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It is pointed out that the usual treatment of excitons in interaction with radiation with spatial dispersion
does not obviously satisfy causality in all cases, and it is shown explicitly that certain paradoxes and am-
biguities can appear even in simple cases. In particular, it is shown for a simple special case that an ap-
parently reasonable choice of boundary condition leads to a reQection coefficient greater than unity; and also
that in some cases one must make rather arbitrary and inconsistent requirements in order to get the right
number of boundary conditions to determine a solution. The theory is reformulated in a way that is mani-
festly causal, with both Geld and polarization being generated by retarded Green s functions. Umklapp
processes are also included. This formulation con6rms the results of the usual treatment in the cases in which
the latter are unambiguous and acceptable, but avoids the difhculties mentioned above. The model used is
essentially classical and one dimensional, but nevertheless sufficiently general for the treatment of these
problems.

I. INTRODUCTION AND SUMMARY

~ 'HE theory of excitons in interaction with radiation
including "spatial dispersion" was first discussed

by Pekar. ' A somewhat diGerent approach based on an
idea due to Fano, ' has been used by Hopfield, ' and by
Hopfield and Thomas. 4 In all these theories, umklapp
processes are neglected. The result is that, if the exciton
energy is a function of the wave number, there are, in
general, two or more refractive indices found for each
frequency and polarization, even in an isotropic crystal.
The wave propagating in the crystal at a given fre-
quency is then a superposition of several waves of difer-
ent wave numbers. The coeScients are determined by
extra boundary conditions based on a detailed con-
sideration of interactions near the edge of the crystal.

One of us' has questioned the validity of these
theories on the basis of causality. For a special case with
two solutions, it was shown that limiting oneself to a
single refractive index leads to a violation of the Kronig-
Kramers theorem, and hence of causality. Causality can
be formally restored by superimposing the two solutions
in an appropriate way; but this would require the use
of both solutions over the full frequency range. The
derivation of the two solutions, however, requires the
assumption of long wavelengths (neglect of umklapp
processes), and the resulting solutions are such that
there is only a rather narrow range for which this
assumption is satisfied by both solutions. For this
reason, the possibility of restoring causality in this way
is referred to in Ref. 5 as a "remote possibility"; but we
shall see that it is indeed the correct answer to the
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problem. In order to discuss it in a self-consistent way,
however, it is clear that the theory must be generalized
to include umklapp processes, which makes the usual
procedure a good deal more difficult. It was also sug-
gested in Ref. 5 that the apparent noncausality might be
associated with the periodic boundary conditions cus-
tomarily imposed on the radiation field, which seem to
be incompatible with the use of the retarded Green's
function. Hence, a formulation of the theory which is
manifestly causal, and does not depend on unphysical
boundary conditions, seems desirable.

The model we shall use is essentially classical and one
dimensional, but is nevertheless suIIiciently general to
deal with the problems in which we are interested. In
three dimensions, it might be visualized as a "crystal"
consisting of infinite plane sheets of polarizable material,
perpendicular to the s axis and spaced at regular
intervals. The crystal interacts with a radiation field
polarized in the x direction and propagating in the s
direction. Thus, the vector character of polarization and
field plays no role (there being only one nonzero
component), and the s dimension is the only spatial
dimension that needs to be considered. In addition,
quantum-mechanical transitions of the material system
are replaced by classical oscillators; for the justification
of this, the reader is referred to the work of Fano' and
Hopfield. Hence, this model is not as unrealistic as it
might appear at first glance; and in any case, the
problems which we wish to discuss take precisely the
same form in our model as in more realistic theories.

The plan of the paper is as follows: In Sec. II, the
conventional treatment is discussed. It is shown that,
in addition to the doubts about causality, certain
paradoxes and ambiguities arise in the usual treatment,
even for rather simple cases. In particular, it is shown

that apparently reasonable boundary conditions can
lead to totally unacceptable results, and that without
making rather arbitrary assumptions one does not
always arrive at the right number of boundary condi-
tions for the number of refractive indices. In this section,

A 63



A 64 C. W. DEUTSCHE AN D C. A. MEAI3

following the usual procedure, the crystal is treated as
continuous, i.e., umklapp processes are neglected.

Section III introduces the formulation in terms of
causal (retarded) Green's functions. It is shown that the
possibility of constructing a properly causal solution
automatically entails a restriction on allowable forms
for boundary conditions. In particular, those boundary
conditions that led to unacceptable results in Sec. II are
shown to be unacceptable.

In Sec. IV, the crystal is treated as discrete (all
umklapp processes included), with interactions between
oscillators of the most general form compatible with the
existence of a solution expressible in terms of a 6nite
number of refractive indices. Again retarded Green's
functions are used, so the treatment is manifestly causal.
An exact solution is obtainable, and it is shown that one
always gets exactly the right number of boundary condi-
tions. In the long-wavelength limit, the theory gives the
same results as the usual treatment in all cases where
the latter gives a definite answer; and in cases where
the usual treatment is ambiguous, the present theory
leads to a unique result. There is some discussion of the
results in Sec. V.

A;.(s,t) = (or) ei~ (z—t)

we have in general for the transmitted vector potential
within the medium

II. PROBLEMS WITH USUAL TREATMENT

The possible diS.culty with causality in the usual
theories has already been mentioned in Sec. I, and the
reader is referred to Ref. 5 for further details. It is ap-
propriate at this point to discuss briefly the conse-
quences of causality in a medium which is not describ-
able by a single refractive index, but which nevertheless
responds linearly to incident radiation. Since we shall
always be discussing semi-infinite mediums, infinite in
the positive s direction, we may con6ne ourselves to this
case. For an incident wave with vector potential
given by

=T(or) exp$ip(or)ors], and the analyticity of Bz re-
quires the analyticity of p. If there are two or more re-
fractive indices, however, one cannot in general require
that both be separately analytic. From the analyticity
of 8&, one may conclude that if the solution is known
for a finite range of frequencies it can be found for all
frequencies by analytic continuation; this means, for
example, that one must have the same number of
refractive indices for all frequencies.

It is also necessary at this point to say a few words
about absorption. The model that we are considering
does not include the coupling of excitons to phonons,
which is the chief damping mechanism leading to ab-
sorption in actual crystals. Even without phonons, in a
real three-dimensional crystal it might be conceivable
that umklapp processes in the x and y directions might
bring about an attenuation of the primary beam propa-
gating in the s direction, leading to apparent absorption.
Be that as it may, however, it is clear that such processes
cannot take place in our one-dimensional model; there
simply is not place for the energy to go except into waves
propagating in the s direction. Hence it is clear that
there cannot be absorption in this case; reflected plus
transmitted intensity must equal incident intensity,
purely on grounds of energy conservation.

In order to illustrate the problems that can arise, let
us consider a particularly simple special case. Suppose
we have oscillators (or sheets) with natural angular
frequency vo located along the s axis at points

s=nx, m=0, 1) 2) 3,

where n is, of course, the lattice constant. If the dipole
moment of the nth oscillator (dipole density per unit
area of Nth sheet) is ti„,then the corresponding dipole
density is

Pn= tin/ei ~

We further suppose that nearest-neighbor oscillators
are connected by Hooke's-law springs. This leads to the
equation of motion for the eth oscillator:

Ai(s, t) = di0A;„(io)Br (or,s)e
—'"'.

P„+,'P„qDP P„)+—(P —P—„)]
= —'A( ), (1)

Causality requires (at least) that for an incident wave
with a sharp front reaching the edge of the medium at
time t=0,

Ai(s, t) =0 for t(0.
This leads in the usual way' to the requirement
that Bz(or, s) be an analytic function of or in the
upper half-plane for all positive s. In the case where
there is a single refractive index p(or), Br(or,s)

' L. D. Landau and E. M. Lifshitz, Electrodynamics of CollirIN-
ols Media, translated by J. B. Sykes and J. S. Bell (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1960), pp. 256—268.

where q is the spring constant, e' is a coupling constant
involving the charge and mass of the oscillators, 3 is the
vector potential, and we have used units in which c= 1.
A dot denotes time differentiation.

Equation (1) holds for all oscillators except N=O,
which has only one nearest neighbor. For this oscillator,
Eq. (1) is replaced by

P,+„2P, q(P, P,)= —.2A(—0). —

To treat this problem by the usual method, we
neglect umklapp processes by assuming that 0. is small
compared with wavelengths of interest. In this case, P
can be treated approximately as a continuous function
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In order for both (3) and (4) to hold, we must have the
boundary condition at the edge

P'(0) —(n/2) P"(0)=0, (5)

or approximately
P'(0) =0. (6)

Of course, other types of interactions would lead to other
boundary conditions. For example, Pekar' finds P (0) =0
instead of (6).

The Maxwell equation for the vector potential A is
(in Heaviside units)

A —A"=P. (7)

We now seek to find a refractive index p(ip) by seeking
solutions of (3) and (7) of the form

A=Ap exp(i(pip(i0)» —t]};
P=- Pp exp(iipQ(cv)» —t)}.

Inserting (8) into (3) and (7), we easily obtain

P,=2~/ p(~)2 —1)A
„

(p+ 1)M2—p 2~ jL(1 p)~2 p 2j2+4p22(d2}1/2
p'(~) =

2 GO

(10)

According to (10), there are two solutions for p2, and
therefore four for p itself. The general solution to (3) and
(7) for each frequency is, therefore, a superposition of
four solutions of the form (8), (9), corresponding to the
four values of p. Qle are mainly interested, however, in
the waves set up in the crystal by an incident light wave
propagating in the positive s direction. For this case, we
can also require

Rep&0,

Imp&0. (12)

Equation (11) corresponds to the requirement that
the wave propagate forward, not backward, in the
medium; more precisely, it can be shown to be a conse-
quence of the requirement that the time average of the
Poynting vector associated with a single wave be in the
positive» direction. Equation (12) simply requires that
the wave be attenuated, not amplified, as it propagates.

of s, and we can expand E„+~and P„~in forms similar to

P~i —P„—nP'(n)2)+-;n2P" (nl),

where a prime denotes differentiation with respect to z.
Inserting this into Eq. (1), we obtain

PjV22P —PP"= —222 (3)

where P = qn2 At .the edge, Eq. (2) becomes

1
P(0)+po'P(0) —

Pl -P'(0)+2P" (0) I= —"~(o) (4)

Since our crystal is infinite in the positive s direction,
this requirement is certainly essential. If P is positive,
it is easy to see from (10) that both values of p'are real
for all co. Hence there will always be exactly two values
of p that satisfy (10), (11) and (12). Denoting these by
pi and p2, we can fit boundary conditions quite easily
for an incident wave

eiau(z —t)

by trying a solution of the form

g —
&ie (z—t)+Re—

iran

(z+1) a&0;

T &iz(Piz —Z)+T &iru(Pzz i)—»)0
(13)

(«)
The unknowns are the reQection coeQicient E, and the
two transmission coeQicients T~ and T2. From the usual
boundary conditions we have

1+8=Ti+T2,

plTi+ p2T2 ~

(15)

(16)

Equations (15) and (16) represent, respectively, the
continuity of E and H at the edge. The third condition
required to determine the three unknowns is provided
by the boundary condition (5) or (6). For example, if
(6) is used, we find

pi (pi' —1)Ti+ p2(p2' —1)T2 ——0. (17)

In this case, therefore, the solution is completely and
unambiguously determined by the general requirements
which we have made.

One may ask at this point whether the situation is
always as happy as in the foregoing treatment; that is,
does one always obtain exactly the right number of
boundary conditions to fix the solution. In this connec-
tion, it should be remembered that more complicated
constitutive relations than (3) may lead to more than
two refractive indices. In fact, one can even get into
difficulties with (3), as we shall now see.

Suppose that we allow P to be negative in (3). This
corresponds to a negative effective mass for excitons, or
to a tendency for nearest-neighbor dipoles to point in
opposite directions. The solution goes through exactly
as before, leading again to the result (10). With P
negative, however, p' is no longer real for all frequencies.
A glance at (10) reveals that there is a range in which
both values of p' are complex, being complex conjugates
of each other. In this range, there is only ore value of p
which satisfies both (11) and (12). There are two pos-
sible approaches that one might take here:

(a) One might use only the one value of p that
satisfies (11) and (12). (By analytic continuation, this
means that there is only one refractive index for all
frequencies. ) If one does this, however, it is impossible
to satisfy simultaneously all three boundary conditions
Lcontinuity of E and H at the boundary, plus Eq. (5)
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or (6)$. Moreover, the single refractive index that one
gets is complex over a finite range, so that this approach
leads to absorption contrary to energy conservation.

(b) One might drop the requirement (11), arguing
that it is only the full solution that must propagate
forward, not its parts separately. If one does this, one
finds two refractive indices satisfying (12), the boundary
conditions can all be satisfied, and an easy calculation
shows that the reQection coe%cient is unity in the region
of complex p, so there is no true absorption. If Eq. (11)
does not represent a valid general requirement, however,
how are we justified in requiring it for the case of
positive P? For positive P, there are always at least three
values of p satisfying (12), so if we drop the requirement
(11) we do not have enough boundary conditions to 6x
the solution. It seems, therefore, that this procedure is
not completely satisfactory either. We are forced to
conclude that the usual treatment does not contain a
simple prescription which will lead to a unique solution
in all cases.

We now present another difhculty. Of the two
boundary conditions (5) and (6), it would appear at
first glance that (5) is a better approximation to the
true (discrete) state of affairs, and should be preferred.
We shall show, however, that the use of Eq. (5), far
from leading to an improvement, actually gives results
which are totally unacceptable.

If Eq. (5) is used, the condition (17) is replaced by

and (24) into (20), to find R up to first order in 5:

(p —1)cob (—1—ib) (nu+ is)
g ~

(p+1)o)8—(1+i') (nu+is)

nu+is+ bfco (p 1—) i (—au+i~)]

au+is ti/—co (p+ 1) i (n—u+is) ]
=1+ted(2p(o)(nu+i )) 2—5i

ng —6= 1+28p(o —2i8.
n'u'+s'

(25)

The refiected intensity per unit incident intensity is

RR*=1+ t4p&on u/(n' u'+s') $5) 1. (26)

Thus, the boundary condition (5) leads to the
obviously unacceptable conclusion that the reQected
intensity will be greater than the incident in this fre-
quency range. The fact that ER~—1 is proportional to
0. makes it clear that this would not have happened if
we had used (6). Hence, an attempt to improve the
boundary condition has led to disaster rather than
improvement.

The considerations of this section show, we feel, that
a more careful and general formulation of the theory is
desirable. We construct such a formulation in the
following sections.

where

hP'i+ b&s= o, (18) III. GREEN'S FUNCTION FORMULATION —BOUNDARY
CONDITIONS IN CONTINUOUS CASE

(1—t i)b—(1—
t 2)4R=

(1+t'ai)b —(1+ts)6
(20)

We now note from Eq. (10), that one of the solutions
(pm, say) is equal to zero when cos=io'+e'. If o&s is

.slightly less than this, we have

p2=ib, (21)

where ti is a small positive number. At the same time,
the other solution

py= p (22)

is real and greater than unity, as may be easily veri6ed.
We will now calculate R in this frequency range, to
lowest order in 5. We consider cv to be positive. To first
order in 8, we have

k = (t '—1)Li~t +-'~~'t 'j (19)

Solving (15), (16), and (18) for the reRection coeKcient
R) we Gnd

In this section, we wish to consider the problem in
somewhat greater generality than before, and to express
the solution formally in a manifestly causal manner.

Equation (1) or (3), determining the polarization,
may be generalized to~

P+ZE= —e'A

where 2 is some linear operator representing the natural
frequencies and interactions of the oscillators. In
general, P may be a discrete function dered only for
s= mz, or it may be a function of a continuous variable s.
We will use continuum notation in this section. The
vector potential A still obeys (7).

We are interested in solutions of (7) and (27) which
represent the causal response of an otherwise un-
polarized medium to an incident field. Accordingly, the
appropriate solution to (7) is

A (s,t) =A;„(s,t)

$s——(—ti2 1)(—o)5—isness ti2) =—o)5.

At the same time, we find for $i.

(23) dt' ds'G"'(s —s', t—t')P(s', t'), (28)

where G'"(s,t) is the retarded Green's function for the
$i nu+iv, —— (24)

where u and s are both positive. We now substitute (23)
~ If desired, damping may be introduced in a phenomenologic@I

way by replacing P by P+gP,
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electromagnetic held:

'b (Kz—Gl f)dye~
G""(s t) =

(27r)'
„ „

»' —(M+ib)'

and g is Hermitian only if the operator 8'/&z' is
Hermitian. In order for this operator to be Hermitian,
we must have

in which the limit 8~0+ is to be understood. The 0

integral over s' in (28) goes from zero to indnity, of
for any allowable functions f and p. However, we find

medium. In the solution we want, the polarization is
entirely that generated by the held, i.e., there is no (44"—44")~ =0"(0)4 (o)—4'(0)0 (o)"P;„."Accordingly, the solution of (27) which we should 0

use is

E(s,t) = df

This is zero only if the boundary condition obeyed by
all allowed functions isds'F"' s, s', t f —p—'A s' f (30)

P(0)+g'(0) =0, (33)

Here F"' is a retarded Green's function associated with
the operator Z. It is written as a function of (s,s') in-
stead of (s—s') because the fact that P is defined only
for positive z destroys the translational symmetry. If
2 possesses a continuous eigenvalue spectrum with
normalized real eigenfunctions fi, (s), the F" has the
for m

A(s)0~(s')s '"'
F"'(» s') t) =— dk dp~ . (31)

XP (k) —(~+g)P

The range of the k integration is unspecihed since this
depends on the properties of Z. X'(k) is the eigenvalue,
dehned by

Zgi(z) =X'(k)Pi, (s).

The generalization to the case in which 2 has discrete
eigenvalues is obvious.

In order for Ji'" to be a true retarded Green's func-
tion, we must have

where 8 is some constant. In particular, the boundary
condition (5) is not of this form, and is therefore not
allowed. Hence, if one has an operator of the form (32),
one may attempt to represent approximately the
physical conditions at the edge of the crystal by varying
the parameter 0 in (33);but any attempt to go beyond
this mill make a causal solution impossible: there will
then always be some polarization which is not "caused"
by the held, and this "spontaneous" polarization will
lead to unphysical eGects such as increased reflected
intensity.

lf 2 is given by (32), its eigenvalues are

PP (k) = i p'+Pk'.

This is not positive de6nite if p is negative, so one might
be tempted to use the positive-dehniteness requirement
to dispose of the dilemma raised in the last section by
negative p. This will not do, however, since the same
problem arises for

F'"(s s' t) =0 for t(0.
X'(k) = i p» —2

i P i (1—cosk), (33a)
This simply means, referring to (30), that there is no
polarization anywhere in the medium until there is a
held somewhere in the crystal. At negative times, the
integration over &o in (31) is carried out by closing the
contour in the upper half-plane, so in order to get zero
there must be no singularities in the upper half-plane.
There are singularities, however, whenever

p~= aX(k).

We conclude, therefore, that in order for a causal solu-
tion to be possible all the &X(k) must lie on or below
the real axis, which means that the eigenvalues X'(k)
must all be real and positive; in other words, the
operator 2 must be Hermitian and positive definite.

In the case of functions dehned only for positive z,
such as we have here, it should be remembered that the
hermiticity of an operator depends not only on the form
of the operator but also on the boundary conditions. For
example, if we use Eq. (3),

which is positive dehnite if

The general treatment of this problem requires that
the crystals be treated as discrete. We take this up in
the next section.

IV. DISCRETE MODEL

A. Exciton Eigenfunctions

In this section we consider the oscillators of our
crystal to be located at points regularly spaced along
the z axis. The unit of length is chosen so that the dis-
tance between neighboring oscillators is unity. It will be
convenient to number the oscillators from one to
infinity. Thus, the polarization is given by

r(s, ~) = P P.(~)S(s—~),
Z = v p' p(8'/Bz'), — (32) n=l
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and Eq. (27) becomes property

P (t)+ Q Z„„P„.(t) = —e'A (~,t) .
n'=1

(34) P e'" =2m. P b(x—2s.j),

Equation (7) takes the form

A(s, t) —A"(s,t)= P P.(t)6(s—ri).
n=l

We have already seen that the matrix 2 must be
Hermitian and positive definite in order for a causal
solution to exist. This requirement alone, however, is
not sufficiently restrictive for our purposes. In the type
of theory in which we are interested, the optical
properties of the medium are represented in terms of a
finite number of refractive indices, and the waves
propagating in the medium are sinusoidal, perhaps with
exponential attenuation. It is clear that an exact solu-
tion of (34) and (35) will yield results of this type only
if the eigenfunctions of 2 are sinusoidal (or exponential)
waves. We therefore require that 2 be of such a form as
to have sinusoidal waves for eigenfunctions. Our treat-
ment will not be the most general possible, therefore, but
it will be the most general compatible with the use of
refractive indices, and therefore certainly general
enough to discuss the problems raised in Sec. II. Of
course, in a real crystal there will normally be e6ects due
to the distortion of waves from the sinusoidal form near
the edge (a simple model for such effects has been dis-
cussed by Hopfield and Thomas' ), but such effects can-
not be treated by means of the usual theories and will

not be treated here.
Rather than try to decide what forms of 2 will lead

to the desired eigenfunctions, it is easier to postulate
the eigenfunctions and eigenvalues and then work back-
wards to 6nd the matrix Z. Accordingly, we require that
the eigenfunctions of 2 be of the form

a (k) = —b (k) ((cosk+ &)/sink),

where & is a constant. s This can also be expressed by

a(k) = f(k) (cosk+&);

b(k) = f(k) —sink.
(38)

For normalization we must also have

s./2La'(k)+ b'(k)] = 1

= f'( k)(P +2) cosk+1]. (39)
Hence,

f(k) = (2/~)"'L('+2& cosk+1] "' (40)

We find then for the eigenfunction p~ „(k):
lt „(k)= (2/s. ) 't'I P+2) cosk+1] "'

&($($+cosk) sinkl —sink coskn]
= (2/s)'t'(AD+2( cosk+1] 't'

)&f$ sinkrt+sink(e —1)]. (41)

The set of functions defined by (41) is an orthonormal
set. We must now examine the question of its complete-
ness. The criterion for this is

P„(k)y..(k)dk= b„„..

With the functions (41), we find

and also the fact that the range of k prevents k —k' or
k+k' from being equal to 2s. Where necessary, con-
vergence factors e g", g~O+ have been introduced.

(33) For orthogonality, then, it is necessary that the non-5-
function terms in (37) vanish for all k, k'. This will

happen if and only if

f„(k)=a(k) sinke+b(k) cosktt, (36)

where we can require without loss of generality that
a(k) and b(k) are real. The range of k is

f (k)it (k)dk

1 2"

0&k&~.
0

f($+ isa)eikn ((+eik)e—isn]

Z 0-(k)0-(k')

=-', lrLa(k)a(k') yb(k)b (k')]5(k—k') —-', b(k)b(k')

1 a(k)b(k') sink —b(k)a(k') sink'-

2 cosh' —cosh
(37)

In arriving at (37) we have used the completeness

The coeKcients a(k) and b(k) must be chosen in
such a way that the set is complete and orthonormal.
We first consider the orthonormality requirement,
Using (36), it is a simple matter to show that

e—ik ~ikn' ~ik e—ikn'

X
(p+eis) ((+eik)—(42)

In arriving at (42), we have used the evenness and
periodicity of the integrand to extend the range of
integration from zero to 2x. We have also written the

' The role of the constant k is similar to that of e in (33). In the
limit of small k, we get from (38)

it (k) =f(k)L(1+)) sinkl —k coskrig,

while (33) would give for sine and cosine functions

(k) =f(k) D/8 sinkl —k coskri j.
Hence we see that 0= (1+/) '.



, „,d,fned by (41) with
I Pl +

~
o'The sets of functio

) 1 ust the possibilities(4]) and (48) with
I (I ' '

In the next sub-s acce table to us. nfor eigenfunctions ac p
1 and deduce theder the eigenva ues, ansection we consi er

form of the

sine and cosine in pex onen iat' 1 form and done some
ent we furtherVv" th a little rearrangemen,factoring. vv i a

obtain

THPORYFU FACT&o~sFTARDED GREE

f„(k)P„(k)dk
0

Rn )g+e—sk

4~ 0 i t+e'

-'"("+"')—e"("-"')—e"("'-") dk (43)(+ e i—k (n+n') ex n— sk

$+e ikj—
eik n n'

B. Eigenvalues and Interactions

matrix are defined byThe eigenvalues of the ma rlx

z.„.P„(k)=X'(k)P„(k),
n'=1

band in the case
I $I (1, also y

n=l

(50)

(51)

ik (n+ n')

((+e—'kj
h f '

bl su=e'~in the firstWe now make the c.. ghan e of varia es u= t
e ral on the right-hand side of 4, an

(44) now becomesthe second. Equation X'(k)f„(k)P„.(k)dk. (52)

e realand A must, of course,The eigenvalues X'(k) an m
and positive.

&1.Here we haveWe erst consider the case

f (k)P„(k)dk

1 ($+u ')u"+"'du

2~i u(P+u)

tor X' k), the integrand is the same
as that discussed in the last section.

(45) analogously to (43):

1 2

d the unit circle. Sincein which the con gtour oes aroun
'

le ole is a,t u= —$.~~a'&2, the only possi e po
he e e now two poss e

1 in 45) is zero and we obtamcontour, so the integral in

47|- p

e-ik(n+n' es

kt+e—'"j

2 k ik(n+n')

iP (k)f (k)dk= b (46)
1

= ——Re
2'

' k e"("+"')X'(k)
I

e'

oBlp lete.
(b) I]I (1. Here we get a contr) u i

pole, giving the result

eik (n—n') dk (53)

0

'n this case, but it can be madeThe set is not complete in t is case,
so by supplementing it with

&,'(k) =PI ui coslk,

oes over /=0, 1, 2, . and may bew eethesumg o r
finite or infinite. Combining an

(54)

-= (V—1)"'(—&)". (4g)
'

e that @„is normalized and orthogonaliy i h

ately that the augmented set is comp
Z „=——Re+ ai

47t

onl in the range
I f generality define it in

has hysical meaning on y
~ ~

t it be an even function
an without loss o gener

~g' yP.(k)P. (k)dk=().„—t-—
of k with period 2m. In this case we

P (k)P .(k)dk+p„@„.=()„„. (49)
22r e

—k

ILeik(n+n
P+eik j

seen to have the properties of aTile funCtIOn $n ls SeeI1 0
22"surface exciton.

ik (n—n'+ l ) elk (n—n' —l)—e'
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We now evaluate the last two terms in the integral, and
make the substitution N=e'~ in the other, with the
result

1 ~
~)n—n'), l

l

($+u—1) (un+ n'+ l+.un+ n' t)d—u——Re—
2% i u(P+u)

where the contour is again the unit circle. Because

~ $~ &1, the only contribution to the integral is from
the pole at N=o, whose order depends on e, e', and l.
We easily find the result

refractive indices one is actually assuming that the
interaction is one of these forms, or that it can be

sufficiently well approximated by one of them. In the
next subsection, we consider the interaction of our
crystal model with radiation.

C. Interaction with Radiation

As before, we are interested in the case of a previously
unpolarized medium responding causally to an incident
6eld. Accordingly, using retarded Green's functions, we

express the desired solution of (34) as

dt'F„„'"(t—t')$—"A(n', t')), (61)

where
00

p, ret(t)—
2x

where

k(y) =1, y&0,
k(y) =0, y(0. (56) for )P) &1, or

@nn'= 2 Pl ttt{tt[n-n'[, l $ bn+n', i+1
—(1—$ ')(—$)"+"' 'k(l —n —n')}, (55) P„(k)k„,(k)e-'-

d'& dk (62)
2 X'(k) —(~+ib)'

For each value of /, the first term in (55) is seen to
represent an /th nearest-neighbor interaction, while the
remaining terms exist only near the edge of the crystal
(n+n'&~l+1), and are necessary to assure that the
eigenfunctions remain sinusoidal.

The case
~ $ ~

(1 is not greatly different. Here we have
instead of (53):

1P„„""(t)=— d(o
2'

ed' (k)P„(k)e '"'

X2(k) —((a+it[)'

e
—ttt[8

n n+, (63)
A2 —(a)+ it[)2

for
~ $~ (1.The appropriate solution of (35) is

A (s,t) =A;.(s,t)
'A2(k)P (k)tt[ (k)dk+A2ttt t[[ . (57)

dt'G-'(2 —n', t—t')P„(t'), (64)

+nnv 2 Pt ttl{t[[n—n'[, i $ t[n+n', i+1
—(1 P') ( —

&)
+"'—tk(l n-n')—}-

y(~—2 ])(g2 g2)( ~)n+n'

where

(58)

X2= —', Qt at{(1—$)t+(—() '}. (59)

It is seen that X2 is just the analytic extension of X2(k)
to e'"= —$ If i12=X2 the interaction has exactly the
same form as before.

The case )=0 requires separate treatment, because
here the poles at u=0 and u= —$ coincide, and. also
t[[t = tt'2. We find in this case

There are two differences between this and the previous
case: 6rst, when we make the change of variables
u=e"'", we get a pole at u= —(; second, there is a
contribution from the surface exciton state @„.The
6nal result is

where G"' is given by (29). We are particularly inter-
ested in the response of the medium to an incident wave
of a fixed frequency, and we want the solution to be
expressible in terms of refractive indices. Accordingly,
we seek a solution of (61) and (64) of the form

A;„(s,t)=Ae'"" t[

A(n, t)=g; A;e [»tt&n

p (t) —g . p eiv(pt n t). '—
(65)

The sum over j of course corresponds to the different
values p; of the refractive index. Each p; is understood
to be a function of v.

Substituting (29) and (65) into (64), and carrying
out the integrations over t' and sc, we find

= (A2——22ao) l[„ib„.i
+2 gt t2l{~[n—n'[, i tt + 'I'n+2}n~ (60)

The interactions given by (55), (58), and (60) seem
perhaps somewhat arbitrary, but our treatment has
shown that they are the only possible forms for the
interaction if one wishes to describe the crystal by
means of refractive indices. Thus, whenever one uses

p A .ei»'vn Aetvn+2 p p. p eiv[n-n'[eipt'vn'

i sine

2 j cosp'p —cosp

P2.
+ A —2Z

1—ei (p,'—I)v
etv n (66)
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P; = (2/i sinv) (cosp, v—cosv)A;. (67)

Since the electric field P.= —A, we have A;= (iv) 'E;, so
(67) may also be written as

Again we have used convergence factors where ap-
propriate to evaluate the sum over e', and have done
some rearranging. Equation (66) must be obeyed for
all e, so we must equate coeKcients of all diferent
functions of e. Equating coefIicients of e'»'"", we 6nd =ivy' Q A;

21v6
PA;

f„(k)dkg
00

, (k)eipv'vnv (73)
0 X'(k) —(v+ib)' '=i

Inserting the solution (65) into (62), (61), we find

P P.eipv'vvv

P;= —(2/v sinv) (cosp;v co—sv)E;

As v becomes small, this becomes where

p$ sinks+sink(N —1)1Q;(k)i'X,(74)
~ D '(k)- (+'~)'j(~+ ")u+.-' )

P =(p' —1).E

which is the usual continuum relation between polari-
zation, refractive index, and field. There is no factor of
4x because of the Heaviside units.

Equating coeKcients of e'"" in (66) we And

($+eipv'v) sink

(cosp;v —cosk)

It is convenient to use the relation

Qp(k) = Q L$ sinkii'+sink(nv —1)ge'pv'»'
n'~l

(75)

A =-'
2 (6S) $ sinkm+sink(pi —1) 1 e+" e—ii'"

((+e—ik) (P+eik) 2i p+. e i'
(76)

COSp v —COSv

A, .
Z Slnv ~ 1—e—'&»—'~"

In the limit of small v, Eq. (69) takes the form

(69) We now insert (75) and (76) into (74), making the
substitution u= e'~ in the first term of (76) and u= e—i~

in the second, and also use (67). After a little algebra,
this gives

A=2 Zp(s»+1)Ap (70) P p.eip;e
e~v sinv P; ($+e'»v)'

8xi & COSp;v COSV

To get the reflected wave, one inserts (65) into (64)
for s(1, and also uses (67). The result is

A (s t) = (A e'"*+Re '"*)e '"'

with the rejected amplitude given by

COSpg v—COSV

i sinv ~ e '&»+""—1
e v Slnv

u" '(u —u—')du
X

Pcosp;v ——', (u+u —')jLX'(u) —(v+ jg)&g(pyu)
'

(77)
where the contour is the unit circle, as usual. The pole
at u= exp(ip;v) in each term in the sum (77) leads to a
term on the right-hand side proportional to exp(ip;vs).

(71) Equating coeRicients of exp(ip, vN), we obtain

The limit of (71) for small v is

hap(p—p 1)Ap— (72)

2P, '(p, v) —(v+i8)'j (cosp;v —cosv)

e v Slnv

Equations (70) and (72) are easily seen to correspond to
the usual ones of the continuity of E and H at the edge.
In particular, the sum of (70) and ('72) gives the
continuity of E, while their differences gives that of H.
We see, then, that all we get out of inserting (65) into
(64) are the usual relations well known from classical
optics, generalized to the discrete case. This is to be
expected, since we have not yet made any use of the
nature of the interactions between the oscillators. We
now proceed to take this into account, considering first
the case

( $~ &1.

COSpgv —COSV =—
2L~'4»') (v+ib)'j—

In the limit of small v, (79) becomes

p' —1="/(~'(p v) —v')

which is the usual relation. Equation (79) is, then, the
equation that must be obeyed by each refractive index.
Note that it is independent of $. Actually it just deter-
mines exp(ip, v) or cos(p;v), since X' depends only on
cosk. The fact that I must lie within the unit circle
requires that Im(p;v)&0. LActually, this has already
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been assumed, since it is needed for the convergence of
the sum (75).$ Referring to the solution (65), moreover,
we see that nothing is changed by adding a multiple of
2x to p, v. Hence, without loss of generality we can
require that the real part of p;v lie between zero and 2m.

There is now no more ambiguity and the values of the
refractive indices are uniquely fixed for each frequency.

In order to treat the problem of boundary conditions,
it is necessary to consider the other possible singularities
within the unit circle of the integrand of (77). The
possibilities are:

(a) Branch points. If X' has a branch point within
the unit circle, so will the integrand. In this case, how-
ever, one always has some choice in the way branch cuts
are drawn, so that the behavior of P' within the unit
circle is determined not only by its value on the bound-
ary but also by the choice of branch cuts. This would
mean that the values of the refractive indices would be
ambiguous, so we must not permit it to happen. There-
fore, ) ' must be chosen in such a way that there are no
branch points.

(b) Essential singularities. If the sum (54) is in6nite,
X' will have an essential singularity at the origin, leading
to an in6nite number of solutions to (79). We are
interested, however, in a medium describable by agnate
number of refractive indices, so we must not allow this.
Accordingly, it is necessary to require the sum (54) to
be finite; this in turn guarantees that there will be no
essential singularities at other points, and no branch
points. There are, therefore, only poles, and only a 6nite
number of these.

The poles of the integrand in (77) other than the ones
we have considered occur at the zeros of the denomi-
nator X(u) —(v+i5)' They w. ill all be simple poles
except perhaps for certain values of p. Each pole, more-
over, leads to a relation between the coeKcients I';,
i.e., to a boundary condition. For example, if there is
a pole at I=No, its contribution to the right-hand side
of (77) will be of the form

Q~ I~A~up",

where E; depends on the value of the residue. This sum
must be equal to zero, since there is no term on the left-
hand side proportional to No". We already have one
boundary condition from (69). The total number is
therefore one plus the number of zeros of the denomi-
nator ) '—(v+i8)' within the unit circle. Now consider
the function

6 p slnv
S(u) =-', (u+u —')—cosv+ , (81)

2P.'(u+u ') —(v+ih)')

where we have explicitly expressed the fact that 'A'

depends only on cosh, that is only on u+u '. According
to (79), the number of zeros Zs of S within the unit
circle is equal to the number of refractive indices. The
number of poles J s is one plus the number of zeros of

the denominator of the last term, i.e., equal to the
number of boundary conditions. The excess of refractive
indices over boundary conditions is then just Zs —Ps.
This should be zero in order for a unique solution to
exist.

According to a mell-known theorem, however, 9

or

1 S'(u)du
~s ~s

2~i S(u)

l 2

~s—&s=— d(argS(k) ) .
2'

(82)

As k goes from zero to 2x, however, cosk goes from one
to minus one and then back along the same path. S,
which is a function only of cosk, must also trace out
some path as k goes from zero to m, and then return
along the same path. Hence, the integral in (82) is
clearly zero. The small imagninary term in the de-
nominator in (81) guarantees that no singularities are
encountered along the path. This proves that in this
model one always automatically gets exactly the right
number of boundary conditions.

It is also clear from (79) that one gets the same
number of refractive indices for all frequencies, since
one must solve an algebraic equation of the same order,
and exactly half of the solutions are in the unit circle
due to the symmetry between n and I '.

The treatment of the case
~ $~ (1 is quite similar to

the foregoing, so we shall just briefly state the result.
If h.'=A', the result is exactly the same as the above,
since in this case the pole at u= —$ in (77) and the
contribution of g„exactly cancel. If this is not the case,
one must add to the solution (65) another term pro-
portional to (—$)" for each frequency, and one more
boundary condition is obtained, keeping the relation
between number of boundary conditions and refractive
indices.

V. DrSCUsSroN

The model which we have discussed is free of the
difhculties mentioned in Sec. II, and is manifestly
causal. We have seen both in Sec. III and in Sec. IV
that the requirement of Hermiticity and positive
definiteness of the operator 2 puts restrictions on the
allowable boundary conditions so as to prohibit un-
physical effects such as reAection coefficients greater
than unky.

The treatment of the negative value of P, which led
to ambiguities in the usual theory, would be handled
as follows in our model: First, we would have to use
(33a) for the eigenvalue spectrum. Inserting (33a) into
(79), we would get instead of (10) two values for cos(pv).
As in the case of (10) with negative P, there would be a
region in which these two values were complex conju-
gates of one another, but this would cause no difficulty:

9E. T. Whittaker and G. N. Watson, A Course in Modern
Analysis (University Press, Cambridge, England, 1958), p. 119.
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Corresponding to each value of cos(po), there is always
exactly one value of (pt) with imaginary part positive
and real part between zero and 2sr. (Or between —sr and
sr, if one prefers. ) Hence, procedure (b) for handling
the problem of negative P (leading to two refractive
indices) is automatically singled out, but there is no

difhculty thereby introduced for positive P. The solution
of this difficulty, therefore, depends on the correct
inclusion of umklapp processes. It was to be expected
that the inclusion of umklapp processes would be
necessary in a general and self-consistent treatment
since, as pointed out in Sec. I, one normally finds in the
usual theory solutions which must be included to main-
tain causality but which do not satisfy the long-wave-
length assumption.

In summary, our treatment justices the usual pro-
cedure in cases where the latter leads to an unambiguous

answer, and is able to avoid the difhculties that some-
times arise in the usual treatment. Our model is as
general as is possible without destroying the validity of
the refractive index concept; it is not, however, capable
of discussing effects due to the distortion of exciton
wave functions from sinusoidal form near the edge of
the crystal. One such effect, apparently, is the refiection
spike observed by Hopfield and Thomas. 4

Note added irt proof. Some recent papers in the Soviet
literature dealing with the problem of acceptable
boundary conditions are due to S. I. Pekar, " V. L.
Ginzburg, "and V. I. Sugakov. "
"S. I. Pekar, Fiz. Tverd. Tela 4, 1301 (1962) (English transl. :

Soviet Phys. —Solid State 4, 953 (1962)j.
ii P. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34, 1593 (1958)

t English transl. : Soviet Phys. —JETP 7, 1096 (1958)j."V. I. Sugakov, Fiz. Tverd. Tela 5, 2207, 2683 (1963) /English
transl. : Soviet Phys. —Solid State 5, 1959, 1607 (1963)g.
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A theory of the critical 6eld of a thin superconductive 61m is given based on the assumption that this is the
6eld in which the normal state becomes unstable to the formation of Cooper pairs. Only the case where I, the
mean free path for the electrons is much less than d, the thickness of the film, and where the coherence length
is less than d /t is discussed. The resulting field for temperatures near 7, agrees with that predicted by
the Qinzburg-Landau theory. At lower temperatures, the field is greater than that predicted by an earlier
theory of Maki and appears to be in better agreement with the experimental results.

I. INTRODUCTION

HE theory of the critical magnetic field of a thin
film of superconductive material has aroused,

considerable interest in recent years, especially as the
experimenters are now reaching temperatures suS.—

ciently low to discriminate between various theories.
The first calculation based on the microscopic theory of
superconductivity was given by Bardeen. ' However, his

result was later contradicted by Nambu and Tuan' and

by Maki. ' The calculations of the latter authors diGered

in the range of values of the parameters considered. In
this paper we oRer a calculation of the critical magnetic
field for another range of values.

The problem contains four fundamental lengths, the
thickness of the film d, the coherence length of pure
bulk material $o( Istic/)'eT, ), the penetration depth of
the film X, and the mean free path l. Nambu and Tuan
and Maki considered the case of d() and showed that

Supported by the U. S. OfBce of Naval Research.
$ On leave/'of absence from The University of Liverpool,

Liverpool, England.
i J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
2 Y. Nambu and S. F. Yuan, Phys. Rev. 133, Ai (1964).
' K. Maki, Progr. Theoret. Phys. (Kyoto) 29, 603 (1963).

the transition is of the second order. We shall assume
that the transition is of the second order and thereby
implicitly assume d() .

Nambu and Tuan also considered the case of a pure
specimen (l»d) and specular reflection at the film sur-
face. Maki considered the case more nearly realized in
practice of l«d. He also assumed (l$o)'ts»d. We con-
sider instead the case of

l«(tg, )'t'«d

Our main interest is in the temperature dependence of
the critical magnetic field which is rather different from
Maki's.

Near T„the critical magnetic field has been calcu-
lated also from the Ginzburg-Landau theory. 4 However,
it is not obvious that this theory is applicable to films of
thickness much less than the coherence length. Gorkov's
derivation of the theory, for example, assumes that the
Green's function G(r,r', t) for the propagation of an
electron in a magnetic field described by the vector

D. H. Douglass, Phys. Rev. Letters 6, 345 (1961).


