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where

U(R) = d'xV (x—R)4'(x) . (13)

The cross sections were obtained from

bdbi I(b) i4. (14)

The multiple integrations implied by Eqs. (11), (12),
and (14) were carried out with the aid of an lBM 7094
computer using a total time of about 15 min.

Figure 1 is a plot of the two-particle transfer prob-
ability versus impact parameter as obtained from Eqs.
(11) and (12) for two different velocities. It is seen that
the probability becomes greater than unity for suK-
ciently small velocity and impact parameter and the
calculation loses all validity. It should be noted that
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', so that the modified theory can be
extended to lower energies than the usual first Born

theory. In Fig. 2 the maximum value of (I
~

is plotted
versus velocity for the two theories. Since these prob-
abilities must be less than one, a limit on the range of
validity at the low-energy end can be obtained from the
curve. Finally, Fig. 3 gives the cross section in units of
2srcte'(= 1.76&(10-' cm') versus velocity (E&,b= V'&&25

keV) for the two results obtained here and the usual
first Born approximation of Gerasimenko and Rosents-
veig. ' The experimental points of Allison' are also
shown. Note that all three calculations are for ground-
state capture only while the experiments are for total
capture. Thus the theories should all lie below the
experiment.

Of the two theories presented here the modified one
appears to be better. However, we believe that the
experiment is not suKciently good to choose between
our modified theory and the first Born approximation of
Ref. 2. It is only internal consistency that seems to
favor ours. It is desirable that the experiments be
redone more directly.
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The potential energy between an incident electron and a neutral alkali atom has been calculated using
first-order perturbation theory in the adiabatic approximation. The results are shown to be expressible in
terms of a multipole expansion suitably generalized to allow for the penetration of the target-atom wave
function by the incident electron. The monopole and dipole contributions have been calculated in detail for
cesium. For large separations, the monopole contribution to the potential is small compared to the dipole
contribution but becomes increasingly significant at smaller separations. For infinite separation, the calcula-
tions can be interpreted to yield the atomic polarizability, and the result for cesium (61.0 L'} is in reasonable
agreement with experimental results. With this interaction potential, the elastic scattering of low-energy
electrons from neutral cesium is treated in the adiabatic approximation with exchange. For purposes of com-
parison, the nonexchange approximation is also treated.

I. INTRODUCTION

~ 'HE elastic scattering of low-energy electrons by
neutral atoms may be treated in terms of an

eRective potential which represents the interaction be-
tween the incoming electron and the target atom. This
effective potential can be considered as made up of
several component parts. At high energies, the dominant
component of the scattering potential is a shielded
Coulomb field due to penetration by the incident elec-

*Based in part on a thesis in preparation by J. C. Crown to
fulfill the Ph.o. thesis requirement at the University of
Connecticut.

f Jointly supported by Pratt 8z Whitney Aircraft and the
National Science Foundation.

tron into the electron "cloud" of the target atom. How-
ever, at low incident energies, the small polarization
forces arising at large separations make an important
contribution to the scattering, This polarization compo-
nent of the potential results from the distortion of the
target atom due to the proximity of the incident particle
and reacts back on the incident particle as one of the
scattering forces. It must vanish for zero separation,
since, in this limit spherical symmetry prevails and no
nonzero multipole moments can be induced. On the
other hand, for asymptotically large separations, the
polarization potential varies with the inverse fourth
power of the separation and, in this regard, the atom is
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TABLE I. Experiment and theoretical values of polarizability
of cesium (in units A').

Investigator

Fues'
Sheffers and Starkb
Chamberlain and Zorn'
Salop, Pollack, and

Bederson~
Chamberlain and Zorn'
Haun and Zacharius' and

Mizushimag
Dalgarno and Kingston
Sternheimer'
Stone and Reitzj
Present result

Method

Experimental
Experimental
Experimental
Experimental

Experimental
Experimental

Semiempirical
Theoretical
Theoretical
Theoretical

61
42 ~2.1
36
52.5~6.5

48 w6
51

53.7&5.4
67.7
66.5
61.0

& Reference 1.
b Reference 2.
o Reference 3.

d Reference 4.
e Reference 5.
f Reference 6.

I Reference 7.
h Reference 8.

& Reference 15.
& Reference 17.

' E. Fues, Z. Physik 82, 536 (1933'j.
' H. ScheBers and J. Stark, Physik Z. 35, 625 (1934).' G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5, 241

(1960).' A. Salop, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431
(1961).' G. E. Chamberlain and J.C. Zorn, Phys. Rev. 129, 677 (1963).' R. D. Haun and J. R. Zacharius, Phys. Rev. 107, 107 (1957).' M. Mizushima, Natl. Bur. Std. Rept. 6009 (unpublished).' A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London)
A73, 455 (1959).

completely characterized by a single constant, the
polarizability 0.„.

Direct experimental measurements of polarization
effects are at present restricted to asymptotically large
separations, and, therefore, determine only the polariza-
bility. The earliest available experimental polarizability
data are those of Fues, ' who determined the polariza-
bility from measurements of the optical Stark eRect, and
of ScheRers and Stark' who measured the electrostatic
deQection of an atomic beam in a strong inhomogeneous
electric field. These two results bracket more recent
measurements, as can be seen from Table I. Chamber-
lain and Zorn' also reported values of polarizabilities ob-
tained from measurements of the deflection of an atomic
beam in an electric field. Subsequently, Salop, Pollack,
and Bederson4 measured polarizabilities by balancing
the electric and magnetic forces on an atomic beam and
obtained results signi6cantly higher than Chamberlain
and Zorn. ' As a result of this, Chamberlain and Zorn
repeated their measurements with a revised procedure
and obtained results' which agree within experimental
error with the results of Salop et' al.4

Haun and Zacharius' obtained Stark-eRect data
which Mizushima' interpreted to obtain polarizability
information. Dalgarno and Kingston' derived, from
perturbation theory, a relation between oscillator
strength and polarizability and then used data on the
former to infer the latter. Both these results are in sub-
stantial agreement with the two preceding.

As pointed out, these relatively direct experimental
measurements of polarization eRects' —' have been
made only for essentially in6nite separation of incident

and target electrons. However, for scattering calcula-
tions, it is necessary to know the variation of the
polarization potential at all separations, and, in the
most important range, the asymptotic formula is quite
inaccurate. Indeed, it diverges in the limit of small
separations.

From a theoretical standpoint, the polarization poten-
tial of hydrogen as a function of interparticle separation
has been approximated by Temkin' as one of the series
of induced multipole fields. However, for the heavier
atoms, the calculations become much more complicated
and, consequently, less rigorous approximations are
attempted. In fact, several workers have performed
scattering calculations using phenomenological poten-
tials which could be justified only for the limiting values
of separation. Thus, Robinson" assumed, without justi-
fication, a polarization potential of the form

where E is the distance of the incident electron from the
center of the target atom, o.„ is the polarizability for
infinite separation, and E, is a cutoR distance which is
taken to be (n„/2)"' (all lengths are in units of first
Bohr radius and energies in units of rydbergs). While
Eq. (1) has the correct asymptotic behavior for large E,
the form of Eq. (1) itself is otherwise unfounded and is
incorrect for vanishing separation. Similarly, Garrett
and Mann" use a polarization potential of the form

V„=—(n„/R') [1 e' 's'&' j—, (2)

' A. Temkin, Phys. Rev. 1.16, 358 (1959)."L.B.Robinson, Phys. Rev. 127, 2076 (1961)."W. R. Garrett and R. A. Mann, Phys. Rev. 130, 658 (1963)."R.M. Sternheimer, Phys. Rev. 96, 951 (1954)."R.M. Sternheimer, Phys. Rev. 107, 1565 (1957).' R. M. Sternheimer, Phys. Rev. 115, 1198 (1959).
'5 R. M. Sternheimer, Phys. Rev. 127, 1220 (1962).
'6 R. M. Sternheimer, Phys. Rev. 78, 235 (1950).

where Eo is the distance at which "the polarization-
induced force disappears" and is taken to be 6.13.Using
Eq. (2), Garrett and Mann show that significant
variations in scattering cross sections can be obtained
from relatively small variations in the cutoR distance
Ro. It is therefore apparent from their calculations that
an accurate representation of polarization eRects is
essential to an accurate calculation of low-energy
scattering. While Eq. (2) is qualitatively more realistic
than Eq. (1) at small interparticle separations, its form
also cannot be justified and is inaccurate as is shown
from the present results.

Sternheimer" "treats the electronic polarizability of
ions. He extended his method to a consideration of
alkaline atoms'5 using wave functions he had previously
developed. " Rather than calculate each component
(es —+ e'p) of the perturbed wave function, Sternheimer
obtains the solution for a wave function which repre-
sents all components (its —+ p). However, his calcula-
tion" of the polarizability of neutral cesium for infinite
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interparticle separation overestimates the available
experimental data' ' by about 35%.

Stone and Reitz'~ obtain a polarization potential for
cesium using a perturbation technique. However, this
result is unexplainedly abandoned in favor of a varia-
tional technique. Their calculated value of long-range
polarizability is close to that of Sternheimer. "

For completeness, it should be pointed out that
polarization effects also may be implicitly incorporated
into scattering calculations without exhibiting explicitly
the polarization component of the potential. Examples
of this approach are Burke and Schey, ' whose analysis
is limited to hydrogen as the target atom, and the work
of Temkin. Temkin is concerned with polarization and.

exchange effects in the scattering of electrons by hy-
drogen' "and oxygen. "He uses the Inethod of polarized
orbitals (or, equivalently, perturbed stationary states)
to describe the adiabatic distortion of the target atom
by the incident electron, and his representation of the
perturbed wave functions is similar to that of Stern-
heimer. "—"Temkin includes exchange e6ects with

properly antisymmetrized wave functions. However, as
will be discussed. more fully below, Temkin electively
assumes that the incident electron is always exterior to
the valence electron. On the other hand, the present
analysis is concerned with a proper representation of
the interaction potential for alkaline atoms (in particu-
lar, cesium) independent of which electron is exterior to
the other. Thus, the effective monopole Geld is also
considered.

II. INTERACTION POTENTIAL

The interaction Hamiltonian H' corresponding to a,

"stationary" incident electron in the 6eld of a neutral
target alkali atom of atomic number Z consists of
electron and nuclear components, each of which can be
expressed as a sum of two terms designated as the core
and valence-electron terms, respectively:

and will be discussed below. The position of the incident
electron is designated by R, that of the ith atomic elec-
tron by r;, and that of the valence electron by rg ——r.

The energy change of the incident-electron, target-
atom system can be obtained from perturbation theory"
and ls

Z—Eo= (e'i H'i e),
where 4' is the perturbed wave function of the system
and the superscript 0 refers to unperturbed values. From
adiabatic perturbation theory, " the interaction poten-
tial V(E) is just this change in energy of the system

V(R) =E—E'.

In the nonexchange approximation, the wave function
for the atom can be written as the product

%=%,(ri, ,rg i,.R)f(r; R),

where 4', is the wave function of the core and f is the
wave function of the valence electron. The experi-
mentally obtained value for the polarizability of the
core is a small fraction of the atomic polarizability
(=1/20). Thus, to a good approximation, the un-

perturbed wave function 4', ' may be used for the core;
so that

+0—+ 0/0

(10)

The total interaction potential can be written as a
sum of two terms which correspond to the two terms
of the interaction Hamiltonian, Eq. (3):

V= V,+V„.

Substituting the wave functions, Eqs. (9) and (10), into
Eqs. (6), (7), and (11), and integrating over those
coordinates which can be separated out, one obtains

V, =(%,'~H, ')e, ') (»)
H'=H, '+H„'. (3)

Here, II,' is the perturbation term due to the core
electrons (i.e. , filled shells) plus the potential due to the
fraction (Z—1)/Z of the nuclear Coulomb term:

Substituting Eq. (4) into Eq. (12), one obtains for the
core potential

V.(Z) = —2(Z—1)/Z

and II,' is that due to the valence electron plus the
fraction 1/Z of the nuclear Coulomb term

H„'= (2/~R —r~) —(2/R). (5)

The decomposition of the nuclear Coulomb energy,
—2Z/R, into two parts is effected for later convenience

0,'*4,'d'ri d'rs i, (14)
[R—r;i

where it is to be remembered that only a fraction of the
nuclear potential (that corresponding to the Z—1 elec-
trons in filled shells) has been included in what is here
called the core potential. This was done so that V, and
V, each vanish separately to higher order than E ' for

"P.M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963}."P.G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962}.
19 A. Temkin, Phys. Rev. 121, 788 (1961}.
'0 A. Temkin, Phys. Rev. 107, 1004 (1957).

E.Merzbacher, QNgetum Mechanics (John gliley R Sons, Inc. ,
New York, 1961).

~ J. C. Slater, QNugfem Theory of Moleclles wsd Solids
(McGraw-Hill Book Company, Inc. , New York, 1963), Vol. 1.
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infinite separation of the incident particle. Thus, com-
parison of the various terms of the interaction potential
is facilitated. Since the core consists of closed shells
which are assumed unperturbed, V, as given by Eq. (14)
represents a monopole or shielded Coulomb potential
and can be written

V,= —(2/R)S(R), (15a)

where S(R) represents the screening function and has
the limiting values

S(0)=Z—1 and S(~)=0. (15b)

To the order of the independent-particle model, the
contribution of the valence electron to the interaction
potential is

2 2
U. =—+(r p) . (16)

For alkaline atoms, the perturbed valence-electron wave
function can be written in the form

ltl(r, R)= p C„.l(R)X„l(r).
n'=n

(18)

The magnetic quantum number is taken to be zero in
all cases and suppressed. The lowest term in the
expansions given by Eqs. (17) and (18) corresponds to
the unperturbed or ground state X„0 of the valence
electron, the others being forbidden by the exclusion
principle. The coefFicients C„ l are found below to first-
order perturbation theory.

The perturbation potential operator in the brackets of
Eq. (16) can be expanded in spherical harmonics:

f(r,R)= Q I (2l+1)/4m]"'Pl(cos8)r —'yl(r, R), (17)
l 0

where the perturbed radial functions can be expanded
in terms of the unperturbed radial functions correspond-
ing to vacant shells:

multipole components:

V, (R)=Q V„l(R).
l=0

(21)

V.l ———p C..l'(z. .l' —R.o') —(2/R)bio. (24)

The present concern is with the monopole component
(l=0 and —2/R terms) and dipole component (1=1
term). It is, as a matter of fact, convenient for com-
parison purposes to express each component of this
expansion for the interaction potential in terms of an
equivalent monopole strength Ql (R):

V„l(R)= —(2/R)gl (R) . (22)

Corresponding to 1=0, the monopole and equivalent
monopole strengths are identical. A word about this
definition is in order. A multipole expansion is most
useful in describing a distribution whose extent is small
compared to distance from the field point to the dis-
tribution. In that case, the distribution can be com-
pletely described by a set of constants, the multipole
strengths. One of the main contributions of this paper,
however, is the inclusion of the sects due to the
extended nature of the atomic charge distribution. This
gives rise to "multipole strengths" that vary as func-
tions of the radial coordinate and. thus renders the
concept of multipole strengths useless. Thus, all of the
potentials are here expressed in equivalent monopole
strengths, i.e., shielded Coulomb potentials, so that their
relative strengths can be readily compared at any value
of E.

The perturbation coe%cients C l are found from
first-order perturbation theory to be

C l(R) = —(x oIHl I
X„.l)/I (2E+1)'t'(E„.l' —R„o')j,

In'E)W Irl0). (23)

In terms of these coeKcients, the components of the
interaction potential can be written

where

00

=P El(cos8)Hl(r, R),
IR—rI l=o

(19a)
The monopole potential, expressed. in terms of an

equivalent monopole strength Qo is given by Eq. (22),
where Qo can be obtained from Eq. (20):

Hl(r, R) = (2/R)(r/R)' r(R
= (2/R) (R/r) '+' r)R, (19b)

so that Eq. (16) reduces, after integration over the
angle coordinates, to

(2 (2) ~
v (R)= —

I

—+I —IZ(»+» "'
ER I Ril=o

Qo
——1— Po'dr+ (R/r)ltloodr . (25a)

0 B

From this equation, it can be seen that the infinite
nature of the charge distribution has been incorporated
into the interaction potential. Similarly, the dipole
potential V„l and the eqgioalerlt dipole strength Ql can
be obtained:

R )lr—
I eel«+

Ri
(R) l+1

. (20)
R 'Er) Q

— 3—l/o

R (r) oo (R)o
I

—I&&l«+ I

—
I
coul«(25b)

&R) , Eri

Thus, V„(R) can be written as a sum over effective The dipole term V, & in the expansion for V„given by
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n= (e/R')-'Q= (e/R')-' p(r)rdr. (26)

Using inner-product notation, this can be expressed in
the form

(27)

The result, Eq. (27), is valid as long as the extent of the
charge distribution represented by iP is small compared
with R. The form of Eq. (27) permits a simple transla-
tion from Gaussian to present atomic units. It should
be noted that u is defined in terms of Qi, which is cot
just R times the integral representing the equivalent
dipole moment Qi, given by Eq. (25b). It must be
remembered that gi is the static dipole moment, while

Qi (and, correspondingly, Qi=RQi) follows from an
adiabatically induced dipole potential. "In this connec-
tion, note that Eq. (27) has iP, instead of P, as the left-

2' J. C. Slater and N. H. Frank, Irbtrodlctioe to Theoretical
I"hysics (McGraw-Hill Book Company, Inc. , New York, 1933).

Eq. (24) is the result of a quantum-mechanical calcula, -

tion which takes into consideration the penetration of
the valence electron distribution by the incident elec-
tron. To a certain extent, this potential can be inter-
preted in terms of an induced dipole field reacting back
on the incident electron. However, one must be careful
in making this interpretation. Although the dipole
moment induced in the atom may well be large as rimed
by ae observer far removed from both, not all of this dipole
moment is sensed by the incident electron. Effectively,
(but not exactly) the incident electron senses only that
fraction of the over-all dipole moment which is due to
the fraction of the valence electron distribution interior
to it. It is this fa,ct which causes the polarization
potential to vanish, instead of blowing up as R ', as
R —+0.

Thus, two opposite forms of error must be avoided in
considering the polarization term in the potential. On
the one hand, the entire induced dipole does not react
on the incident electron. On the other hand, the fraction
of the valence-electron exterior to the incident electron
should not be entirely neglected. Both forms of error
are avoided in the correct quantum-mechanical expres-
sion (25b).

Although, strictly speaking, the notion of a polariza-
bility is invalid at any finite separation, it is expected
to be a good approximation for those values of E. which
a,re very much larger than atomic dimensions. In this
region, V, ~ reduces to the customary "polarization
potential. "It is instructive to pursue this point aDd to
calculate the polarizability, since a calculation of the
polarizability is the only direct check that can be made,
at this time, on the exactness of the valence-electron
wave function used in the calculation. The polarizability
n is defined as the ratio of the dipole moment Qi to the
ambient electric field e/R' (in Gaussian units):

hand member of the matrix element. Thus, to first order,
a factor of 2 is introduced relating Qi to Qi. This factor
of 2 just cancels another factor of 2 which arises in

expressing the radial coordinate r in terms of B~. Sub-
stituting from Eqs. (17), (18), and (19) into (27), one
can write

n= Q n„= Q R'C i'(E. i'—E p'). (28)
n'=n n'=n

III. COMPARISON OF POLARIZABILITIES

The evaluation of the perturbation coef6cients C„.~
was effected using approximate analytic shielded-
Coulomb wave functions which seemed to represent a

In the asymptotic region, where Eq. (27) is meaningful
and valid,

V„i——V„=—n/R4.

This is just the expression for the potential due to an
induced dipole. "As pointed out previously, ' while u(~ )
may be useful in evaluating the accuracy of the wave
functions used in the theoretical calculations, n(R) does
not provide an accurate representation of the polariza-
tion force.

Temkin" "used only the inner (r(R) portion of the
perturbation Hamiltonian, so that his wave functions
are a meaningful approximation only in the asymptotic
region. He" makes the further assumption that the
magnitude of the perturbed wave function vanishes
when the incident electron becomes interior to the
valence electron (r)R). While Sternheimer" "obtains
a wave function which represents all components
(ns +p), he, like T—emkin, uses only that part of the
perturbation Hamiltonian which corresponds to con-
straining the incoming electron to be exterior to the
valence electron. Thus, Sternheimer's perturbed wave
functions also lose signi6cance at small separations.
Consequently, the validity of these analyses is limited
to the asymptotic region.

Rather than de6ne an "effective" polarizability so
that the dipole potential can be written in the form of
Eq. (29), it is more convenient, for comparison purposes,
to express V„i in terms of an equivalent molopole
strength Qi, thus, from Eq. (22),

V, i = —(2/R) Qi,

where Qi is given by Eq. (25b).
The scattering potential (to the order of the dipole

approximation) can now be written

V(R) = V +V p+ Vzi= —(2/R) (S+Qp+Qi), (31)

where each term turns out to be an attractive potential.
For a repulsive potential, the penetration of an incident
electron depends upon its energy. However, for an
attractive potential, the strength of the potential at al/

separations, not just the asymptotic region, is important
in scattering calculations.
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Contributing state
(ms —n'p)

6s-6p
6s-7p
6s-8p

O.„i(OO)

60.3
O. i
0.6

TABLE II. Components of polarizability (in units A. ). in neutral cesium, it is apparent that the dominant
contribution to the polarizability is the 6s-6P term. This
tends to corroborate the result of Salmona and Seaton, "
who found that for sodium the 3s-3p coupling accounts
for 99.4% of the atomic polarizability.

The induced monopole and dipole fields were next
calculated for cesium using the wave functions of Ref.

IOO.

IO

TI-
R
LLj
K
CO

LIJ

O
OX
O

I-
O.I

CX
LLJ

Qo.

convenient compromise between accuracy and ease of
computation. Calculations of the 6s-6p contribution to
the polarizability of neutral unexcited cesium were
based on, the wave functions of Ref. 24. The 6s-7P and
6s-Sp contributions were based on the more approximate
wave functions of Ref. 25. The results obtained are
given in Table II.

It can be seen from Tabl, e I that the present result
overestimates the experimental values by only about
15%. The calculated values of nq and ns should be
taken as estimates, since the valence-electron wave
functions for cesium are highly localized, so that any
error in the wave functions produces an exaggerated
effect on quantities which, like polarization, are deter-
mined mainly by the overlap of wave functions.
Hydrogen, on the other hand, has wave functions which
are more diGuse, so that there is more overlap. Thus,
the 1s-2p contribution to the polarizability of hydrogen
is found to be 66% of the total, while the 1s-3P contribu-
tion is 9%. In the case of hydrogen, Temitin's analysis
is appropriate in using a 1s-P representation. However,

R
(in Bohr

radii)

0.0
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
45
5.0
5.5
6.0
6.5
7.0
7.5
8,0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0

54.0
42.025
34.365
24,645
18.695
14.935
12.105
9.80
8.65
7.55
6.60
5.85
4.375
3.35
2.55
1.935
1.48
1.135
0.865
0.65
0.50
0.47
0.445
0.425
0.40
0.38
0.30
0.17
0.09
0.05
0.027
0.015
0.008
0.0043
0.0024
0.0007
0.0002
0.00005
0.00002
0.000006
0.000002
0.0
0.0
0.0
0.0

Q a

1.0
0.98964
0.97936
0.95892
0.93872
0.91860
0.89852
0.87860
0.85896
0.83948
0.81989
0.79999
0.75923
0.71834
0.67883
0.64132
0.60548
0.57050
0.53564
0.50050
0.46501
0.42956
0.39466
0.36076
0.32815
0.29716
0.26806
0.20401
0.15228
0.11178
0.080767
0.057307
0.039767
0.027438
0.019354
0.0096780
0.0045051
0.0020868
0.0009287
0.0004090
0.0001760
0.0000745
0.0000312
0.0000129
0.0000051

Q b

0.0
0.0000075499
0.000041288
0.00026962
0.00076126
0.0016801
0.0030437
0.0048059
0.0070450
0.0099370
0.013668
0.018344
0.030351
0.044748
0.060191
0.076256
0.094398
0.11603
0.14126
0.17167
0.20724
0.24711
0.28989
0.33378
0.37689
0.41730
0.45319
0.51911
0.54842
0.54524
0.51817
0.47661
0.42886
0.38005
0.33380
0.25424
0.19355
0.14879
0.11601
0.091823
0.073763
0.060074
0.049541
0.041329
0.034804

TABLE III. Equivalent monopole components of scattering
potential )see Eq. (31)].

O.OI a For R &18, Qo extrapolated with a decaying exponential.
b For R &18, Q1 extrapolated using asymptotic equation.

OOOI 0
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'
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FIG. 1. Comparison of core and induced potentials.

'4 H. A. Moses and A. Russek, Phys. Rev. 135, A1547 (1964).
"A. Russek, C. H. Sherman, and D. E. Flinchbaugh, Phys.

Rev. 126, 573 (1962).

24. In presenting the results, rather than plotting the
actual potential, it is more illustrative to plot VR/2
[see Eq. (31)j. The three components are presented
graphically in I'ig. 1 and numerically in Table III, where
the core term 8 [see Eq. (15)g was obtained from Ref.

'6 A. Salmona and M. J. Seaton, Proc. Phys. Soc. (London) 77,
617 (1961).
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27. The monopole term Qo vanishes for infinite separa-
tion and becomes unity as the incident electron ap-
proaches the origin (nucleus). At large separations, the
induced dipole contribution dominates the induced
monopole contribution, which, in turn, is appreciably
greater than the core potential. At intermediate range
the three terms are of comparable magnitude, while at
short range the dipole contribution vanishes as expected.

A comparison of the present results with the polariza-
tion potentials used by other authors is presented in
Fig. 2. For large E, the polarization potential approaches

cD

.I
0

IoCD

V„i-—n„/E4, (32)

where n„ is taken equal to 60.3 A' (or 406 a.u.), as
obtained in the present calculations. For small separa, —

tions, the present polarization potential varies ap-
proximately as E"'. For comparison, the polarization
potential of Robinson, Eq. (1),has been computed using

.Ol
I I I I I I I I I I I I I I I I II

I

RADIUS (IN BOHR RADII)

FzG. 3. Ratio of inner component to total value
of polarization potential.

Q
CD
K
LIJ
l5a

l-z
hI

0
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e -.Ol
t4
K

4 I ~ ~ I
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~ ~ ~ ~ ~ ~
I

/ ocR

-.001
I.O 10

RADIUS (IN BOHR RADII)

FIG. 2. Comparison of various approximations
to the polarization potential.

"P.M. Stone, Phys. Rev. 127, 1151 (1962).

0.„=406 a.u. It can be seen that for small separations,
Eq. (1) is not only formally wrong in not vanishing as
the separation vanishes, but yields values which
involves substantial numerical error. Similarly, the
polarization potential of Garrett and Mann, Eq. (2),
has been computed using u„=406 a.u. For small
separations, this potential varies as R, thus vanishing
far too rapidly, so that here, too, substantial numerical
error is incurred.

Stone and Reitz'~ begin a perturbation calculation of
the polarization potential but claim that their numerical
results are not "justified" at intermediate separations
and hence adopt a variational approach. This latter
procedure yields a polarizability close to that of Stern-
heimer (see Table I). Both these polarization potentials
of Stone and Reitz are shown in Fig. 2.

As has been pointed out previously, the present
analysis allo~s for the infinite extent of the charge
distribution and is not restricted to a consideration of
only that portion of the charge distribution which is
interior to the position of the incident particle. In order
to obtain an estimate of the magnitude of the difference
implied by these two approaches, consider the ratio

Csi (x40
~
Hi

~
~44)~&ii Vw 1

'""(&)

V i(&)

Here Cni is defined as in Eq. (23), except that the inte-
gration in the inner product is extended only over the
domain r &R. By the same token, V„g('"" represents the
polarization potential computed using only that portion
of the valence electron charge interior to the incident
electron. In this connection, it is to be noted that al-
though U„i depends on CEP [see Eq. (24) to the order
6s-6p], the ratio V„i&'"'&/V„i is taken to depend linearly
on the ratio Cci/Cci. This is because one of the factors
C4i in (24) describes the effect of the dipole distribution
oe the incident electron, while the other factor C6~
describes the effect of the incident electron in setting
up the dipole distribution. It is therefore assumed, in
this comparison, that in the interior electron approxi-
mation, the correct dipole distribution is obtained by
perturbation theory, but that the inner portion only is
used in evaluating the polarization potential. However,
Temkin" (in the terminology of the present work) uses
only the interior portion of the valence electron dis-
tribution both in setting up the dipole as well as
ascertaining the effect on the incident electron. Thus, in
that case, (CIIi/C6, )' would be a better comparison.

The ratio Cei/Cei is shown graphically in Fig. 3. It
can be seen that, except for the asymptotic region, the
effect of ignoring the part of the charge distribution
exterior to the incident particle is large. For attractive
potentials, for which the whole potential at all separa-
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tions is important in determining scattering character-
istics, serious errors can thus arise if proper considera-
tion is not given to the infinite nature of the charge
distribution.

The various minima of Co,/Col in Fig. 3 rePresent the
penetration of the incident electron past the various
shells of concentration of the valence electron and is
eharacteristie of the polarization potential in the interior
electron approximation. As can be seen from Fig. i, the
actual polarization potential Eq. (24) does not possess
this characteristic. Thus, not only may quantitative
errors be introduced by using only the inner component
of the polarization potential, but qualita, tive errors as
well. The present method avoids both these errors.

Here,
Hr =H„o+Hgo+H'.

H,'=-~,'- (2/ )[&()+1j

(35)

(36)

(3'I)

IV. ELASTIC SCATTERING

A. Formulation of The Problem

For low-energy incident electrons, the core of an
alkaline atom Inay be assumed, as before, to be
essentially unaGected; so that the incident-electron,
target-atom system may be treated as a two-electron

system in the core potential. Thus, the Schrodinger

equation for the system can be written

(Hr Er)+r(r, R—) =0,

where the total energy E~ is the sum of the energies of
the unperturbed valence electron and the incident

electron:
Er =Eo+k'. (34)

The total Hamiltonian II~ is the sum of two unperturbed
Hamiltonians plus an interaction term

{PiH,-Z, i~,),=0, (42)

where the notation indicates that integration is per-
formed only over r.

Substituting Eq. (41) for %r, one can write

» the nonexchange approximation, Y(R)=0; and, for
the case with exchange,

Y(R)=—(P(r) {Hr Er {P(R,r)F—(r)), . (44)

Substituting Hr from Eq. (35) and Er from Eq. (34)
into Eq. (43), one obtains

«'(r) {HIlo &'+H,o+—H' &o
~ f(r,R—)I'(R)),

=+T(R). (43')

Since the operator H, '—Eo (but not Hao) js Hermjtjsn
for this inner product, and since p(r) is an eigenfunc-
tion of this operator [see Eq. (38)j, these terms do not
contribute in (43'). Finally, the perturbed valence-
electron wave function is subjected to the normalization
condition

«'() la( R)).=1,
so that, with Eqs. (6) and (7') which define V(E), Eq.
(43') can be written in the form

symmetry by writing

@r+(r,R) =P(r,R)I (R)+P(R,r)P{r), (41)

where the plus sign refers to the symmetric (singlet)
state and the minus sign refers to the antisymmetric
(triplet) state. Stone and Rejtz'~ approximate this sym-
metrization by replacing f(R,r) in Eq. (41) by po(R)
in order to obtain a solution. However, it will be seen
that a solution to Eq. (33) can be obtained without
having to make this approximation.

Forming the inner product of P (r) with Eq. (33), one
can write

The unperturbed valence-electron wave function is an

eigenfunction of II„O: As before,

(Hzo+ V(g) po)p(R) ~Y(R) (4

(H '—Eo)P(r) =0 (38)

The interaction term, IJ', in accordance with the
assumption of an unperturbed core, may be taken as

[see Eqs. (3), (4), (12), and (15a)j:
H'= V, (R)+H„'

= —(2/R)[S(R)+1)+ (2/ i
R—r i) . (39)

The total wave function is given by

er(r, R) =f(r,R)Ii(R), (40)

for the adiabatic model without exchange, where

f(r,R) is the perturbed wave function for the valence

electron and I (R) is the perturbed wave function for

the incident electron. For the adiabatic model with

exchange, the total wave function is given appropriate

V(@=O'IH'14) = —(2/~)P'(~)+ 2 0 (&)j (46 )

=-(2/~)~(&)+~V(~).

At tllls polllt, V (R), as given above, js repla, ced by
V(R), given by

V(&)=-(2/~)[(&(&)+Co(~))+I Q, (~)j. (4~)

Here, I' is a constant which allows adjustment of the
size of the polarization contribution to the potential.
It is seen that P=O corresponds to no polarization
correction, 0.„=0, and I'=1 corresponds to present
calculation of polarization potential, n„=60.3 A'. In
what follows, the value for I' will be taken as 8=0.85
corresponding to a proportional modiication of the
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H, (r) =k' —EP—[2/r+AV(r)$. (51)

It can be seen that H, (r) is spherically symmetric. As
a consequence of this and the fact that P(r) represents
a spherically symmetric ground state, it follows that
in the expansion

1 -(2l+1)- '~'

~(r)=Z Ri(r)= 2 -fi(r) Pi(costt), (52)
z=o z=o p

only the 3=0 component of F survives in Y; i.e.,

T(R) = g'(r)1H. (r)1$(R,r)Fp(r)), .

Let T(R) now be expanded

(53)

Qi(R) term to yield the experimentally measured
polarizability, n„=51.3 A'.

The present polarization potential was calculated
using wave functions" obtained without consideration
of correlation sects. This neglect results in valence
wave functions which are too diffuse. As a result, the
polarizability is overstimated. Thus, some sort of
modi6cation of the polarization potential is justified. In
the absence of further information, a linear modihcation
is the simplest appropriate.

Iii order to simplify the expression for T(R), Eq.
(44a), the equation satisfied by il (R,r) must be obtained
corresponding to that for f(r,R). The perturbed
valence-electron wave function satisfies the equation

(H,p+H E)p{r,—R) =0.

By means of Eqs. (36), (37), and. (46b), one can
obtain, after interchanging the variables r and R,

[Hg'+H' (2/r) —A—V(r) —E'jp(R, r) =0. (49)

Making use of this relation, together with Eqs. (34) and
(35), one can obtain, from Eq. (44),

T(R) = —{iP(r) 1H„' k'+ {2/r)—
+«(r) 14(R,r)R(r))' (44')

Again making use of the Hermitian property of II„'—Eo
and using Eq. (38), one can obtain for T(R)

T(R) =(P(r) IH. 14(R,r)R(r)). , (50)
where

Thus, only the l=0 component requires solution of
an integro-differential equation. Once the fp term has
been found, the other components (fi, l&&1) can be
found by solving a differential equation in which the
coupling involves only an independent integration.
Furthermore, to the order of the dipole approximation
(C i=0, l&&2), it follows from Eqs. (57) and (58) that

Ui(R) =0 for l& 2. (59)

It can be seen that, to the order of the dipole approxima-
tion, for l &~ 2 the fi components of the incident-electron
wave functions and hence the phase shifts are not
affected by exchange.

It was shown in Sec. III (see Table II) that only the
e'=n term contributes appreciably to the polarization,
and only this term need be retained in the expansion of
Uz+. The solution of the integro-differential equation
(55) for l=0 and l= 1 can be accomplished simply by
means of the following artifice. First, it will be shown
that fi+ can be written in the form

fi'{R)= fi{R)~xi'(k)fi{R),
where f, is defined by

fli fi(R) =0

(60)

(61)

flif i'(R) = ~xi'(k) x.i{R) (63a)

Since 1NO) represents the ground state, C„p——1 and
Eqs. (55) and (57) taken together yield

O,fi+(R) = Wg„,+(k)X„,{R), (63b)

when it is remembered that only the e'=e term is
retained in the expansion. A comparison of Eqs. (63a)
and (63b) readily demonstrates that

'Yz+= gnz+ (64)

After substituting Eqs. (60) and (64) into Eq. (58), one
obtains

(this is just the nonexchange equation) and fi by

n,fi(R) =x„,(R). (62)

Straightforward operation on the right-hand side of
Eq. (60) by 0& yields

where
Difi+= W Ui+(R), (55)

T(R) = p (1/R) U, (R)[(2l+1)/4ir]'i'Pi(cosO) . (54)
z=o

Thus, making use of this expansion and. Eqs. (17) and
(18), one obtains

and

where

yp+ =hp/(1+ hp)

yg+= htayo+hg,

hi= (x.p1H. 1C.ifp)

hi=(& p1H 1C ifp).

(65)

(66)

(67)

(68)

(57)

g. i+=«.p(r) 1
H.(r) 1

C- i(r)fo+(r)) . (58)

fl&
——(d'/dR') —[l(l+1)/R'j —V(R)+kP (56)

Ui+(R) = Z g- i'(k) x- i(R),

and
fi= ai sin(kR —hr/2+ 5i)

fi=ai sin(kR —ls/2+ 5i) .

(69)

(7o)

The symptotic solution to Eqs. (61) and (62) can be
written
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o,= (o,++3o( )/4-
The total cross section, in either case, is given by

(73)

(74)

B. Numerical Algorithm for Solution

The numerical solution of a problem is frequently
considered anticlimactic and given relatively superficial
consideration. However, it is indeed possible that non-
trivia, l errors can be made in this area a,s well as in the
analytic derivations. In the present case, numerical
analyses were made to insure the validity of the
numerical results. These analyses were found useful in
preventing truncation error from blanketing the true
solution and in precluding instabilities in the solution
algorithm.

The numerical solution of the differential equations
(61) and (62) was effected numerically using a fourth-
order form of the second-sum procedure. "From con-
siderations of trunca, tion error, the initial increment in
the integration was chosen to be DE=0.002. The
adequacy of this choice will be demonstrated sub-
sequently. Again from truncation error considerations,
the increment was doubled when the initial accuracy
could be maintained with the larger interval. Doubling

"S. Herrick, Math. Tables Aides Comp. 34, 61 (1951),

Since, in the asymptotic region, Eq. (62) has the same
form as Eq. (61), the partial wave shifts 8& and h& can
be obtained in the usual manner. " Recombining the
solutions Eqs. (69) and (70) by means of Eq. (60), the
partial wave shifts with exchange b~+ are found to be
given by

tanb)+
= (u~ sin8~&a~yP sink~)/(a~ cosbqWa~y~+ cosh~) . (71)

The solutions of the uncoupled phase-shift equations,
(61) and (62), are effected and the integrals represented
by Eqs. (67) and (68) evaluated. Then, the coupling
constants given by Eqs. (65) and (66) can be obtained.
These, in turn, permit determination of the exchange
phase shifts. It can be seen that the relative amplitude
a~/a~ of the two asymptotic solutions f~ and f~ is needed
in addition to the phase shifts b~ and b~. It is important
to note that Eq. (71) requires the proper phase for 6&

and $~ (quadrants one through four) not just the
principle value as usually obtained from machine
calculations.

The partial cross sections (in units of e-ao2) can be
obtained from

o~= (4/k') (21+1) sin'8~, (72)

where the nonexchange values are obtained using 8g and
the exchange values (o~+) are obtained using 8~+. In the
latter case allowance must be made for the relative
statistical spin weights:

was effected as long as the condition

hR( (60/11)'~'k ' (75)

TABLE IV. Effect of various starting increments on phase shifts.
LNo exchange, n„=51.3 A3—see Eq. (47) ff.g

aR
0.1 0.02 —0.1352 —0.2729 0.0355

0.002 —0.1731 —0.2088 0.0357
0.0002 —0.1732 —0.2088 0.0356

0.2 0.02 —0.8613 —0.8503 0.1584
0.002 —0.9025 —0.7689 0.1585
0.0002 —0.9027 —0.7690 0.1585

"R.W. Hamming, J. Assoc. Comp. Mach. 6, 37 (1959).~ J. L. Walsh, J.H. Ahberg, E. N. Nilson, J. Math. Mech. 11,
225 (1962).

was always satisfied. This limiting interval size was
obtained from a stability analysis (as in Ref. 29) of the
numerical algorithm. For interpolation purposes, curves
were spline fit," and Simpson's formula was used to
evaluate the integrals involved in Eqs. (67) and (68).

It was attempted to integrate the differential equa-
tions out to a point at which the principle value of the
phase shift (multiplies of s subtracted out) no longer
changed by more than one part in 1000. However, near
resonances, where the phase shifts tended toward
multiples of m, truncation error precluded convergence
to this criterion but did permit convergence to within
0.001 rad, approximately. The calculations were run in
the IBM 7090, and for an absolute cutoff the integration
was stopped when the potential was some small fraction
of the incident energy:

~
V/k'~ =10 ' (or sometimes

10 '). For k =0.01, this corresponded to R =750, while
for 4=1 this corresponded to 8=75.

On the other hand, Robinson" integrates out to
E= 100, Stone and Reitz" integrate out to 8=92, while
Garrett and Mann" integrate out to

~
V/k'~ =10 '.

From the nature of the problem, the use of some small
value of

~
V/k'~ to terminate the integration seems

preferable to use of a large value of E.. Furthermore, a
study of intermediate results indicates that while the
present convergence criterion may be unduly strict, a
value of

~
V/k'

~

= 10 ' frequently leads to errors in the
partial cross sections of the order of 50%%uo, especially in
the general vicinity of resonances (in the immediate
vicinity of the resonance, the errors were much greater).
It seemed that the maximum value of

~
V/k'~ that

should be used as an integration limit is 10—4.

As previously mentioned, the initial increment was
chosen to be ~=0.002. Stone and Reitz" used
DE=0.02. In order to ascertain the adequacy of the
estimated starting increment, various values were tried,
and the results are given in Table IV. It can be seen
that the results for dR= 0.0002 corroborate the present
results (DR=0.002). The results for DR=0.02 differ
significantly and, hence, corresponding errors may be
suspect in the calculations of Stone and Reitz. '~
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TABLE V. Partial and total elastic-scattering cross sections without exchange (in units of ~up', o.'„=51.3 3.').

0.01
0.02
0.04
0.06
0.065
0.07
0.08
0.09
0.10
0.12
0.13
0.14
0.15
0.16
0.17
0.2
0.25
0.3
0.35
0.45
0.6
1.0
2.0

OP

1517.6
731.1
146.0
17.00
7.40
2.24
0.33
4.88

12.37
29.27
36.98
43.78
49.39
53.91
57.32
61.98
56.72
44.32
31.17
11.81
0.91
2.44
0.20

4.26
7.77
2.31
2.30
5.48
9.85

21.99
36.98
53.34
85.32
99.33

111.7
121.9
130.3
136.8
146.6
140.3
120.4
96.83
55.17
18.06
0.33
2.90

0.042
0.86
3.76

10.17
12.88
16.13
25.48
41.51
71.49

300.5
732.5

1011.1
538.7
269.7
158.2
58.47
26.29
17.40
13.46
9 93
8.22
7.41
4.98

0.0003
0.015
0.56
1.20
1.47
1.64
2.18
2.86
3.57
5.28
6.28
7.42
8.70

10.11
11.68
17.44
31.25
50.66
72.63
97.04
76.73
15.59
5.03

0.024
0.33
0.39
0.45
0,55
0.74
0.88
1.32
1,54
1.80
2.08
2.38
2.70
3.82
6.24
9.45

13.49
23.37
34.89
26.16

8.85

0.001
0.12
0.14
0.16
0.21
0.26
0.32
0.47
0.54
0.62
0.72
0.82
0.93
1.29
2.06
3.02
4.22
7.31

12.87
17.60
6.87

0.85 0.41
1.24 0.59
1.71 0.81
2.91 1.36
5.32 2.48

10.52 6.00
5.74 4.75

4'10

3.42 2.00 1.21
3.79 2.98 2.32

1521.9
739.7
152.6
31.12
27.75
30.47
50.74
87.23

142.0
422.1
877.2

1176.5
721.5
467.2
367.6
289.6
264.1
247.1
234.3
208.9
159.5
92.68
46.09

C. Results of Scattering Calculations

a. So Exchange

The results of the nonexchange scattering calculations
are shown in Fig. 4. The curve labeled n„=60.3 A'

represents the results obtained by using the polarization
potential previously computed and the curve labeled
e„=0 represents the results obtained by ignoring this
term. Since the present calculation of the atomic
polarizability of cesium is about 15'Po too high, and
since the polarizability represents the proportionality
constant in the asymptotic region Lsee Eq. (32)], it
was felt that some modification of the polarization
potential was appropriate and that a 15% reduction of
the whole polarization-potential distribution was the
least artificial way to effect this modification in the ab-
sence of other information. Thus, from Eq. (47), using
E'= 0.85, a modified polarization potential was obtained
for which n„=51.3 A' corresponding to the experimental
data (see Table I).

The polarization potential corresponding to n„=51.3 A'

was used in subsequent calculations. The corresponding
total scattering cross section is also given in Fig. 4.
These calculations were obtained using 3=0—3 compo-
nents at k=0.01, but including angular momentum
components up to l= 10 at k= 1.0. The various partial
cross sections are given in Table V.

From the results presented in Fig. 4, it is apparent
that the scattering cross sections are extremely sensitive
to the perturbation potential. While the n„=0 curve
is not, of course, expected to be very realistic, the differ-
ence between the n„=60.3 A' and n„=51.3 A' curves
illustrates the sensitivity of the results to even minor
modifications in the polarization term. Figure 5 presents
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Fxo. 4. Nonexchange elastic-scattering cross section
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a comparison of the present nonexchange cross sections
(for n„=51.3 A') with other theoretical calcula-
tions."""As indicated in Fig. 2 and previously dis-
cussed, the polarization potentials used by Robinson'
and Garrett and Mann" are suKciently inaccurate that
any similarity between their results and the present ones
would be largely coincidental. On the other hand, the
polarization potential used by Stone and Reitz'~ is
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0.01
0.02
0.04
0.06
0.065
0.07
0.08
0,09
0.10
0.12
0.13
0.14
0,15
0.16
0.17
0.2
0.25
0.3
0.35
0.45
0,6
1.0

1576.5
760.47
153.77
18.88
8.59
2.86
0.16
4.21

11.43
28.11
35.79
42.58
48.29
52.90
56.40
61.34
50.47
44,30
31.24
11.90
0.93
2.42

3.09
4.06
2.28
0.63
0.22
0.050
0.16
1.20
3.47

12.06
18.21
25.28
33.16
41.36
49.64
72.69
96.83

100.81
90.92
57.99
20.95
1.35

Singlet
0'y0'p

Triplet
0'p

37225.6
8687.75
1690.15
512.95
374.16
282.97
159.95
87.49
44.58
6.98
0.18
0.66
3.45
7.52

12.13
25.84
38.64
39.03
32.50
16.1
2.5
1.7

6.04
18.49
41.95
42.63
39.04
34.85
24.78
15.06
7.20
0.055
0.98
4.39
9.85

16.74
24.59
49.75
81.60
92.65
87.48

8 58.85
1 24.41
1 0.34

EFp

28313.29
6705.93
1306.06
389.43
282.77
212.94
120.01
66.60
36.30
12.26
9.09

11.14
14.68
18.89
23.22
34.71
43.10
40.35
32.18
15.11
2.11
1.89

5.30
14.88
32.03
32.13
29.34
26.15
18.62
11.59
6.27
3.06
5.29
9.61

15.67
22.90
30.86
55.49
85.40
94.69
88.34
58.63
23.54
0.59

28318.6
6721.67
1342.43
433.38
326.98
257.47
167.05
123.56
118.84
322.85
755.23

1041.73
580.58
324.81
227.61
171.22
195.60
217.40
226.84
215.66
166.16
92.39
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Similar considerations probably apply to the monopole
term Qo(E). The dipole term Qi(E) is negligible at small
radii and asymptotically correct at large radii. Higher
order multipole terms, neglected herein, would con-
tribute to the over-all scattering potential mainly in the
middle range. All components of the scattering potential
decrease more rapidly than the centrifugal term as the
radius becomes increasingly large. Thus, it is in the
middle range where an error in V(R) is most probable,
and it is in this range wherein the centrifugal term and
V(E) tend to cancel each other. Thus, a slight change in
U(R) can change the sum V(R)+l(l+1)/2V from
attractive to repulsive or vice versa, and it is not
surprising that small changes in the polarization poten-
tial yield signi6cantly different scattering results. It also
points out the region in which further effort should be
applied to obtain more accurate results.

b. Adiabatic Exchange

Fn. 7. Components of
exchange cross sections:
I=O.

10000-

N~

P IOOO

2.'

z
O
N

o IOO
I-

I
Ch
Ch
O
lK

lo

I-
K

I

.OI O.l

k(~y )
I.O

I i I 1 Iii
I

The results of the abiabatic exchange calculations are
compared with the nonexchange results in Fig. 6. The
exchange cross sections are significantly different from
the nonexchange cross sections at low energies below
about the first excitation level (k=0.322), but essen-

TABLE VU. Scattering length.

0.01
0.02
0.04
0.06

g+
(singlet)

—20.26—14.34—6.40—2.19

ao
(triplet)

—366.3—128.7—36.12—15.43

tially reduce to the nonexchange results above this
point. The concurrence of the two curves at the peak
located at k=0.14 is due to the dominance of the l=2
contribution which was unaffected by exchange to the
order of the dipole approximation used herein.

It is of interest to consider the relative influence of
the singlet and triplet components. These are tabulated
in Table VI and plotted in Figs. 7 and 8 for l=0 and
/=1, respectively. It is apparent that a great amount
of structure is present in these partial cross sections at
the low energies considered. Consider the scattering
length, defined by

a = limLtan8 (k)/k] (76)

for the l=0 component. The scattering length evaluated
at various values of k is given in Table VII. It can be
seen that while the triplet term seems to dominate the
singlet term a,t low energies, even k=0.01 is not su%-
ciently low to be considered the limit of "zero energy. "

The first resonances of the singlet and triplet partial
cross sections (shown in Figs. 7 and g) are slightly dis-
placed and this shift is similar for both the 3=0 and

IOOO. I ~ I I I IIII I ~ ~ 0 0 III)

FlG. 8. Components of
exchange cross sections:
t=1,
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l= 1 components. Consequently, at the lowest energies
indicated, the triplet scattering components dominate
the singlet. As the energy increases, a range is entered in
which singlet scattering dominates. At still higher
energies, the relative contribution of the singlet and
triplet contributions is less important since the l&~2

components dominate.
The present exchange cross sections are compared in

Fig. 6 with the results of exchange calculations of Stone
and Reitz."At low energies, there is no particular agree-
ment between the two, although as the energy ap-
proaches the hrst excitation level their results approach
the present ones. Aside from questions concerning the
numerical accuracy of their solution and the fact that
their polarizability (n„=66.5 A') is greater than the
experimental value (n„=51.3 A'), Stone and Reitz"
approximate the symmetrization of the wave function
when including the effect of exchange in their calcula-
tions as previously mentioned. Thus, the present results
are considered more reliable.
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dg
cT = —dO,

dQ
(77)

which leads to components given by Eqs. (72) and (74).
However, experimentally one usually measures the
momentum-transfer cross section given by

do
o.sr

—— (1—cos8)—dQ.
dO

(78)

This momentum-transfer cross section has been put in
the following form by Kramers":

os' ———Q (i+1) sins(bt+, —8,) .
l=o

(79)

The momentum-transfer cross section has been cal-
culated and is presented in Fig. 9 together with the
elastic scattering cross section for comparison. At low
energies, there is little difference between 0- and o-~, al-
though at higher energies the diA'er ence becomes
appreciable. While in the present calculations the

10000 I I I I I I I I I ~ t I I I I

CROWN & RUSSEK ELASTIC SCATTERING
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FJG. 9. Elastic and momentum cross sections (with exchange)
and comparison with experimental results.

"L.%aldmann, Encyclopedia of Physics, edited by S. Flugge
(Springer-Verlag, Berlin, 1958), Vol. XII, p. 459.

c. Comparisol with Experimerttal Results

Up to this point, attention has been centered on the
elastic-scattering cross section given by

momentum-transfer cross section was found to be
always less than the elastic-scattering cross section,
Stone and Reitz, ' on the other hand, hnd a small region
in which the inverse holds. Such a result implies more
back scattering than forward scattering and is surpris-
ing, if true.

Figure 9 also shows a comparison of the theoretical
calculations with experimental results. Of the experi-
mental data, only Brode's32 involve monoenergetic
electrons; the others'~39 involve electrons with a
velocity spectrum, presumably Maxwellian. While the
various data do not yield a unique scattering curve, they
do seem to confirm the existence of resonance in the
approximate energy range where theoretically predicted.
The degree to which the experimental data are not con-
sistant with each other is a measure of experimental
error incurred either in obtaining the data or in inter-
preting it to obtain the scattering cross sections. The
present calculations are in rough agreement with the
data within this experimental error, except for Brode's
data, which seems high.

V. CONCLUSIONS

The degree of inconsistency in the experimental
scattering data is sufficient to preclude an evaluation
of any but grossly inappropriate theoretical models.
Thus, only the difference between the theoretically
calculated polarizability (61 As) and that measured
experimentally (=52 A') is of help in determining the
shortcomings of the theoretical model. Here, the need
is for more accurate wave functions.

The present theoretical model predicts the location
of resonances with reasonable certainty and the scatter-
ing cross section with fair accuracy. More accurate
theoretical calculations could be obtained by going
beyond the dipole approximation used herein or by
using a nonadiabatic theory. On the other hand, it is
believed that one's understanding of scattering processes
will be more enhanced by an investigation of improved
theoretical techniques for reducing data, so that from
various experimental setups a unique scattering curve
can be obtained.
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