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Lattice Dynamics, Heat Capacities, and Debye-Wailer Factors for Be
and Zn Using a Modified Axially Symmetric Model
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It is noted in this paper that the total energy of the electron-ion system in the metallic state arises from
an electron self-energy term as well as volume-dependent pairwise interaction terms among the ions. The
Slutsky-Garland model used by Schmunk et al. to analyze the experimental dispersion curves of Be does
not give the proper elastic behavior. The experimental dispersion curves for beryllium and zinc measured
by Schmunk et al. and Borgonovi et c/. , respectively, are analyzed using a model consistent with the elastic
behavior. For beryllium, the calculated dispersion curves agree well with the neutron inelastic-scattering data
and the elastic constants of Smith and Arbogast. For zinc, the calculated frequencies are within the experi-
mental uncertainties with the exception of the transverse branches along the [0110]direction which de-
scribes atomic motions perpendicular to the basal planes. The experimental data on Zn indicate high dis-
persion and fluctuations in frequency co verses wave number g. The calculated elastic constants agree within
a few percent with the experimental data of Alers and Neighbours at 300'K, with the exception of C44 and
Cls which are low by 19% and 27%, respectively. The Debye-Wailer factor and the specific heat for both
metals are compared with available experimental data. It is found that the calculated specific heat for zinc
is in excellent agreement with experiment over the whole temperature range. However, for beryllium, the
calculated values are low for small temperatures; the discrepancy could be attributed to heavy impurities in
beryllium. The anisotropy in the Debye-Wailer factor for zinc is in good agreement with x-ray and Moss-
bauer experiments.

I. INTRODUCTION

'HIS paper is concerned with the lattice dynamics,
speci6c heat, and Debye-Wailer factor for the

hexagonal metals Be, Mg, and Zn. Our model is derived
as a simple generalization of the A-S (axially symmetric)
model. '

A general discussion of the nature of the dynamical
forces arising in metals was presented at the Copen-
hagen conference. ' In this paper, we point out that the
correct form for the total energy Ez of a system of
ions and electrons is a sum of two distinct terms

Er XEp(a)+ ,'——Q Q Vr(R-@, e),

where Es(a) is an electron-gas self-energy term for a
system containing S atoms, and Vr(R;;; a) denotes the
potential energy of interaction between a pair of atoms
separated by a distance R;;. Here, a represents the fact
that both ED and VI depend explicitly upon the volume
of the atomic polyhedron. The subscript I' denotes that
VI should transform according to the point group F at
the center of the Brillouin zone associated with the
metal in question. If one assumes that Vr(Rg., a)
=Vs(~R;;~;a), the forces are central but volume-
dependent. In previous papers on the lattice dynamics
of Cu, Al, and P-Sn, ' s we chose the term axially
symmetric, A-S, to represent the nature of this volume-

' G. W. Lehman, T. Wolfram, and R. E. DeWames, Phys. Rev.
128, 1593 (1962).' G. W. Lehman, T. Wolfram, and R. E. DeWames, J. Phys.
Chem. Solids (to be published).' T. Wolfram, G. W. Lehman, and R. E. DeWames, Phys. Rev.
129, 2483 (1963).

4 R. E. DeWames, T. Wolfram, and G. W. Lehman, Phys. Rev.
131,529 (1963).

'R. E. DeWames and G. W. Lehman, Phys. Rev. 135, A170
(1964).

dependent central force since two force constants arise
per shell corresponding to a bond-stretching or radial
force constant and an axially symmetric bond bending
or tangential force constant.

The general features of the lattice dynamics of Be,
Mg, and Zn using the A-S model have also been de-
scribed recently. ' However, it has proved dificult to
achieve good elastic agreement in Be, p-Sn, and Zn
with strictly A-S forces and we have been forced to
introduce a slight modification of the A-S model, de-
scribed later in this paper.

The lattice-dynamics models which have been com-
pared with the experimental data of Schmunk et al.
on Be6 are the models of Begbie and Born~ and of
Slutsky and Garland, ' the latter extended to include
interactions with fourth- and fifth-nearest neighbors.
These models give limited agreement with the data
when the force constants in the models are evaluated
from the neutron-scattering data. The Slutsky-Garland
model for describing the dynamical motion of atoms
in a hexagonal crystal is a restricted form of the A-S
modeP in which the tangent force constants or bond-
bending force constants are set equal to zero. The
reason Slutsky and Garland a priori set the tangent
force constants equal to zero for every neighbor shell

is not clear. However, if the explicit dependence of Eo
and Vs(R;;; a) upon a is dropped then dEs/do=—0 in
the Slutsky-Garland model was required for the crystal
to be in equilibrium. One should note that additional
terms arise in dEr/da owing to the electron gas com-

'R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.
Strong, Phys. Rev. 128, 562 (1962).

7 G. H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
179 (1946).

L.J.Slutsky and C. S.Garland, J.Chem. Phys. 26, 787 (1957).
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pressibility so that the A-S or volume-dependent central
force model does not impose Cauchy-type relations. '

The previously mentioned restrictions introduced by
Slutsky and Garland are so severe that one cannot
obtain a fit to the dispersion curves of Be, Mg, or Zn
which pass to the elastic limit correctly. In an attempt
to correct the elastic inconsistency, Slutsky and Garland
introduced, a posteriori, an electron-gas compressibility
factor usually called o. (This o should not be confused
with our oui defined later. ) This procedure is completely
unwarranted since their elastic limit is not derivable
from the long-wavelength- behavior of their dynamic
equations.

Borgonovi et a/. ' measured the dispersion curves of
zinc and analyzed their results using a tensor model
including third- and fourth-nearest neighbors' w'ith 13
independent interatomic force constants. Using these
force constants one may calculate the five elastic
constants implied by the model. Comparison of these
predicted elastic constants with the experimental data
of Alers and Neighbours" indicates that the dynamical
matrix derived by Borgonovi et al. is inadequate in the
long-wavelength region. In fact, Borgonovi et al. did
not impose the elastic equations as constraints in the
determination of the atomic force constants. A more
serious omission is the failure to include fourth and
fifth neighbors in their calculation. They used the
dynamical matrix derived by Collins' for Mg and Be
without taking note that the fourth-neighbor coordi-
nates in the above two elements are the sixth-neighbor
coordinates for Zn.

Recently Young and Koppel" using the force con-
stants derived from the models discussed previously
calculated the vibrational spectra and the specific heat.
Because their resulting dynamical matrix is elastically
inconsistent their calculation is inadequate in the long-
wavelength region.

Our previous remarks indicate that the experimental
data on Be and Zn have not been correctly analyzed to
produce a consistent fit with the dispersion curves and
elastic constants. Consequently, in Sec. II, the experi-
mental data for beryllium and zinc are reanalyzed
using a model based upon a modified A-S model derived
with the assumption that the internal energy of the
system can be written as a sum of bond-stretching and
bond-bending terms, corresponding to restoring forces
in the basal plane being difterent from those normal to
the basal plane. The dynamical matrix associated with
this modified A-S model is given in Appendix A. In
Appendix B, we show the relationship between the
modified A-S model and the general tensor force model
derived by Collins in his study of Mg."However, our

' G. Borgonovi, G. Caglioti, and J. J. Antel, Phys. Rev. 132,
683 (1963).

"M. F. Collins, Proc. Phys. Soc. (London) 80, 362 (1962)."G. A. Alers and J.R. Neighbours, J.Phys. Chem. Solids 7, 58
(1958).

*

~ James A. Young and Juan U. Koppel, Phys. Rev.' 134, A1476
{1964).

study~ as well as Iynegar's" indicates that the vibra-
tional spectra and the elastic constants of Mg can be
correlated quite well with a third-neighbor A-S model.
The relation between the elastic constants and the
atomic force constants is given in Sec. III. In Appendix
C the constraints imposed by the A-S model on the
elastic properties are presented and the need for modi-
fying the axially symmetric nature of the model follows
if the experimental data do not satisfy those constraints.

In Sec. IV the dynamical matrix is block-diagonalized
along the principal directions in the Brillouin zone. The
dispersion curves and the computed elastic constants
are compared in Sec. V with the experimental data.
The resulting Debye-Wailer factor and the specific
heat are also compared with the experimental data.

i'= sar+ sas+ sas,

where a~, a~, and a3 are the primitive lattice basis
vectors illustrated in Fig. 1. Also shown in this figure
are the relative orientations of the Cartesian axes
(x,y,s), hexagonal axes (ar,as,as), and reciprocal lattice
axes (br,.bs, bs). The lattice parameters are [ai( = ~as~
=a=2.2856 A, ~as~ =c=3.5832 A for beryllium, and
a= 2.6648 A, c=4.9467 A for zinc. The two inequivalent
lattice sites give rise to six vibrational branches. In
the long-wavelength limit three of these branches can
be described as optical and three as acoustic. The
following analysis is applicable to any crystal of
hexagonal close-packed structure. The form of the
dynamical matrix' ' is

Here, g denotes a vector in the first Brillouin zone and
the elements, 9 P(q) of the above 2X2 supermatrix
are 3&(3 matrices.
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FIG. 1. First Brillouin zone of the hexagonal lattice. Also shown
are the basis vectors of the hexagonal lattice (u's) the reciprocal
basis vectors (b's) and the Cartesian-system basis vectors {x'sl.

"P.K. Iyengar, J. Phys. Chem. Solids (to be published).

II. DYNAMICAL MATRIX IN THE CENTER-
OF-MASS SYSTEM

Beryllium possesses the hexagonal close-packed
structure which may be described as'two interpene-
trating simple hexagonal lattices. For convenience, the
0th atom of sublattice one is chosen as the origin, the
first atom of the second sublattice is removed a distance
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44,'= (12/ll3)(44, +23,+2&3,+254+883+2853} (3)

The elements of Kq. (1) are derived in Appendix A. where

X)(q) can be transformed to a real form by the unitary
transformation

where I is a 3&&3 unit matrix and i the square root of
—1. For the transformed dynamical matrix L(q), we
obtain

ReD»-D"+ImD"
L(q) =«'&(q)«=

ReD» D» ImD»

where ReD" and ImD" denote the real and imaginary
parts of the matrix D". Now by means of the unitary
super matrix V, 1-I —I

v2 I I
the dynamical matrix can be transformed to the center-
of-mass system where it is

-D"+ReD" —ImD"
&(q) =V*L(q)V= (2)—ImD» D&&—ReD»

or,2 0 0 '

Dll —ReD"=2D" (0) = 0 40,2 0
.0 0 cob2

A.(0) is block-diagonal since ImD" (q=o) =0. Further-
more, it can be shown that D"(0)= —ReD"(0). The

D +ReD —ImD (D —ReD 2} ImD corre-
sponds to the acoustic matrix in the long-wavelength
limit. The optical frequencies for small propagation
vectors are determined by the matrix D"—ReD". The
three optical frequencies at the center of the Brillouin
zone consist of a twofold degenerate root ~, and a
single frequency cob.

It is easily shown from the dynamical matrix elements
given in Appendix A that

III. ELASTIC EQUATIONS AND ATOMIC
FORCE CONSTANTS

The dynamical matrix, E(q), for the acoustic modes
of a crystal with hexagonal symmetry is given in
Appendix C. The frequencies are determined by the
secular equation

I E(q) —'Il =o.
Along the L100] direction, the transverse acoustic (TA)
and longitudinal acoustic (LA) frequencies are

p(&vT~2) =C44q,

P(~El) 2 (Cll C12)q

P(~L4.) =Cllq ~

(6)

The frequencies for elastic waves propagating along
the L001j direction are

p(4dTA) = C44q

p(~T~)'= C44q',

p(~r,~)'= C33q'.

(7)

The atomic force constants may be related to the elastic
constants by equating the elements of A. (q) to those of
the dynamical matrix of elasticity theory, Eq. (C.3),
in the long-wavelength limit. Using the modified A-S
model (see Appendix A), we obtained the following
independent equations relating the atomic force con-
stants to the elastic constants:

0l32= (12/424) ( (4l,+23,+223.)+3y'(bi+83+283) }. (4)

The parameters are force constants defined in Appendix
A, and m denotes the atomic mass.

C» —— (9/8) n2+ (27/8) «+ 2&,+24l3+ 14783+2p2, +-,'p„+-',4»+ 243g+ 74»—
cd
8 12

(883—84—2083)'
fÃCOrr,

2

Cll —C42= 3n2+ (9/8)n3+2»+8&3+49&3+2p2*+2p4*+2 4*+223*+ 3*—
cd
4~2

C44 —— (2tIl+653+2153+P4,+4&4,+4&3g+22ljg} )
cv3

8
Cl2+Cll —— (4n2+ (9/4)n4+bl+1683+98ll3},

n/3

4~2
(Cl3+C44) = (382+124+4253},

cv3

C44= (2&'bi+6& b3+21Y f'l3+2P2, +2P«+244, +243,+743,},

(8&3—S,—2OS3) 2

2
)

SSM~

(8)

4r2
(n4+( /4h'hl+(9/4)V'~3+2m'&3+p4, +441 +4&3 +42&5 4}&4

n8
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where the parameters are force constants defined in
Appendix A. Using the above relations we obtain

c&3(C44 C13) Sr (p4g+461c+f83g+(c5g) ~

Hence, if the atomic force constants P and e (bond-
bending) are not included in the model, the Cauchy
relation C&3=C44 is obtained. Another useful relation
connecting Ci3 and C44 is given by

c&3(C44—Cgg) =8(-,'p2g+-,'p6g+-,'eg, +2c3g+7E5g) .
Similarly it can be shown that

(cv3/16) (3Cgm —Cg|)

L2P2s+@8s+ 2 &le+2&3m+ 7&5@]

+ (12/m(o. ') (Sbg—5g—205,)',

which gives the other Cauchy relation that 3C~2—Cia= 0
if the bond-bending and, the second term (optical
correction to the acoustical matrix) are neglected. From
the experimental elastic data the left-hand side of the
above equation is negative and consequently cannot be
equated to the optical correction alone since it is
positive de6nite.

The A-S model requires that the constants with
subscript x be equal to those with subscript s. Under
those conditions it follows from the above equations that

(cv3/16) t 3Cgg —C„+2C44—2C,g]
= (12/duo, ') (SBg—B|—208')'. (9)

The available elastic data show that the above con-
straint is not desirable except for magnesium. However,
in the case of beryllium it is possible to fit the experi-
mental data with the constraint that the bond-bending
constants with the s subscripts be proportional to those
with the x subscripts with the constant of propor-
tionality 0~ the same for all neighbors.

Under these conditions we obtain

(cv3/16)L3C/2 C„+20~'(C44 —C13)]
= (12/yg+, ') (85, bi—20—8,)~ (10)

The value of 0& for beryllium is obtained by solving the
above equation self-consistently. It is 6rst assumed that
the optical correction is zero; this allows calculation
of 0.~. Using special points in the Brillouin zone and
the elastic constraints the atomic force constants can
then be calculated and the optical correction evaluated
and inserted in Eq. (10). This gives a new value of o&.
The calculation is then repeated until self-consistency
is achieved. Results of calculations are summarized in
Sec. V.

IV. BLOCK DIAGONALIZATION OF THE DYNAMICAL
MATRIX A. (q) ALONG PRINCIPAL DIRECTIONS

Using group-theoretical arguments, one can block
diagonalize the dynamical matrix along the principal
symmetry directions. Along the direction in the Bril-
louin zone the block diagonalized $0001] dynamical
matrix is given by

A.[q= (o,o,q,)]
'D„"+ReD„"

0
0
0
0
0

0
D.."+ReD,"

0
0
0
0

0
0

D„"+ReD„"
0
0
0

0
0
0

D..»—a.eD..~
0
0

0
0
0
0D„"—ReD„"
0

0
0
0
0
0

D„"—ReD„~.

. (11)

The acoustic frequencies are
Glg (2ti4g

(~ )'= (1—C.)+I (1—C.)
2 &m

(or/ 2(n4+P4, )
(~L~)'=

I (1—C.)+ (1—C2.)
k2 m

(12)

(13)

The transverse optic (TO) and longitudinal optic (LO) frequencies are

(~so)'= (q~ ') (1+C,)+ (2P4,/m) (1—Cq,),
(»o)'= (2~~') (1+C.)+(2 («+P4.)/~) (1—C2 ) ~

From the above equations it follows that

4p
(~»)' q= o,o,— =(~„)'q= 0,0,-

I

= +
c cj 2 m

( s ( ~ a)P 4n4+4j94,
(~Lo)' q=l 0,0,— =((o~)' q=l 0,0,— = +

c — i c 2 m

(14)

(15)

(16)

(17)
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Using the elastic equations it can be shown that

ro,'= (4/m) {y—'cv3C44 —4p4.}, (18)

ross= (4/m){y scV3Css 4p4, —4n4}. (19)

If the fourth-neighbor atomic force constants for beryllium or the sixth neighbors for zinc are neglected the elastic
properties determine the dispersion curves along [0,0,0,1).

For the elastic waves propagating along the [0110)direction

A= q= (q.0,0)
'D„"+ReD„"

—ImD,"
0
0
0
0

—ImD
D, "—ReD„"

0
0
0
0

0
0

D„„"+ReD„„"
—ImD

0
0

0
0

—ImD„„"
11 ReD 12

0
0

0
0
0
0

D,."+ReD„"
—ImD„~2

0
0
0
0

—ImD "
D„"—ReD„"

. (20)

Hence, the dynamical matrix breaks up into three 2&&2 matrices. At the end of the zone q= (2s/v3a, 0,0) it can
be shown that

The frequencies are
ImD "=%3ReD " ImD rs=&3ReD " ImD. ,rs=&3ReD " (21)

(MLQ) =D„"+2ReD, n= —{165&+4s„+965s+12s„+1288&+Sss+6ns+SPs, +2ns+SPs }, (22)

1
(%La) =D "—2 ReD„"=—{88&+Ss&,+2088s+16ss,+6ns+SPs +2n&+SP& },

m

1
(&TO1) D»"+2 ReD„„={248 r+—Sar,+2408s+ 16ss,+2ns+ SPs,+6ns+ SPs,},

m

1
(rory]) D»"—2 ReD»n= —{4sr +96bs+12ss, +965s+Sss,+2ns+SPs~+6ns+SPs, },

(23)

(24)

(25)

1
(+r„s)'=D„u—2 ReD„=—{12''5,+36''8s+24y'b, +4sr,+12ss,+Sss,+SPsg+SPsg},

m

1
(&eros)' =D„"+2 ReD„"=—{24''br+48''Is+Sat, +16ss.+SPs.+SPs.}.

m
Along the [1120)direction

(26)

(27)

A[g= (O,g„,O))
D„"+ReD„"

—ImD, y'2

0
0
0
0

—ImD „"
D "—ReD

0
0
0
0

0
0

D„„"+ReD„„"
—ImD, y"

0
0

0
0

—ImD y"
D,~"—ReD,~"

0
0

0
0
0
0

D.,"+ReD.,"
0

0
0
0
0
0

D„"—ReD„"

~ (28)

At the end of the zone the frequencies are

(»o)'= (~L~)'= s~'+ (9/2m) [ns+2ps.) ~

(&Tor)'= sa),'+ (1/m)[-,'9ns+9Ps, +12bt
+488s—1565s),

(roTar)'- pa&,'+ (1/m)P9ns+9Psg —12br
—488s+1568s),

(roTos)'= ((ops)'= ,'res'+9ps, /m—

V. NUMERICAL RESULTS AND DISCUSSIONS

(29) Beryllium

A. Dispersion Cgrves

Table I gives the atomic force constants for the
modiied A-S model. Using these atomic force constants
we calculated the elastic constants. The results are
summarized in Table II together with the experi-
mentally determined elastic constants" and the elastic

(32) "J.F. Smith and C. L. Arbogast, J. Appl. Phys. 31, 99 (&960).
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TABI.E I. Atomic force constants for beryllium
(in units of 104 dyn/cm).

13

12

E(1,12) =2.215
C~~ (1,12) =0.1383

E(2,11)= 1.357
Cg, (2,11)=0.0756

E(3,12) = 1.199
C~~ (3,12) = —0,2671

E(4,11)=0.2039
Cg, (4,11)=0.3225

op = 1.306

E(5,12)= —0.0690
Ca (5,12) =0.1500

E(6,11)=0.309
Cg, (6,11)=0.0335 10

constants derived from a SG (Slutsky and Garland)
model used by Schmunk eI, ul. ' to fit the neutron
inelastic data. Clearly, the SG model is inadequate to

13-

12

lD 7

6

O
5

3

IO

7

o 6P

0 5

3

0
O. I 0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.9 1.0

q/q max

O.l 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q/q max

FIG. 3. Calculated and measured dispersion curves
along the L0110j direction for beryllium.

electron gas as a measure of the deviation from the
Cauchy relation is inconsistent with the SG fit to the
dispersion curves and gives unrealistic elastic constants,

The dispersion curves calculated from the atomic
force constants given in Table I are shown in Figs. 2—4,
where they are compared with the experimental data.
The agreement with experiment is obviously quite good.

FIG. 2. Calculated and measured dispersion curves
along the L0001j direction for beryllium.

represent the lattice of dynamics of beryllium since
the dynamical matrix is inconsistent with the elastic
matrix. Introducing the bulk compressibility 0- of the

TABLE II. Comparison of calculated and experimental elastic
constants for beryllium (in units of 10"dyn/cm').

10

8

'a

tO 6O

3 5

Slutsky-Garland
Elastic model

constants Experiment' Not using o Using o.

Axially
symmetric

model
(modihed)

Czg 29.94
C33 34.22
C44 16.62
Cia 2.76%0.08
Cg3 1.1 ~0.5
o =C&3—C44= —15.52

a See Ref. 13.

25.95
34.0
10.6
10.4
10.6

10.43
18.48
10.6—5.12—4.92—15.52

29.55
33.77
16.00
3.16
1.74

0 01 02 03 04 05 06 07 08 09 10
q/q mox

FIG. 4. Calculated dispersion curves along the
I 1120j direction for beryllium.
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Fro. 5. Calculated
and measured heat
capacity of beryl-
lium from 0—30'K.

IO-

9-

8-

7
tat
Ch

O
I

5

CP

4

O
3

characteristic temperature II would be higher than
that obtained from the specific heat data. Alers and
Neighbours" calculated 8 from the elastic data of
Smith and Arbogast" and came to a similar conclusion.
An explanation of this discrepancy could arise from
large quasilocalized phonon mode contributions to C„
due to heavy impurities in the Be samples.

If one uses the dynamical matrix for the SG model
which gives lower elastic constants, the resulting
specific heat would be higher and perhaps closer to the
experimental values. However, such agreement would
certainly be fortuitous. "

I I I I I I I I I j0 2 4 6 8 IO I2 I4 I6 18 202224262830
TEMPERATURE 'K

The curves labeled TA1, TA2 refer to modes of vibra-
tions polarized in the basal plane and normal to the
basal plane, respectively. TA1 and TOE were not
measured by Schmunk et a/. nor were the dispersion
curves along the $1120$ direction. In order to calculate
the transverse modes polarized in the basal plane use
is made of the present elastic data where the value of
C» plays an important role in determining the slopes
of the above branches. Hence, it would be interesting
to investigate these polarizations experimentally.

B. Specific Heat

Since the dynamical matrix for the modi6ed A-S
model gives good agreement with the dispersion curves
and is elastically consistent, it is interesting to compare
the calculated speci6c heat with the present experi-
mental data. The results are shown in Figs. 5—7. In
the calculation the electronic contribution is added to
the lattice contribution with y =5.4X10 '. Below 80'K
C, (calculated) is low compared with the experimental
data of Hill and Smith"; consequently, the Debye

20
l9-
I8-
I7-
l6-

FxG. 7. Calculated
and measured heat
capacity of beryl-
lium from 0—300'K.

l(y
tat
Cl

X
O 2

5
D

50 IO0 l50 200 250 500
TEMPERATURE 4K

isotopically it can be shown" that the mean-square
displacement of the impurity becomes equal to the
mean-square displacement of the host at high tempera
tires. Furthermore, at T=O it can be shown that under
the above conditions using a Debye model that

C. The Debye-8'aller Factor

The only available experimental data which gives
information about the mean square displacement of
the Be atom in the Be lattice is that obtained through
Mossbauer experiments with Fe' in Be.""If the
impurity goes in the host lattice substitutionally and

FIG. 6. Calculated
and measured heat
capacity of beryl-
lium from 0—80'K.

l4-
E9

CI
l2-

P II-
IO-
9-

'sr
8-

O

9 6-

where

(x'); p 2 (1

(x')h.„&3k s

(33)

s= (Mz Mzz)/Mzz and —Mz)&ilEzz.

These relations make it desirable to compare our

I I I I I I

IO 20 50 40 50 60 70 80
TEMPERATURE 4K

"R. W. Hill and P. I.. Smith, Phil. Mag. 44, 636 (1953).

"R. M. Honsley, N. E. Erickson, and J. G. Dash (to be
published)."J.P. SchiBer, P. N. Parks, and Juergen Heberle, Phys. Rev.
133, 1553 (1964)."G. W. I.ehman and R. E. De%ames, Phys. Rev. 131, 1008
(1963).
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I.6

l.5-

TABLE III. Atomic force constants for zinc
(in units of 104 dyn/cm).

l4-

l.2

l.o

E(1,11)=2.665
Cs (1,11)=—0.0978
Ce, (1,11)= —0.3473

X(4,11)=—0.1972
Ca (4,11)=0.0841
Cg, (4,11)=0.0583

E(2,12)=0.8258
Cg~ (2112)= —0.1027
C~, (2,12)= —0.0893

E(5,12)=0.0667
Cg~ (5,12)=0.0293
Ca, (5,12)=0.03905

E(3,12)=0.4164
Cg, (3,12)= —0.0688
C&, (3,12)= —O.O241

E (6,11)+Cg, (6,11)
= —0.1484

Ce, (6,11)=0.0624

0.9

0.8
2Nz

0.7

0.6

0.5

0.4

0.5

with the exception of C44 and C~3. The fourth-neighbor
tensor fit obviously is elastically inconsistent. Further-
more, the fit of the [0001]2' branch does not give C44
consistent with the fit of the [0110]TA2 branch which
is required from the elastic properties.

TABLE IV. Comparison of calculated and experimental elastic
constants for zinc (in units of 10"dyn/cni').

0.2
O.I,-'r '

I i I i I
'

i I 1 I

400 800 I 200 I 600 2000 2400
To K

Fxe. 8.The full line represents the mean-square displacement for
beryllium. The dashed line is an extrapolation of the measured
Debye-Wailer factor of Fe'~ in Be determined by Mossbauer
experiments. The full dots are the measured values.

Elastic
constants

C11
C33
C44
C12
C18

17.909
6.88
4.595
3.75
5.54

16.368
6.347
3.879
3.64
5.30

Experiment
4'K 295'K

Fourth-neighbor
tensor model

14.43
4.63
1.63
5.39

Axially
symmetric

model
(modi6ed)

15.39
6.78
3.15
3.62
3.85

theoretical results with the Mossbauer experiment of
Fe" in Be. In the calculation of 2$', the transition
energy of the emitting or absorbing particle is taken to
be that of the Fe" nucleus. The results are shown in
Fig. 8. The full curve represents 2W' for the host crystal.
The experimental results of Housley et al."and Schiffcr
et al.'~ are indicated by full and open circles, respec-
tively. The dotted line represents a linear extrapolation
of the experimental value at 297'K. The arrow repre-
sents the calculated value of 2W using Eq. (33).
Clearly within the experimental uncertainties one can
conclude from Fig. 8 that the mean-square displacement
of Fe'~ in Be can be adequately described by considering
only a mass change. The anisotropy factor, e=2W„/
28'„varies from 1.08—1.15 between 4 and 2000'K.
Housley et al. found the Debye-Wailer f to be about
1% smaller parallel to than perpendicular to the e axis
with an experimental uncertainty of about 1%.

The dispersion curves calculated from the atomic
force constants in Table III are shown in Fig. 9—11,
where they are compared with the experimental data.

The agreement in general is quite good. In order to
get a representative fit of TA2 along the [0110]it was
necessary to decrease 544, this had the effect of giving
low values for TA along the [0001]branch. Definitely,
the experimental values for TA2 show anomalous
behavior; however, we feel that the A-S modi6ed model
is adequate for the purpose of evaluating the dynamical
and thermal properties of zinc, Table IV. The full

3.0

Z1QC

A. Dssperssom Cgrees

Table III gives the atomic force constants for the
modified A-S model. Using these atomic force constants
we calculated the elastic constants which are sum-
marized in Table IV together with the experimentally
determined elastic" constants and the clastic constants
resulting from a fourth-neighbor tensor model fit to
the neutron inelastic data. '" The modiied A-S con-
stants give very good agreement with the elastic data

I.

Po ).

).4

i.
3

I.O

0 O. I 0.2 0.5 0.4 0.5 0.6 0.7 0.8. 0.9 I.O

q/q max

FIG. 9. Calculated
and measured dis-
persion curves along
the [0001] direction
for zinc.
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tensor fit to the dispersion curves is on the average
comparable with the A-S modified model. Since the
elastic data of zinc is strongly temperature-dependent,
zinc is a good candidate for studying dispersion curves
as a function of temperature.

B. SPecific Beat

In Fig. 12 the calculated speciic heat is compared
with the experimental data. The 6t is very good over
the whole temperature range. This agreement for zinc

4.0

3.8—

24

4.0

3.8-

3.6

3.2

3.0

2.8

2.6

g. 2.4

FIG. 11. Calcu-
lated and measured"-~ 2.0
dispersion curves
along the $1120]
direction for zinc.

C

l.4

l.2

I.O

0.8

0.6

0.4

To!

FxG. 10. Calcu-
lated and measured
dispersion curves
along the L0110j
direction for zinc.

2e

o2
P

o
I.

l4

0.2

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

q/q max

o.

0 O. I 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q/q max

28' for all orientations of the crystal. ' In Table VI
comparison is made with the earlier work of Zener"
and the x-ray determination of 2$' of Srindley" and
of Jauncey and Bruce."The calculated anisotropy is
in good agreement with the x-ray data; however, the
magnitude of H„is quite diGerent. Using the results
of Table V we obtained f„=0.013 and f„=0.00034
at 4'K with a recoil energy 8=6.9/10 ' eV. Hence,
it should be possible to measure f for zinc at O'K. For

could further support the previous conjecture that in
beryllium the deviation from the calculated values is
due to the impurities. From previous calculations and
from experiment" on Mg-Pb and Mg-Cd systems it is
known that small amounts of heavy impurities cause
large effects in the specific heat of light elements.

C. Debye-5'aller Ii actor

In Table V we listed the quantity H„(T)and the
anisotropy factor e(T) which are necessary to calculate

6-

I
C9
IJJ
CI

4
X
O

O

o 2

TAnLE V. Temperature dependence of H„(T)and e(T) for zinc.

T'K

50
100
200
298

0.115
0.162
0.271
0.514
0.758

0.55
0.46
0.39
0.36
0.35

"G. W. Lehman, J.A. Cape, R. E. DeWames and D. H. Leslie,
Bull. Am. Phys. Soc. 9, 251 (1964).

I l I

50 IOO I50 200 250 300 350
ToK

Fro. 12. Calculated and measured heat capacity
of zinc from 0—350'K.

~ C. Zener and S. Bilinsky, Phys. Rev. 50, 489 (1936).
"G.W. Brindley, Phil. Mag. 21, 790 (1936).
~ G. E. M. Jauncey and W. A. Bruce, Phys. Rev. 50, 408

(1936).
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TAsLz VI. Comparison of Il„(T)with earlier work at 298'K
(10' eV-').

APPENDIX A. ELEMENTS OF THE
DYNAMICAL MATMX

Simple Debye model
Brindley
Jauncey and Bruce
Modified Debye model
Present calculation

0.59
1.02
1.85
0.84
0.758

0.56
0.394
0.29
0.56
0.35

Within the framework of the A-S model, which has
been discussed in previous papers, '—' the matrix
elements corresponding to the first six shells of nearest-
neighbor interactions can be constructed from the
generators':

comparison if one takes a 8D (specific heat) of 320'K
then one obtains fD=0 0247 .at O'K.

Recently Housley ef cl.23 measured the anisotropy
in f by diffusing Co" in a Zn single crystal At. room
temperature they found (x') parallel to the c axis about
twice the perpendicular value. The measured (x ) at
room temperature is about 20% smaller than the calcu-
lated value. Similarly, Kundig et aLme measured f in a
polycrystal source of Co'~ in Zn between 120 and 380'K.
The intensity of the two quadrupole split lines decreases
with temperature

[A = (I(120'K) —I(380'K) )/I (120'K) =42&3%].

where

G(1, 1 2) =—2(Fe.*C,+2F.CyC.),
G(2, 1—1)=2(C2„+2C.C„),
G(3, 1 2) = 2—(2F2,*C2„C,+F4.C,),
G(4, 1 —1)=2C„
G(5, 1—2) =4(F4,Cee+F,Ce„+Fe.*C„)C„
G(6, 1—1)= 2(C2.+2CeyC.),

C~ g cossg~2 QV3 ~ C~y cossg y2 8 )

C~z =cossgz2c )
1

F„,= exp(iraq a/2V3) .

The intensity ratio I(-', )/I(-,') of the two quadrupole
lines increases with temperature by AR = 10+2%
going from 120 to 380'K. These results are in agree-
ment with our calculations (2 =45% and DR=8.7%).

Here v=1, 2, 3, 4, or 5, and Il* denotes the complex
conjugate of F. Following the procedure discussed in
previous papers, ~" we find the nP element of the
supermatrix X)(q) [Eq. (1)] to be

with

D 11

011 D 11

D 11

D 11

11

D 11

Dsp
DVQ

D 12

12 12

@12 D 12 12

g- D 12

mD. "'= 125~+6e~ +48b +e6 e+168b,+12 e+e2P4, (1—C2,)+ (3n2+4P2, ) (1—,C C) +2P 2(1 C2 )

+2(n,+p„)(1—C2 )+ (n6+4p„)(1—C3„C),
mD»" 12bq+6 q,e+4——8b +36 e+e168 +be12 e+e2P4, (1 C2,)+—2(ne+Pmg) (1 C2y}+ (n2+4Peg) (1—C~C„)

+ (3n,+4P„)(1 Ce„C,)+—2Pe, (1 C2,), —

tsDzz = 6e&&+6ezz+ 12eez+ 2Peg (3 C2& 2C&Cz) +2/4& (1—Cmz)+ 2Pez (3—Cez 2C3&Cz)+ 18yebq+ 18''be

+36''b, + 2n4 (1—C2,),
mD.„"=v3ng5. $„+v3n,S,S„,
mD„"=mDy, "=0,

mD„"=4b~[2Fe,—*+F,C„]C,+2e&,[F2,*+2F,C„]C,+1653[Fe,eC2„+2F4,]C,+2ea, [2F~ *Ce„+F4,]C,

+4be[16F4,C2„+F,C,„+25Fe,*C„]C,+4ee,[F4,Cg„+F,Ce„+Fe,*C„]C,,
mD»~ 12bg[F,C„C,—]+2e„[F——e,*+2F,C„]C,+48be[F2,*C2„C,]+2ee,[2F2,*C2„+F4,]C,

+12be[4F4,C2„+9F,C3y+Feg C„]Cg+4ee,[F4gC2y+FgCe„+Fe..*C„]C„.
—mD„"=(6y'bg+2eg, )[Fg,*+2FgC„]C.+ (6y'83+2e38)[2F~g*C2y+F4.]Cg

+ (12''be+4ee, )[F4.Ce„+F.Ce„+Fe*C„]C,, . .

R. M. Housley and R. H. Nussbaum, Bull. Am. Phys. Soc. 9, 744 (1964).
~ Walter Kundig, Ken Ando, and Hans Bommel, Bull. Am. Phys. Soc. 10, 64 (1965).



LATTICE DYNAMICS FOR Be AND Zn A 727

12i 48i 12i
yg—D,„"= 5~F,S„C, —83Fg,*Sg„C,+ 4{gF4.Sg„+3F.S3y 5FQE*Sy}Cg y

V3 v3 K3

12i 24i 12iv
AD—„"=— y8g{F9,* F.—C„}Sg —yba{F2z*C2y F4.}S.+ &s{4F4.C~,+F.C3y 5F&,*C„}S„

V3 V3

AD—„,"= —12'),F,S„S,—24y8~F2, *S2~S,—12yh5{2F4gS2~+3F,Say+F5~*S~}S, .

The 5's appearing in these equations denote sine functions whose subscripts have the same meaning as defined for
for the C's. The other parameters are

y= c/a, 5y
——K(1, 1—2)/(4+3'') 1

ex= Cs(1, 1—2)

cE2=1t (2, 1—1), p2=Cs(2, 1—1), 83=K(3, 1—2)/(16+3' ), eg=Cs(3, 1—2)

n4= Z'(4) 1—1), P4= Cs(4, 1—1), 8p= E(5, 1—2)/(28+3'') 1 Eg= Cs(5, 1—2)

n6 ——K(6, 1—1), p8 ——Cs(6, 1—1) .

In these equations, Itq(s, np) =C~(s,ap) —Cs(s,np), where
C( st) and C&(s,nP) are, respectively, the "bond-

stretching" force constant and "bond-bending" force
constant for the interaction of the pth atom of the sth
shell with the 0.th atom in the cell at the origin. In the
construction of the elements of the D matrix the bond-
bending constants occurring in the ss elements are
taken to be different from those in the xx elements in
order to remove the elastic constraint imposed by the
A-S model discussed previously. The speci6c values of
s occurring in the atomic force constants in the previous
equations are for magnesium and beryllium.

~1 4L +2+Ill] )

eg, = —Bg,

&1s ~3+47 LIll Il2] 1

83———,',
t
—G2+ G~],

e3,= —GI,
37'

e3.——G3+—LG&—G2],
16

Q2 =(X+A 1

p2z

pg, ———A2,

n4+p4, =8,
p4x Dl ~

The constant A3 appearing in Collins' dynamical

APPENDIX B. RELATIONS BETWEEN MODIFIED A-S
ATOMIC FORCE CONSTANTS AND FOURTH

NEIGHBORS FULL TENSOR
FORCE MODEL

Equating the elements of the dynamical matrix
derived by Collins" to those obtained using the modified
A-S model we obtain

matrix must be identically zero. The above notation
labeling the neighbors is only appropriate for Mg and
Be.

APPENDIX C. A-S MODEL ELASTIC CONSTRAINTS

In this section we derive expressions for the elastic
constants for a crystal with two atoms in a unit cell
neglecting the optical correction. It is shown that
neglecting the relative motion of the two sublattices
the symmetry of the A-S model imposes a number of
elastic constraints. Elastic constraints for tetragonal
and hexagonal lattices are obtained explicitly.

We begin by considering the dynamical matrix in
the center-of-mass system. In a previous paper" it was
shown that the 3X3 matrix corresponding to elastic
theory is given by

Z)(q) =Dn+ReD~ —ImD (Du —ReD ~) ImD

(limy ~ 0) . (C.1)

The D matrices are the supermatrix elements of the
A-S dynamical matrix' and Re and Im denote the real
and imaginary parts. The matrix (D"+ReD'2) gives
the contribution to the elastic properties due to the
pure acoustic motion (in phase motion of the two
sublattices) and the second term of Eq. (C.1) is a
correction due to the relative motion of the two sub-
lattices (referred to as the optical correction).

Let us erst determine the form of D(q) neglecting
the e6ect of the relative motion of the two sublattices
(i.e., the optical correction).

Expanding about q =0 one obtains

1
{D"+ReD"}'= 2 2 2 Z Z LC (S,IP)]&';qlq-XPLn(s)]X-"I n(s)]2' p n s l m

+(k(s,1P)/p, ')q~q X,'~[n(s)]X,'~[n(s)]X '&L ( )n]Xs~'~t ( )n]}s, (C.2)

where tn is the mass, q~ is the 3th Cartesian component of q, XP~[n(s)] is the tth Cartesian component of R'sLn(s)]
and the remaining symbols are defined in Ref. 1.
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The elastic matrix according to continuum theory is

(Cllqz +CBBqs +C44qz )
1

(Cls+CBB)q q„
(C13+C44) qzqz

(Cis+CBB)q.q,

(C«q.'+C»q„'+C44q,')

(C»+C44)qsq*

(Cls+ C44) qzq.

(C13+C44)qsqz

C44 (q.'+q„')+Cssq,'
(C.3)

for a tetragonal crystal where d is the mass density and the C„'sare elastic constants. The matrix for hexagonal
symmetry is obtained from the above by replacing C«by —,(C»—C»). The matrix element in Eq. (C.2) can be
expressed as a sum of terms

(D"'+ReD")"= Q h '"qlq (C.4)
l&m

The 8;,' are then related. to the elastic constants occurring in Eq. (C.3). We first note that for any Bravais lattice

and

k(s, 1P)8;;™= P P P Cll(s 1P)LX 't']3+ [X'~]3$X416]$ bl2' p PS

1 k(s, 1P)
84,™=—p Q p LX4&]3LX p]3 5411„, igj,

P % S PS

(C.S)

(C.6)

where 8;;& is one if the indices are equal in pairs (i=l,
j=m or i=438, j=l) but vanishes otherwise. For
tetragonal or hexagonal lattices we can make the

identification

11 hss C»/4f y

@11 hss ~33 ~8$ C44/d z

mls hss 31 hss (Cls+C44)/lf

siderations, it is easily shown that

2(81133 hssll) —(hsisl /8131)

which gives
C44 Cls C68+C13

for tetragonal crystals or

3C»+ 2C44 —Cll —2C13=0

(c.g)

(C 9)

(C.10)

bss" =Css/4f,

h11 22
CBB/4f

(Cll Cls)/21'

(Cl3+C66)/d

(Cl1+Cis)/2d

(C.7)

where we have taken the fourfold (or sixfold) axis
along the coordina, te a,xis labeled by 3.

From Eqs. (C.5) and (C.6) and symmetry con-

for hexagonal crystals. The optical correction removes
these elastic requirements. However, since the optical
correction is quite small these elastic requirements must
be nearly satisfied. Note that Eqs. (C.9) and (C.10)
are independent of the number of neighbors. Using the
available elastic data it can be shown that the above
constraints are generally not satisfied and, consequently,
in order to account for the elastic behavior the A-S
model needs to be modi6ed. This is done in the frame-
work of the A-S model by allowing the bond-bending
force constants for restoring forces in the basal plane to
be di6'erent from that normal to the basal plane.


