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A model, previously discussed, in which electron correlation in helium is neglected, is used to calculate the
double-charge-transfer cross section for He++ in He. The model yields a double-charge-transfer probability
which is the product of two single-charge-transfer probabilities. The single-transfer probability is calculated
by a Born approximation and a modified Born approximation. The one existing experiment is in satisfactory
agreement with the latter.

INTRODUCTION

'HE cross section for the double-charge-transfer
reaction He+++He —+ He+He++ has been meas-

ured by Allison' and calculated by Gerasimenko and
Rosentsveig. ' Allison's cross-section results were ex-
tracted from the equilibrium fractions of charge states
of a beam and probably have large errors associated
with them. The cross section is for capture into all
bound states of He. The calculation' is a straightforward
first Born approximation for capture into the ground
state in which the He wave function was approximated
by an uncorrelated product. The agreement between
theory and experiment is satisfactory, considering the
crudeness of both.

In a recent paper' the double-charge-transfer reaction
was considered, and it was shown that the usual first
Born approximation is a very bad approximation for
this reaction and that it should vanish when electron
correlation is neglected. The fact that it does not vanish
is due to an unphysical lack of orthogonality between
the Born approximations for initial and Anal states so
that a "constant potential" causes a transition. A
formalism was presented in which the first Born
approximation vanished when electron correlation was
neglected. It was further shown that the usual first
Born approximation gives a high-energy behavior for
the cross section 0- ~ E ~ The second Born, which is the

H= —V'Is —~'st+
-lrI —kRI

and where

+ + +—,(2)
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R=b+Vt (3)

first surviving term in the no-correlation model, gives
a ~ E ", and correlation contributes a term 0- cc A
from the corrected first Born term.

In a second paper4 the no-correlation model was
applied to the double transfer reaction H++Hs~
H +2H+. The agreement with experiment was reason-
ably good in view of the low energy at which it was
applied. We have therefore used this model to calculate
the cross section for the He+++He double-transfer
reaction where results at somewhat higher energies are
available.

At the outset we make the approximation of using the
impact parameter model in which the nuclei are assumed
to behave classically and that their accelerations vanish.
The approximation is known to be good at the energies
in question. Our starting point is then the time-
dependent Schrodinger equation for the electrons

{I(8/Bt) —H(t) )/=0,
where

f Work done under the auspices of the U. S. Atomic Energy
Commission.' S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).' V. I. Gerasimenko and L. N. Rosentsveig, Zh. Eksperim. i
Teor. Fiz. 31 684 (1956) t English transl. : Soviet Phys. —JETP
4, 509 (1957)j.' M. H. Mittleman, Proc. Roy. Soc. (London) 277, 206 (1964).

A

is the internuclear coordinate. Units are used in which
distances are measured in Bohr radii and time in units
of j/Ry. The laboratory energy of the projectile is given

by ~= V2X2S keV.
4 M. H. Mittleman, Phys. Rev. 137, A1 (1965).
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abilities:
~s(h) = Lf't(&)j'. (7)
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FIG. 1. Double trans-

fer probabilities versus
impact parameter for
V=2, 6.

Our problem then becomes one of calculating the
single transfer probability from

(i(8/81) h—)X=0,
where the single-particle Hamiltonian is

h= —V'+ V(r —-',R)+ V(r+ ,'R) -. (9)

We chose the simplest possible representation of the
He orbitals

IO-4
y (r) e/s /27r & /&e ar— — (10)
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where n is determined variationally; n= 27/16.
We have obtained E(b) from Eq. (10) in two approx-

imations, the usual first Born approximation and a
modified' first Born approximation. The modification

2 4
V(.) =

4[x—r( r
(6)

We now make a no-correlation approximation and
replace the Hamiltonian by

a= —Vts —Vss+ V(r,——,'R)+ V(r,+-', R)

+V(rs+-', R)+ V(r,——,'R) . (4)

Ideally, V should be chosen as a Hartree-I'ock
potential for He, but we shall not be so ambitious.
Instead we shall approximate the ground state of He
by a product wave function

4H (rl rs) =p (rt)4 (r2)
and choose
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CROSS SECTION
(UNITS OF 2&OOI )
va VELOCITY

He+++ He- He+ He++

FIG. 3. Cross section (units of
2'-a0' = 1.76X 10 '6 cm') versus
velocity (8= V'X25 keV).

That is, V is the static potential on an electron due to
the nucleus and the other electron. With the approxi-
mate Hamiltonian, Eq. (4), it is easy to show that if the
total wave function starts as an uncorrelated product it
will remain so and that the double transfer probability
Ps(b) will be a product of two single transfer prob-

Io

IO-5=

I 0 2 4 6 8 IO l2
V

corrects for the lack of orthogonality of initial and
final states.

The probability amplitudes are given below; for the
usual Born approximation

I.O FIG. 2. Maximum
amplitudes for double
transfer versus V.

lt ($) — i d/dsre'/(dR/0&) ~ r/s

XP(r+-', R)p(r ——,'R) U(r+-', R) (11)

and for the modified first Born approximation

Is(b) = i dtd're'&—

O.I
0 I 2 5 4 5 6 7 8 9 IO

V

)&P(r+~sR)g(r —qR))V(r+qR) —U(R) j, (12)

~ M. H. Mittleman, Phys. Rev. 122, 1930 (1961).
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where

U(R) = d'xV (x—R)4'(x) . (13)

The cross sections were obtained from

bdbi I(b) i4. (14)

The multiple integrations implied by Eqs. (11), (12),
and (14) were carried out with the aid of an lBM 7094
computer using a total time of about 15 min.

Figure 1 is a plot of the two-particle transfer prob-
ability versus impact parameter as obtained from Eqs.
(11) and (12) for two different velocities. It is seen that
the probability becomes greater than unity for suK-
ciently small velocity and impact parameter and the
calculation loses all validity. It should be noted that

~
Iv

~

4(
~
I&

~

', so that the modified theory can be
extended to lower energies than the usual first Born

theory. In Fig. 2 the maximum value of (I
~

is plotted
versus velocity for the two theories. Since these prob-
abilities must be less than one, a limit on the range of
validity at the low-energy end can be obtained from the
curve. Finally, Fig. 3 gives the cross section in units of
2srcte'(= 1.76&(10-' cm') versus velocity (E&,b= V'&&25

keV) for the two results obtained here and the usual
first Born approximation of Gerasimenko and Rosents-
veig. ' The experimental points of Allison' are also
shown. Note that all three calculations are for ground-
state capture only while the experiments are for total
capture. Thus the theories should all lie below the
experiment.

Of the two theories presented here the modified one
appears to be better. However, we believe that the
experiment is not suKciently good to choose between
our modified theory and the first Born approximation of
Ref. 2. It is only internal consistency that seems to
favor ours. It is desirable that the experiments be
redone more directly.
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The potential energy between an incident electron and a neutral alkali atom has been calculated using
first-order perturbation theory in the adiabatic approximation. The results are shown to be expressible in
terms of a multipole expansion suitably generalized to allow for the penetration of the target-atom wave
function by the incident electron. The monopole and dipole contributions have been calculated in detail for
cesium. For large separations, the monopole contribution to the potential is small compared to the dipole
contribution but becomes increasingly significant at smaller separations. For infinite separation, the calcula-
tions can be interpreted to yield the atomic polarizability, and the result for cesium (61.0 L'} is in reasonable
agreement with experimental results. With this interaction potential, the elastic scattering of low-energy
electrons from neutral cesium is treated in the adiabatic approximation with exchange. For purposes of com-
parison, the nonexchange approximation is also treated.

I. INTRODUCTION

~ 'HE elastic scattering of low-energy electrons by
neutral atoms may be treated in terms of an

eRective potential which represents the interaction be-
tween the incoming electron and the target atom. This
effective potential can be considered as made up of
several component parts. At high energies, the dominant
component of the scattering potential is a shielded
Coulomb field due to penetration by the incident elec-

*Based in part on a thesis in preparation by J. C. Crown to
fulfill the Ph.o. thesis requirement at the University of
Connecticut.

f Jointly supported by Pratt 8z Whitney Aircraft and the
National Science Foundation.

tron into the electron "cloud" of the target atom. How-
ever, at low incident energies, the small polarization
forces arising at large separations make an important
contribution to the scattering, This polarization compo-
nent of the potential results from the distortion of the
target atom due to the proximity of the incident particle
and reacts back on the incident particle as one of the
scattering forces. It must vanish for zero separation,
since, in this limit spherical symmetry prevails and no
nonzero multipole moments can be induced. On the
other hand, for asymptotically large separations, the
polarization potential varies with the inverse fourth
power of the separation and, in this regard, the atom is


