)

where I„is the normal current and

G(V) =(~~~ /4k) d ff(h +.V)——,']

X + . (II.4)
((e—i/2r)' ((a+i/2r)'

B. Field Dependence of the Order Parameter

i. FMlds Parallel to the Surface

In this case we are interested in tunneling in the
surface superconducting sheath just below H, 3.4 In
order to determine ~A(r) ~, it is necessary to find a
solution of the nonlinear Landau-Ginsberg equations.
Our method essentially follows Abrikosov's~ calculation
of

~
h(r)

~
in the mixed state just below H, s. The prin-

cipal approximation is to assume that the spatial de-
pendence of the order parameter near H, 3 preserves the
form of the solution to the linearized problem, but only
its normalization is Geld-dependent. A similar problem
has been studied by Zuckerman' who has discussed the
Geld distribution in the superconducting sheath. Maki'
has generalized Abrikosov's calculation to arbitrary
temperatures and finds that for T&TO, the Landau-
Gunsburg a loses its unique meaning and becomes
slightly temperature-dependent. Following Maki's nota-
tion, si ——(1/i')(H, s/H, ) (where H, is the thermo-
dynamic critical field) has been shown both by de Gennes
and Maki to be about 20% larger at O'K than at T,.
On the other hand, the parameter ~s (related to the
slope of the magnetization curve at H„s) decreases
about 30% between Ts and absolute zero; at T=Ts,
z&=w&=~. The free energy' of the superconducting state

'A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 34, 1442 (1957)
PKnghsh transl. :Soviet Phys. —JETP 5, 1174 (1N7)$.

8 W. Zuckermann (to be published).

&y standard methods G(V) may be transformed into

G(V) = (~ 6 ~'/47rkeT) Imf (s-,'+a —ib), (11.5)

where Ps is the first derivative of the function defined
in (I.3), a= (k/4rrkeTr), and b=eV/2skeT. The func-
tion G(V), Fig. (3), vanishes both at zero voltage and
at high voltages (when I—+I ). The voltage for the
maximum of G(V) is temperature-dependent and ap-
proaches eV=k/2r=h/2 at absolute zero. Note that
although the shape of G(V) is given entirely by Ps, its
normalization depends upon ~h(0) ~, i.e., the magni-
tude of the order parameter at the surface of the junc-
tion. In the range of validity of (I.1), r is independent
of Geld and thus the only magnetic-Geld dependence
occurs in ~h(0)

~
which, near H„, varies linearly as

(H„—H).
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may be written in terms of the Landau-Ginsberg wave
function it as

rf= «I ~~+~Ill'+-lit l4
l 2

from the supercurrents and is approximately given by

4s 4s.e 2e
curlh, =—jp= imp* —ihV ——Ap lfp+c. c. , (II.11)

C SIC c )

1
+ I

ihv-
2m ~ hr =H, s—H+h, (II.12)

and we find
Just at the critical point, P satisfies the linearized
Landau-Ginsburg equations 1

P I Pp I'dr+ (H, s
—H) —h,dr ——h,dr= 0. (II.13)

kr 4n-1 2e
m)+ —ihV ——A f=0,

2m c
(II.7a)

p is related to Maki's parameter «s by

where Ap is the vector potential at H, s and represents a
2eA i

' "' l uniform field. Thus
(II.6)

c t Seri

eh 4e'
j = /*Vf—/VS*) — $*fA—,—

zns ac
(II.7b)

where j is the current density and A the vector poten-
tial. The Landau-Ginsburg function P(r) is related to
the pair potential h(r) in a dirty superconductor by'

rpr m o.

ES knT he'
(II.8)

where 0 is the conductivity of the alloy in its normal
state. The Abrikosov approximation lies in taking the
eigenfunction fp of (II.7a) having the lowest eigenvalue
and ending its normalization by minimizing the free
energy (II.6). In the case of surface superconductivity,

Pp has been calculated by de Gennes and St. James, '
but is a rather complicated Weber function. In order to
simplify the subsequent calculations, we shall instead
use a Gaussian centered at the surface. Kittep and
Zuckerman' have shown that such a function when
used in a variational calculation of fp gives results (for
the nucleation Geld) which are in excellent agreement
with the exact calculation. Using (11.7), and minimizing
the free energy with respect to the normalization of fp,
we 6nd

~

p= 2s (2eh/mC)'14ss. (II.14)

The integration on the field arising from the super-
currents is related to the first moment of the super-
current density by

4n
h,dx= — xjp(x)dx,

0 C

(II.15)

where h, is directed along the s axis parallel to the sur-
face of the sample, the current jo Aows also in the sur-
face perpendicular to the fields and the x axis runs into
the bulk of the sample. The integral of the square of
the field over the sample was carried out approximately
numericaQy using the Kittel variational function given
below. In the gauge A =A, =O, A„=B,3x, the linear-
ized Landau-Ginsburg equation becomes

—(d'I ~4I/«')+(2~H. s/6)'(x —xp)'I&I
=I0oI/8, (II 16)

which is of the same form as the Schrodinger equation
for a harmonic oscillator centered at xp, where pp is the
flux quantum and we have taken f= e'psl f I . The sym-
metry center of the potential xo is given by xo
= (hck/2eH. s). The Kittel variational calculation gives

l&~l—=e """ (II.17)
1

p IitpI4dr ——h,h,dr=0,
4

where the 6elds hj, and h, are defined by

J14= curl Ar

curlh, = (4s./c) jp,

(119)

(II.10) j,= (2eH, s/mc) Ig„ls(xp—x). (II.18)

where P is the temperature-dependent coherence length.
The Kittel function P, gives xp ——0.57$(T) and H, s

= 1.67H, s. The exact values are xp=0.59$(T) and H, s

=1.69B,2. This approximation is quite good. Then,
using f„ the current density becomes

where At is that part of the vector potential arising
from the facts that (1) the applied field is slightly less
than H, s and (2) there also exist supercurrents which
contribute to the Gelds. The field h, is the Geld arising

Using (II.13), (II.14), (II.15), (II.17), and (II.18), we
6nd for the value of the Landau-Ginsburg function at
the surface'of the sample

roc (H, s
—H)

Iii, (0)I =0.211—
k eh sss —0.174

(II.19)9L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 37, j.407 (1959)
LEnglish transl. : Soviet Phys. —JETP 10, 998 (1960)g; C. Csroli,
P. 6. de Gennes, and J. Matricon, Phys. Condensed Matter 1,
176 (1963). Using (II.8), this gives for the gap parameter at the
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surface
1.68 ec B,3—B

l~. (0) I'=-
(2s)s rr xs' —0.174

(II.20)

The numerical value (0.174) appearing in (II.20) can
be more or less guessed even without a detailed calcula-
tion. The argument proceeds as follows: Consider, for
simplicity, the region T To where K]=Kg=K. %hen ~

decreases, (H,s/H, )= 2.4x decreases and becomes unity
when s=(1/2.4)=0.42. Below this value of a the
transition is of 6rst order. It is thus plausible to assume
that, for that particular value of z, the denominator in
Eq. (II.20) vanishes. If this denominator is of the form
(1/x' —c) then c= (0.42)'=0 174

Finally, Eq. (II.20) can be used in the following way:
Knowing the conductivity 0. in the normal state,
Maki's g2, and the upper critical field of the material
H, s, Eq. (II.20) predicts a definite value for the order
parameter h(0) at the surface The. tunneling experi-
ments (in PbSi and SnIn alloys) to be described below
were designed to check the joint predictions of Kqs.
(11.5) and (II.20).

This leads to a pair potential a,t the surface given by

1.55 ec H, 2
—H

l~(0) I'=-
(2x)s o. xss —0.5

(II.22)

We have taken the value of (~P ~')'/(~it (') appropriate
to the triangular lattice. Notice the remarkable result
that in the limit 2x'))1, (II.22) and (II.20) approxi-
mately coincide for a given hH. As we shall see later,
this is borne out by our experiments.

' W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133,
A1226 (1964).

ii Field. Perpertdicllar to the Sstrface

When the magnetic field is applied perpendicular to
the surface of the sample, there is no surface sheath.
VVe are then interested in tunneling eGects at fields
just below II,2. Then the sample is in the Shubnikov
phase. Flux penetrates on throughout the sample in the
form of Abrikosov vortices. "To compute explicitly the
density of states (I.1) and the tunneling current (II.15),
we must take the average value of

~
A(0) ~' on the sample

surface. This average differs from the average of
~
d ~'

in the bulk of the sample, since the magnetic lines of
force "open up" near the surface. In the following, we
neglect this difference and derive only (~ 6(0) ~') (where
the brackets denote a spatial average). In the vortex
state, (II.13) can be rewritten as

ek
P ~y['dr+ (H H.,) ~P—) dr-

5$c

eh )'
I

~t I'dr= 0. {II.21)
mci

III. EXPERIMENTAL PROCEDURE

A. Preyaration of the Samyles

The specimens were prepared in a conventional
evaporator of limit vacuum 2&&10 ' Torr. They were
deposited on a glass substrate at room temperature
from a crucible heated by the Joule effect. A relatively
thick film of Al was deposited first and then oxydized
for several minutes in a glow discharge under a pressure
of 10 ' Torr of dry 02. The discharge current of several
milliamperes occurs between a pure Al wire at a po-
tential of 500V and the bell jar at a zero potentia, l.
Then on top of the oxide layer we deposit the alloy of
interest (PbBi 5% and Srtln at various concentrations).
The alloy films are evaporated from a piece of bulk alloy.
The problem is to check that the two elements evaporate
together. For the lead alloys this was proven by isolating
parts of the evaporation on different substrates during
the experiment, For the Se alloys we were able to
prove, in comparing the normal state resistivity as well
as the superconducting properties with those of the
starting ingot, that the diQusion between Sn and In
occurs very rapidly if the material is evaporated under
a sufhcient vacuum. Finally we emphasize that much
attention was paid to the shape of the masks to avoid
any edge effects on the alloy film that would enhance the
residual superconductivity in high fields.

The resistivity ratio of the alloy 61ms in the normal
state was in good agreement with that determined from
resistivity measurements" on the bulk alloy. In all
cases of interest the mean free path is limited by scat-
tering from the impurity atoms rather than by surface
scattering (the thickness d))l in these experiments).
Also the scattering by possible defects introduced
during evaporation appears to be negligible in these
alloys.

B. Critical Fields

The film thicknesses d are of order 4000 A. In the
domain of temperature which was used (from 0.5 to
3.4'K in the Sn base films) the thickness of the super-
conducting sheath $(T)4 is then much smaller than d.
Then the parallel critical field is known to be"

H„=H, 3
——1.69H,g.

The perpendicular critical fieM is

Hg= H,2.

In the present. work EI~ and Hf& were measured from
tunneling. "The Landau-Ginsburg parameter a of each

"A system devised by G. Deutscher using essentially the
measurement of the normal skin depth of bulk cylinders of alloys
has been used {tobe published).

"See, for example, J. P. Burger, G. Deutscher, E. Guyon,
and A. Martinet, Solid State Commun. 2, 101 (1964).

"The orientation can be obtained sensitively using a sharp
maximum of the resistance in the intermediate state for H~~ (see
R.ef. 14).
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formula'
H, s (C s——h/2s rD),

)where 4 s is the flux quantum, r is the dephasing time
related to the temperature by Eq. (I.2), an.d D the
diffusion coefBcient for electrons at the Fermi level in
the normal rnetalj. The predicted proportionality be-
tween H, s and (1/r) is very well confirmed by the
results of Fig. j.. For that particular case, the best fit
corresponds to D =46 cm'/sec. The corresponding calcu-
lated value D=(o/X(0)e')=32 cm'/sec is in satis-
factory agreement.

0.5

FIG. 1. The lower solid line is the theoretical variation of ~z
with reduced temperature. According to the theory of de Gennes, '
this should be proportional to H,~{T).The open circles represent
some of our measurements of this quantity, normalized such that
one value of II,2 lies on the curve. The upper curve is a theoretical
plot of the temperature variation of the maximum of G{V) de-
duced from (II.5). The error bars represent our measurements
on SnIn.

(y=Sommerfeld constant, Kp=value of s in the pure
matrix). We have also measured the complete curve

H&(T)=H, s(T) for various StsIn alloys. Results are
shown in Fig. 1, and compared with a theoretical

Twas, E I. a values for two typical alloys.

Kgo Tp

Pb Bi 5% 240 L 1.96 s4, s K=2.2 1.3 meV

Sn In 5 jo 390 A 0.86 0.92 3.75'K 0.57 meV

sample of the Se alloys was derived from a study of
(H~/H, ) in the limit T~ Ts. (H, being taken as the
value for the pure metal. )

For the lead alloy, this technique was not convenient:
We measured the ratio (H~/H, ) =ar42 at T=4'K, and
derived the value of K=K](T,) from lrt (4'K) by theo-
retical formulas of Ref. 2 or Ref. 3. The resulting z
values for two typical alloys are shown in Table I and
compared with the theoretical formula of Gorkov

a = lies+ 7.5 10''~'p

C. Tunneling Measurements

For a given field, we measured

G(V) =(I (V) —I.(V))Rt,

where I„(V) is the linear function representing the
tunneling conductance in the normal state and I,(V)
that with the alloy Glm in the superconducting state
with a Geld applied H. This was dome using a bridge
whose one arm contained the junction and which was bal-
anced when the resistance was equal to its normal value
(=Rt). In the superconducting state the voltage across
the bridge V' = (RtRs/Rs+R4) 8I= (Rr/2) AI = (G(V)/2),
E3 being taken as equal to E4, is proportional to M and
was recorded horizontally on a XI' recorder after ampli-
fication through a dc amplifier. The higher sensitivity
gives a full scale deviation for V'=50 p,V. This pro-
cedure gives very sensitively the deviation of the I(V)
characteristics from the linear form in the normal state;
for the voltage at the maximum of the curve, we Gnd
typically 50 pV for (hH/H„) 10%.

The bridge was balanced at a voltage high enough
so that the IV characteristic is indistinguishable from
the normal one. In the case of Sn base alloy, this voltage
for the balance is taken as 10 mV. This operation is not
so easy for the Pb base alloys because of the bumps in
the IV characteristics due to phonon assisted tunnel-
ing." Furthermore this last effect is—in high Gelds-
of the order of magnitude of the direct tunneling for
V&4mV. The adjustment has to be done for every
voltage as it is not possible to eliminate the resistance
of the conducting arms of the junction from the bridge.
The resistance of the superconducting arm varies with
the field and has to be taken into account in Ej. Other
e6ects to be taken into account in R~—critical current
effects and eIIfect of the warming of the arms of the
junction —can be minimized, provided one has a junc-
tion resistance large compared to them (small area of
the junction, thick junction, thick arms of the junction).

It turns out that the determination of G(V) is as
sensitive (and more direct) than the more standard
measurements of the differential conductivity dI/dU,
However, to compare experiment and theory, it is

' See, for example, J. M. Rowell, P. %. Anderson, and D. F..
Thomas, Phys. Rev. Letters 10, 334 (1963).
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sometimes convenient to present results in terms of
dI/dV (in particular, for T((Ts, dI/dV gives directly
the density of states). For this reason, some of our later
results will be given in the form of dI/d V curves.

QO/)at"b. unify

A).OX.Sn lh 5 ~ 7~1.&'K

0 315g
o 350g
+ 350g )2

IV. RESULTS AND DISCUSSION

To compare theory and experiment we focus our
attention on the following points:

(1) For a given temperature, the experimental G(V)
curve normalized to its maximum amplitude G(V)/
G(V, ) is independent of both the magnitude and the
orientation of the field Lwithin a range (H„H/H„)—
&0.3].This is shown in Fig. 3. Changes in H change
only the amplitude of G(V), not its shape. In particular,
when H~H„, the order parameter &~OG(V) ~0
but the potential V at which G is a maximum is

mite.

All these properties are in agreement with the pre-
dictions of (I.1) and (II.5). Since r Las de6ned in (I.2)$
depends only on temperature, the only Geld-dependent
term in G(V) is (~ 4

~

') which acts as a scaling factor.
Note incidentally that a similar property has been

found in tunneling experiments by Goldstein" on the
surface sheath in nearly pure lead. Unfortunately, the
theoretical density of states has not yet been calculated
for such a "clean" superconductor near B,3.

(2) The G(V) curve cutsssof be interpreted in terms

dt Rdy h

I
I

I

( I

Ii
I

T HEORY

8CS
A= 231 pV

= 416 p~

de GENNES

EX p.
Hgg = 553 G

T =1.4 K

y ~my)

"Y. Goldstein, LT 9 Proceedings of the Low Temperature
Conference, Columbus, Ohio, 1964 (unpublished).

FIG. 2. The points represent the measured ratio of the di8eren-
tial conductivity in the superconductor to the differential con-
ductivity in the normal state. The heavy line passing through the
points represents the theory deduced from (II.5). The light line
is the corresponding BCS tunneling curve having the same initial
slope. Note that this BCS curve gives very bad agreement for the
voltage at which G(V) is maximum. In fact, there does not exist
a value of the gap 6 for which the BCS characteristic is in reason-
able agreement with experiment.

n 550g
v 630g
a &10g
~ rcog [2

FIG. 3. The line represents G(V) for an arbitrary normalization.
The points are the measured values in geIn normalized to the
maximum for the various indicated samples, Gelds, and orienta-
tions. Note that the shape of G(V) is independent of all of these
parameters as predicted.

of a BCS type density of states

i'(&o) =E(0)(Aro/
~

(Ace)s —eos ('I')

whatever choice of eo is made. This is shown in I'ig. 2.
If we try to 6t the initial slope (dG/d V)v =0 we cannot
fit the position of the maximum and vice versa.

On the other hand, G(V) is correctly described by
(II.5) as shown in Fig. 3.

(3) The temperature variation of the characteristic
time 7 can be obtained from a study of V, as a func-
tion of T. The theoretical curve V (T) as deduced
from Eq. (II.5) is shown on Fig. 1. Note first that
for T—&0

eV ~ (Is/2r(T=O))=s(es)BGS= (3.5/4)&2'o.

But for nonzero 2', V' and (1/r) behave differently:
V,„increases while (1/r) decreases. Our experimental
results on tin alloys are also shown on Fig. 1. The
relatively wide error bars are due to the de.culty of
locating a maximum. Still, we may conclude that the
agreement is rather good (there is no adjustable scale
factor in this comparison). These results, together with
the measurements of H, (Ts) quoted in Sec. III give a
direct veri6cation of the fundamental laws (I.1) and
(I.2) over the whole temperature range.

For the lead base alloys (Fig. 4), the situation is
more complicated. Again properties (1) and (2) are
well veri6ed, but the experimental (tunneling) and
theoretical values of (1/r) at 7=1.4'K differ by a
factor of 40%%uq. This may be due to strong coupling
effects which are known to be important for lead.

(4) Effect of the 6eld. on the amplitude of G(V). To
verify quantitatively the lP dependence on Geld calcu-
lated in (II.20) and (II.22), we evaluated the coef6-
cients in these formulas only from resistivity measure-
ments in the normal state and from the determination
of the Landau-Ginsburg parameter x at T, already de-
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scribed. We have used Eq. (II.S) relating the Landau-
Ginsburg f to the order parameter 6 involving the
experimental resistivity rather than Gorkov's expres-
sion for free electrons. A use of the latter expression
would give serious discrepancies with the experimental
results.

Then, taking into account the theoretical variation
of ~2 given by Maki, in Fig. 5 we plot the value of the
maximum of G(V) as a function of A&=H H„ in—the
two cases of parallel and perpendicular geometry. We
can verify first the following qualitative features:

H//

T=2,4K

G

200 100

H// Hg

b q
X +

3 4 v
Tfl+ mam

G~Y)
pY

'I50
// '-

$~ .8(k.90 x',
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G0-
I

0 30Q
I

200 100

G(V)

~150
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this is a proof of the decrease of ~2 when the temperature
decreases as predicted by Maki.

(3) For diiferent samples at a given temperature cor-
responding to an increasing Ginsburg-Landau parameter
from sample 3 to sample 1 (i.e., to a decreasing re-
sistivity ratio), the parallel slope is much less affected
than the perpendicular one which decreases quite
rapidly due to the rapid variation of (1/«22 —0.5) when
lj;2~1 V2.

Qttaetitatieety, we can say that the agreement is good
provided the z& is known very precisely. In Fig. 5 we

G~V& +rb.units
At-Ox&)Bj $g

4130g v
4450g o
462 Qg
4810 g h

2680 g)
2800 g

(1) All the points for a given sample orientation, and
temperature 6t on a straight line in high 6eld.

(2) The ratio of the slope between the perpendicular
and parallel orientation for the same sample increases
when the temperature decreases. As

Gg(V .„) «22 —0.1t

G(((V .) «P —0.5

AH

(a)

AH

find very good agreement at 2.4'K, where ~2 is not very
different from the experimental sc. At lower tempera-
ture, the agreement is not so good and we have plotted
the two theoretical curves corresponding to the possible
limit between which our results 6t. z2 ——0.9 would corre-
spond for sample 3 to the value deduced from Maki's
formula using «2 (T=2.4'K) =0.98.

To conclude, the main difhculty with the tin alloys
is that the «values are low: factors such as (1/«22 —0.5)
are then extremely sensitive to our choice of z2, further-
more our theoretical formulas for perpendicular fields
neglect the expansion of Qux lines near the surface;
this may bring in serious corrections when «~1/N.

It is thus not surprising to 6nd that in the EbBi
alloys (where «))1/~2 the agreement between theory
and experiment on that particular problem of (~ b )') is
more satisfactory. In particular, we measure a ratio
(G~(V, )/G~~(V )) 1 as we expect from the above
formula when ~))1.

FIG. 5. (a) The amplitude of G(V) as a function of field in
SeIn at T=2.4'K in both parallel and perpendicular fields. The
dashed and continuous lines represent the theory for parallel and
perpendicular fields, respectively. The given K was determined
from critical-field measurement. (b) The corresponding ampli-
tudes at 1.4'K. The two dashed (or straight) lines represent the
two K2 s deduced from the application of Maki's theory to the
extreme admissible value of K2. Note that the perpendicular-field
results are more sensitive to slight difFerences in K than the
parallel field results at low K (K~1) in agreement with theory.

V

4 rnV

Fzo. 4. G(V) for EbBi alloys, again normalized to the maxi-
mum. The discrepancy is probably associated with strong cou-
pling effects and phonon-assisted tunneling.
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