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In this paper, two methods are presented for calculating the spin diffusion coefficient, the long-wavelength
low-frequency limit of the spin pair correlation function. These methods are used to evaluate this coefficient
in the isotropic Heisenberg paramagnet. In the first method, successively higher correlations are neglected,
and eventually an approximate nonlinear integral equation is obtained. In the second, a dispersion relation
and sum-rule moment relations are utilized. Expressions are obtained for the diffusion coefficient both at
high temperatures and near the Curie temperature. The two evaluations of the diffusion constant at high
temperatures agree with each other extremely well, and are in qualitative agreement with two previous

determinations.

I. INTRODUCTION

HAT part of the spin pair correlation function
which gives the long-time large-distance behavior
of the system contains a description of the spin diffusion
process. However, in practice this part is the most
difficult part to compute since it refers to a situation in
which the behavior of the system is dominated by many
collisions. Conventional pertubation theory is not suited
to such a discussion. In the language of perturbation
theory the treatment of the diffusive behavior in the
isotropic Heisenberg ferromagnet requires integral
equations or, equivalently, extensive resummation of
diagrams.
"~ We shall present two methods for calculating the spin
diffusion coefficient. In the first, we use the equations of
motion for the spin operators and certain boundary and
subsidiary conditions to construct the equations of
motion for the spin pair correlation functions. The re-
sulting equations express the pair correlations in terms
of the four spin correlations and lower order correlations.
The first approximation consists of closing the system
of equations by factoring the four spin correlations into
products of pair correlations. From this factorization,
exact in the high-temperature limit, we obtain nonlinear
integrodifferential equations for the spin pair correla-
tions. In principle, the nonlinear integrodifferential
equations contain information about the behavior of the
system for times both long and short compared to a
characteristic time, 7o= (%/J), where J is the exchange
integral. We concern ourselves here with the former time
domain. Because we cannot solve the resulting nonlinear
equation, we complete our analysis by assuming that the
correct form in the hydrodynamic limit (the limit in
which all properties of the system vary sufficiently
slowly in time and space to insure local thermodynamic
equilibrium) can also be used in the kinetic region. We
then obtain an expression for a temperature-dependent
diffusion coefficient.

* This work is based in part upon a portion of the doctoral thesis
submitted by H. S. Bennett to the Physics Department of Harvard
University, March 1964.

T Supported in part by the U. S. Air Force Office of Scientific
Research. Present address: Theoretical Physics Division, Atomic
Energy Research Establishment, Harwell, Berkshire, England.

The second method employs an exact spectral repre-
sentation for the spin correlation function which puts
into evidence its frequency and wave-number depend-
ence in the hydrodynamic limit. This spectral repre-
sentation contains a smoothly varying function of
frequency and wave number, whose moments are all
determined by equal-time spin correlations. In the
simplest approximation this smoothly varying function
is assumed to be a single Gaussian. Its parameters are
then determined by the first two moments which depend
on the instantaneous correlations of two and four spins.
The correlation functions are evaluated in an effective-
field (random-phase) approximation which is exact at
high temperatures. We thereby obtain a second expres-
sion for the temperature-dependent diffusion coefficient.

We represent the thermal average of the spin operator
in the 2 direction at the space-time point (r,f) by M (r.z).
An essential feature of the Heisenberg ferromagnet is
that the total spin is a constant of the motion,

d
——{/d3rM(r,t)]=0. 1)
dt
The conservation law (1) has the differential form,
6M(r,t)/6t+v-js(r,t) =0 ) (2)

where j,(t,f) is a spin current. When all properties of the
system vary slowly in space and time we may relate the
spin current to the quantity M (r,f),

1s(1,))=—DVM (r,t)= —DxVB(r,})=—LVB(r,t). (3)

The coefficient D is the spin diffusion coefficient; x is
the static susceptibility; B is the 2 component of the
magnetic field; and L is the Onsager coefficient. Equa-
tions (2) and (3) combine to give us the diffusion equa-
tion for the spin magnetization,!

OM (v,0)/t=DV°M (x.1). @)

From the hydrodynamic description given by Eq. (4),
we shall determine the form of the slowly varying
part of the spin pair correlation function. The hydro-

11.. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963).
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dynamic description will involve the spin susceptibility
(a thermodynamic derivative) and the spin diffusion
coefficient (a transport coefficient). By comparing the
hydrodynamic results with the equation-of-motion
description of the pair correlation function, we shall
show how a nonlinear integral equation obtained from
these equations determines the diffusion coefficient. The
only parameters which are available to characterize the
high-temperature behavior of the system are J, d, and #,
where d is the distance between lattice sites. Dimen-
sional analysis requires that at 8J/=0 the diffusion
coefficient is a pure number times (Jd?/#%). Our two
methods express this number in terms of the zero
wave-vector and frequency limit of a dimensionless
nonlinear integrodifferential equation, and in terms of
the properties of a dimensionless spectral function. The
values we obtain by these methods do not differ greatly
from values obtained by de Gennes? and Mori and
Kawasaki.? Both yield the high-temperature diffusion
coefficient and predict that the diffusion coefficient goes
to zero at the critical point. They also provide inter-
polation approximations between these limits.

II. FORMULATION
A. Heisenberg Hamiltonian

For the physical description of the ferromagnetic
crystal, we shall adopt the Heisenberg model of mag-
netism which attributes a localized spin to each site of
the periodic crystal lattice. We assume that the correct
crystal structure and lattice site spacings for a specified
temperature have been given to us and that the mean-
square deviation of the nuclei from their equilibrium
positions is negligible. We will therefore devote our
discussion to the statistical mechanics and to the spin
correlations of the system described by the Heisenberg
Hamiltonian,

H=—3{[B+B*(a,})]S:(er,t)
I BHedSH )t B @)S (D)
~1 T Jla—a)(Su(at)S-(«)
' +S.(a,)S.@D}. (5)

The notation used in Hamiltonian (5) will be described
in the following paragraph.

The spin operator in the Heisenberg representation
for the localized spin at site « of the magnetic lattice
and at time ¢ is represented by S(a,t). The exchange
integral J(a—a’) describes the interaction between the
spin at site a and the spin at site /. We will use the
convention that J(0)=0 so that we may extend the
double summation over all lattice sites, including the
term a=q’. The quantity u is the ratio of the intrinsic

2P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958).
3 H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 27,
529 (1962).
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magnetic moment to the spin angular momentum,
#S (). The quantity (B/u)= B’ is a spatially uniform
and time-independent external magnetic field in the £
direction. Finally, the Hamiltonian (5) contains an
additional space and time varying magnetic field,
[B(a,t)/x]. This field will serve later as a mathematical
device to generate higher order functions. Also, we
define B==%(B*¥FiBY).
Because we choose B=£B, the representation,

Sx(o,t)=Sa(at) 1Sy (), (6)

is convenient. The equal-time commutation relations
for these operators are

ES+(O‘)¢), S—-(a,;t)]: Zaa,a'SZ(aat) ) (7)
[Sz (Ol,t), S:l: (a/J)]: =+ Ba.a'sd: (ayt) ) (8)

[Silet), Sule ) 1=[S:(a), S:(@5)]=0.  (9)
We also have the subsidiary condition,
S(a,t)-8(est)=S(S+1),

which specifies the magnitude of the spin.

When the ferromagnetic system is in thermodynamic
equilibrium, we may compute the thermal expectation
value of an operator by using the canonical ensemble

(X)=Tr[e #EX]/Tr[eF¥]. (11)
The parameter 3 is the inverse temperature measured

in energy units, i.e., 8= (1/kT), where % is Boltzmann’s
constant.

and

(10)

B. Dynamic Response Function

We shall discuss the properties of the ferromagnetic
system in terms of the dynamic response function which
expresses the linear response of the system to a weak
field. We obtain this function by first-order perturbation
theory,

1: t
(i) == % | v

X{Sile), S (@' ¥) ) p=eB" (o' )V).  (12)

The externally applied field, B¥(«/,t'), is zero for ¢ <.
Its indices ¢ range over the values (4, —,2). If we
introduce the response function, x.y (af; o't’),

Xiv(at; o) = i/ Wyn(t—1){[Si(est), Ser (e ) D) p=o, (13)

where 7(t) is the step function, we may write,

00
8{(Si(at))= > dt’ X (at; a't)BY (o).

a’ i

(14)

00

The invariance of the equilibrium system under time
translation and the invariance of the crystal under
translation through a lattice vector a allow us to express
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functions in terms of Fourier time-lattice transforms:
([Si(a)t)) Sy (a,)tl)]>3=0

1 e dw .
o [ Lo, 09
q —0 4T
and
Xiir (ai; a't)
1 2 dw .
=7\}_ Z, / 5—6“1' (a—a’)—io (=t x ., (q,w) R (16)
L q —0 ™

where the prime means that the summation is carried
out over only those values of the wave vector ¢ which
lie in the first Brillouin zone.

From Egs. (14), (15), and (16) we deduce the
“Kramers-Kronig” relation,

0 do’ X! (q,w’)
Xiir (q,w) = 2/ —_— 5 (17)

o 21 & —w—ie

where e is infinitesimal and positive. The spectral weight
function X,;" (q,w), the imaginary part of X,;» (q,w), gives
the absorptive response.

C. Spectral Representation

We next present a useful spectral representation for
the function X,,” (q,w). To construct it, we first note that
because wX,.” (q,w) is even and positive, the quantity

[1 - Xzz(q)o)/xzz (qyz) ]—1

% @) =% 00D o / [ o= gor /

The form of representation (21) incorporates the
irregularity in X, ,”’ (q,w) for small q and w associated with
the existence of the diffusion process. In addition, we
see that the diffusion coefficient D is D(0,0);

WXz (qw)
D=D(0,0)=lim| lim{-——} |. 22
ool @

D. Equations of Motion

The equations of motion for the Heisenberg spin
operators,®

7’hgsw (a)t) = [Si (a>t)) H:I ’ (23)

are obtained by using the commutation relations (7),

4 We refer the reader to Sec. II, Part E and to Appendix B of
Ref. 1 for a more detailed discussion of spectral representations.

8 An extensive discussion of these equations and their conse-
quences at low temperatures is contained in M. Wortis, thesis,
Harvard University, 1963 (unpublished).
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is an analytic function of complex z except on the real
axis.! Therefore, we may write for arbitrary frequency
and wave vector,

e e
or i
[ [ (22T o0

We evaluate the imaginary part of (19) for real w by
using,

+° do’  D(q,w)
lim / it
0 | o 7 o — (wtie)

+0 g D(q.)
. /

+miD(q),

e T W —W

where P represents the principal value integral. We
obtain thereby the spectral representation for X..” (q,w)
in terms of the static susceptibility,

o dw X" (q,w
Xzz(q)O) = 2/ - i(__((l____)_ ’ (20)
and the function D(q,w);
+° do’ D(qw') 7? -1
] et R @
(8), and (9),
7/"%'5‘2 (Ot,t) =—B* (a)t)5+ (a)t)_{"B_(a)t)S— (C‘;t)
=3 2 J(a=a)(Si(@))S-(d)
-—S+(a',t)S_(a,t)} ) (24)

and
9

’Lha—Si (Ol,t) = :l:[B-*'Bz (a,t):]Si (a,t):FZB; (a,t)Sz(a,t)
!

FL J(@=a)S:(e,)S (@) —Sa(@,)Sx (@)} . (25)

The total angular momentum of the N spin system is
given by the expression,

Sr()=2 S(a)=Sr. (26)

The rotational invariance of each term in the no-source
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field Hamiltonian, Hy=H (B=0), leads to the conserva-
tion of total spin,

[Sz, Hy]=0. @27)

Consequences of Eq. (27) include the conservation
law (1) and the conservation law,

[+%(8/3t)F B]S,r(t)=0.

In determining the diffusive behavior of the ferro-
magnetic crystal, it is more convenient to employ
equations of motion for the spin pair correlations which
explicitly contain second-order derivatives with respect
to time. In deriving these equations we use the two
additional identities:

(28)

Ié]
l:ihB—Sz(a,t), S, (a',t):l =1 J(a—a")
i al’

Xda,a{S(a,)S- (@ ,1)+S4(a",)S-(a,))}

3 (=) S S-S @ )S_ (@)}, (29)
and

a3
[ih—sm,», Se <a',t>]

ot

=200, [ B+ B () 1S:(et)+ E T (a—a’)

X8 S0 1) S ()25 () S (0,0}

— Ta—a ) Salet)Se (@) +2. (DS} . (30)

E. Green’s Functions

For calculational purposes, it is convient to study
slightly different, less directly physical functions, the
time-ordered spin correlation functions or Green’s
functions,

Giv (a5 1) =((Si(a,?)Sv ()1 s (31)
and their cumulants,
Giv'(od; 1) =G (at; /t) = (Sia,0) (S (/1)) . (32)

They are defined in terms of the unordered spin corre-
lation functions,
Gir>(at; o't)=(Si(at) S ('1))=Gr i< ('t 5 af)
as,
Giv(at; /) =n(t—1)Gi> (ot; V')
+9{' =G0 <(ad; ). (33)

The fluctuation-dissipation theorem shows that the
functions G;»> <(af;a’t’) and therefore G satisfy a
periodic boundary condition in the time variable when
it takes on imaginary values:

Giv” (ot ') =Go<(a, t-+ihB; dt'). (34)

One consequence of Eq. (34) is that we may introduce

IN HEISENBERG PARAMAGNET

A 611

the Fourier series transform of G with period 8,
1
Giv(al; o'ty =—3'Y ¢iv- (ama—ion (=g, (q a0, , (35)
J\’ﬁ qQ v

where w,=i(7y/#B) and where » assumes the values
0, &2, +4, 6, - - -, etc. To change from the coefficient
g to the physical response x, we replace w, by (w-+1e),

that is, 2 do’ Xgp" (qu00")
giir (qy,) = 2/ 7

o 2 (W'—w,) '

(36)

The statements (34), (35), and (36) have been proven
many times in the literature.®

Since three particular Green’s functions will occur
very frequently in our later studies, it is convenient to
give them special names; the magnetization,

M ()=(S:(ost)); (37)
the transverse spin pair correlation function,
Glat; a't)=((S+(@,D)S-(/V'))+);3 (38)

and the longitudinal spin pair correlation function,

Moot o ) =((S:(aN)S:( 1)) (39)
The average spin per site M is,
M= lim(S.(eD). (40)

The commutation relation (7) and subsidiary condition
(10) produce an expression for M (a,t),

M(a,)+S(S+1)=G>(at; at)+Mo(at; o). (41)

In the following sections, we shall present two
methods to determine the number D the first involves a
nonlinear integral equation, the second a moment
expansion. Both methods yield qualitative statements
throughout the temperature domain of paramagnetism.

III. THE NONLINEAR INTEGRAL EQUATION

We will now employ the preceding formalism and
mathematical tools to construct the equations of motion
for G and M when the source field has only a 3 compo-
nent;i.e., B(a,t)=2B*(o,t) = 2B(a,t). There exist several
ways by which the equations of motion may be con-
structed. However, we have found the one below
fruitful:

a 9
th—ih—G(at;o/t")
' ot

d
=ih§{ih5(t— OIS+ (o), S-(,0) 1)

+ih6(i—t’)<[S_(a’,t), ih£S+(a,t):|>

d d
+<(’Lh—a—tS+(a,t)$h§S_(a ,t ))+> ) (4‘2)

6 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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and identity?
L9 9 _ 34)
h—ih—M 3 (at; ot —i = (S —(Si(a
ihihMalat; o't) ey~ (@A) =(Sa)A), (40
=14k (t—t’)<|:Sz(a’,t), ihESZ(a’t):D to write
a¢
—ih(6G (at; o't') /6B (a1,tr))
. __a_ . i ’ oy = <(S2(a1’t1)s+ (ayt)S-(al7tl))+>
H{((isiwpinsio ) )> - ) S NS S @ ))s). (45)

After we substitute Eqs. (24), (25), (29), and (30) into
Egs. (42) and (43), we find that the right-hand side of
each equation contains very many terms. We schemati-
cally list the basic structures which occur:

_ oG
M;BM;JG;JM,; BBG;B]{——MEE-I-MG} ;
and

8°G

oG
M (—ih)
6B

oG _
T (il M (it +M26} .

6BéB

In the last two expressions we have introduced the

9 0d _ _ _
th—i—Mo(at; o't)) = — 2088 (t— 1 ){ba,ar 2 J(@—&) M 2(at; @t) — J (a—a') Mo (at; &'8) } +

ot ot

{[(—ih)z 6°G (ot a't')
X
2 8B(@)sB(,)

B=0

where the notation
o]
a—a
means that « and & of the first term enclosed in square
brackets are interchanged.
In order to truncate this first equation of the hier-
archy, we neglect the higher order fluctuations reflected

by the second-order functional derivative; i.e., we
assume,

(8°G/6BSB)<KIM oI 5. (48)

The assumption (48) leads in fact to the following
fractorization of the four spin correlation function,

<(Sz (0_1,5)54_ (Ol,t)Sz (alyt,)S—(a/7t,))+>

~Gat; ) Mo(at;at’). (49)
The analogous factorization,
(@S- (@S #)S-@t))+)
~G(at;&)G('Y ;at), (50)

will arise for Eq. (43) and will reduce Eq. (43) to Eq.
(42) when it is used in conjunction with condition (46).

+Mo(at; o't Moot &

We are interested in only the paramagnetic region
with no external magnetic field present; thus =0 and
B=0. We also limit our considerations to the isotropic
Heisenberg Hamiltonian with cubic symmetry. The
latter provides us with the statement,

lim Gat:a't)=2 lim My(at:at).
M=0,B=0 M=0,B=0

(46)

The above two conditions greatly reduce the com-
plexities of Eqs. (42) and (43).

Setting M and B equal to zero in Eq. (42) and apply-
ing the symmetry property (46) give us the nonlinear
integrodifferential equation for My(at;a’t’):

Z/ J(e—a)J (o' —a")

a,a

a—a o —>a- a—aifd —a
o s S e
a—a a—a a—aldld —«a

The assumption (48) or equivalently the factorization
(49) or (50) is exact in the 8J =0 limit.

The functional derivative assumption (48) yields the
approximate high-temperature (above the critical point
B.) equation of motion for the longitudinal correlation
function M,. This is Eq. (47) without the (8°G/8BéB)
terms. The space-time transform of the latter equation
assumes the form:

_ )
w, M (q,wﬂ) -

oy 28 @-S@-oF

LV 41,71

XM?(ql,wn)M2 (ql_ q, "-’1'1_‘*’1')

2 _
= T @S- aen). 6D

7 Equations (44) and (45) are based upon the use of the generat-
ing function,

T exp—stto{expl — i/m) [ ain o]})

where H(f) = —Z4 B(a,t) ‘S (o,t) and
Si(ayf) ={exp[ /%) ﬁ i diH,(i)]}

X &; (a,t){exp[ —Gi/h) ﬁ ™ g, (z)]}+.
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The exchange interaction transform is given by,

J@=% J(a) cosq-a, (52)

where we have used the inversion symmetry of the
lattice, J(a)=J(—a). Since when w, is replaced by
(w+1€), the function x is obtained and Im{x}=x", we
may express Eq. (51) as a nonlinear integral equation
for the spectral weight function x''(q,w). Then as usual,
using the fact that,

1

w)+3], (83)
61 % o) =[n(w)+3]
where 7 (w)=[exp(8#iw)—1T]", we obtain,
1
w’x OLw):ZV% IR{CHENICIE I
+oo dw1
X/ —x" (@)X (@1— ¢, w1—w)
e T
X[n(w)—n(wi—w)]. (54)

We have also suppressed the subscripts z of x”’. In the
high-temperature limit 83— O we have

wx (qw)= Z IRICHERICTET

BN

(55)

X / + dwy x" (qu,e1) X7 (Q1—q, w1—w)

o T w1 (w1—w)

Actually, for these diffusion processes, we may treat
Bchw<k1, so that this equation holds for small w through-
out the paramagnetic region.

IV. THE DIFFUSION COEFFICIENT CALCULATION

A question now arises as to which approximate form
for the spectral weight function is the most appropriate
one to use in the nonlinear integral equation (55). This
equation contains an integration over all values of w;
along the real w; axis. But in addition, the choice for
X" (g,w) ought to take into account the fact that due to
the weighting factor {1/wi(wi—w)} appearing in Eq.
(55), the low-frequency behavior of the spectral weight
function will be most important in the evaluation of
the integrals. According to the spectral representation
(21) and assuming the phenomenological equation (4)
to be correct, the spectral weight function must for
sufficiently small ¢ and w behave like

x" (q,w) ~x(q,0) D’/ (*+ (Dg*)?).

This gives us a one-parameter spectral weight function
if we use the effective field [random-phase approxima-
tion (RPA) ] form for the q and temperature dependence

(56)
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of X(qvo))
x(4,0; RPA)=x(0,0)/(1+x(0,0)7(0)).

Here j(q)={3(0)—3(q)}. At high temperatures the
form (57) for x(q,0) is exact. Henceforth, we shall not
distinguish between x(0,0; exact) and x(0,0; RPA),
understanding that our results for finite 87 are certainly
no more justifiable than those of the RPA.

When we insert the low-frequency spectral form (56)
into the right-hand side of Eq. (55), we obtain

x? 5 [3(a)—J(q1—q) J?

(7

!

BN a [1+4xj(a0) [1+x7(q1—q)]
D(q1— ) +D[(q1—q)*—q:*]}
{0*+D[(ai—q)*— ¢:*]}*+ D?r?

Dq*{w*— D[ (q1—q)*—q:*]}

{*=D[ (i~ @)*—:*]} *+4D* (a1 —

where x=x(0,0).
In accordance with the procedure indicated by Eq.
(22), we obtain for the diffusion coefficient the

wx'’ (qw)=

q)4w2] 9

expression
]>\2 X _ 1/2
D= B0 | (59)
hlp
where
Boc) x2dx 60)
X7 _3w2>\3/o [+ ] {14xj (@) ]

and where the subscript nl means the value for D ob-
tained from the nonlinear integral equation. In order
to facilitate the computation of the limit of expression
(22) we have invoked the spherical continuum model of
Appendix A and carried out the angular integration.
From our Eq. (59), we can determine an expression for
D throughout the paramagnetic region. In the conclu-
sion of this paper, we shall do this and also compare our
results with those of the moment method and with those
of other authors.

V. THE SUM-RULE MOMENT METHOD

In the previous section we pointed out that the low-
frequency region gave considerable contribution in the
integral equation that determines x” (q,w) and that in
this region x”(q,0) had a Lorentzian form. We know,
on the other hand, that for large frequencies x” (q,w)
decreases much more rapidly than a Lorentzian since
all its frequency moments exist. The present procedure
treats more correctly this second facet of the behavior
of x'(q,w). In this method we compute the diffusion
coefficient in terms of parameters whose values are ob-
tained in terms of these moments (which are equal-time
spin correlation functions). This method has to some
extent been employed previously by de Gennes.? He
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uses a Lorentzian form for x'’(q,») and introduces a
cutoff frequency in order to make the Lorentzian mo-
ments finite. He then employs two sum rules to deter-
mine the diffusion coefficient and the cut off frequency.

Our spectral representation (21) provides an ap-
parently more satisfying form for incorporating the
features which he noted and demonstrates the properties
that for small w and q, x” (q,w) must be Lorentzian and
D(q,w) must be a slowly varying regular function; but
that on the other hand as w — o the tails of both func-
tions must have finite moments of all orders. In our
moment method the high-frequency form is dictated by
the high-frequency dependence of D(qw); while the
low-frequency form is determined by the spectral repre-
sentation (21) with the function D(q,w) taken to be the
constant D=D(0,0).

The first two nonzero moments of the spectral weight
function x”' (q,w) give us,

+ duw 1 . ,
/ -—h(hw)xll (q?w)EhZCIZ(q)q2=]V Z et (a—a’)

o T (a—a’)

X<l:ih§t—53(a,t), Sz(a',l)]>3=0, (61)

and

+° oy 1 . ,
/ —h(hw)3x" (q:w)E WiCy? (q)q2=ﬁ Z eta- (a—a’)

— T (a—a’)

X<[<ih—§—t>2sz(a,t), (—ihg)Sz(a',t):'>B=0. 62)

Performing a high-frequency expansion in powers of
w2 on the spectral representation (19) and equating the
coefficients, we relate the moments of D(q,w) to the
moments of x”'(q,w). The first two identities expressing
the moments of D(q,w) in terms of those of x”/ (q,w) are

C.? +0 oy
(q) = —D (q)w) ) (63)
X(qyo) — T
and 2 400 d 2C 4( )
GO e+ e
x@0) J (@0)

We now introduce a two-parameter approximation to
the function D(q,w) which incorporates all the properties
mentioned previously. The two sum rules (63) and (64)
then provide us with a sufficient number of conditions
to compute these two parameters in terms of equal time
commutators. The generalization of the example pre-
sented in this paper is to introduce a representation for
D(qw) containing # parameters and exhibiting all the
correct properties, and then to use the first # nonzero
moments to determine the » parameters.
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We now suggest that a sufficient approximation to the
function D(q,w) is the two-parameter Gaussian form:

D(qw)=a(@)7(q) exp{—[wr(@) ]}, (65)
where we interpret the function 7 (q) as the collision time
for processes involving the wave-vector transfer ¢. In-
serting the Gaussian form (65) into Egs. (63) and (64)
yields the expressions for 7(q) and a(q) in terms of
Ci(q) and Cs(q):

( )_r1/2C12(q) i
TR
and
Cy? ,0
. (@x(a,0) o

2[x(0,0)Cs* (@) —¢*Ci*@)]

In terms of the two parameters « and 7 the diffusion
coefficient D=D(0,0) becomes
vm Ci#(0)

Dynn=0a(0)7(0)= —_— ,
O x(0,0) vZ C;(0)

where the subscript sm means the value for D obtained
from the sum-rule moment method. Using a different
method, Mori and Kawasaki?® also obtain Eq. (68). We
briefly discuss their method in Sec. VI.

It is interesting to compare our result (68) with the
corresponding result of de Gennes. He approximates
x" (4,») by the Lorentzian form (56). However, because
the moments of the Lorentzian form (56) are infinite,
he neglects the tail of the Lorentzian. This truncation
adds one more parameter to the problem, the cutoff
frequency for the integration limits appearing in the
equal-time commutation sum rules (61) and (62). In our
notation, his method yields the diffusion coefficient,

1 ™ 013(0)
70,0 23 C4(0)

(69)

A close parallel exists between the shortcomings of
the nonlinear integral equation method and those of the
moment method. Just as we can not solve the nonlinear
integral equation, we can not compute exactly the equal
time commutators #2C*(q)¢*> and #C2(q)¢? at finite
temperatures. Hence as before, we must seek approxi-
mations to the quantities Ci?(q) and Cg(q). These
equal-time commutators have been evaluated at /=0
for nearest-neighbor interactions by de Gennes and by
Mori and Kawasaki. We shall evaluate them away from
BJ=0 by invoking assumptions similar to those we
employed with the integral-equation method.

Since the equal-time commutator {[ (:49/9¢)S.,S. 1) p—o
contains only the correlation of two spins, we may
readily express the function C:2(q) in terms of the
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spectral weight function:

Ci¥(q)= (Z/QQhN)E’ [3(a)—3(@:—a)Jg(ar), (70)
where,
+0 dey
g=[ —x"(qw)[n(w)+3].

Expression (70) is exact. The equal-time commutator
([ (Ghd/d1)2S., (—1,h6/ 91)S.])—o contains the correla-
tion of four spins. We therefore introduce the factoriza-
tion scheme

(S+(1)S-(2)S+(3)S-(4))
~G(1,2)G34)+G(1,4)G3,2), (T1a)
and
(S:(1)S.(2)S+(3)S-(4))~M>(1,2)G(3,4), (71b)
and thereby obtain an expression for the function C?(q)
which is bilinear in the spectral-weight function:

Cy (Q)——h—“ > J(q)I(q0)

91,92

X[3 (@) —I(—a)Jg(ag(a).  (72)

The random-phase approximation (RPA) to x”'(q,w)
for the paramagnetic region, which is exact at 8J=0,
gives us the quantities C?(q) and Cs*(q) as functions

Clz(q)—BhZ Z [3(a)—J(a1—a)]

Xx(q1,0; RPA), (73)
and
C:f(q)—-ﬁ%4 ~ Z'S(qx)\s(qx)[i‘f(qz) RICT

Xx(a1,0; RPA)x(q,0; RPA).  (74)

Using the expressions (73) and (74) we obtain from
Eq. (68) the expression for D as a function of
temperature.

VI. CONCLUSION

We shall conclude our discussion by computing the
high-temperature limit of the diffusion coefficient and
its behavior near the critical point 8.. We shall also
compare our results with those of other authors.

The function B(xj) obtained from the nonlinear
integral-equation result (59) has the limits:

v
. D N —1
’I<1jr_)n0B (x7) P tan—ly (75)
for v tan~1y>>1 and
v
lim B(x7) =——(xj) 7. (76)
xjow 7 12773 7
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The high-temperature limit for D,; becomes,

1,y 1/2
H

4872\3

JNTS(S+1) v tan~
[ )

nl ——> ——
0 g 3

where we have used (x/8)p-0— [S(S+1)/3]~B.J ; the
behavior of D, near the Curie point 8, assumes the

form
v

]}\2 1/2
_if[msrﬁo 7(x j)lﬂ] '

nl P (78)

The functions appearing in the expression (68) for D
computed by the sum-rule moment method have the

high-temperature limits:
2 2
2 ’
Cr@ = e N% @3 @)—I@—a)I, (79)
and
3
CRW 1 s @3 @) a)
X[3 (@) -3 (@=—a)], (80)
where we have employed the statements
x(4,0; RPA) —— x{1—xj (@} --- (81)
and
(82)

2 J(a)=0.

Because expansion (81) reproduces the exact high-
temperature expansion of x(q,0) up to the second term,
Egs. (79) and (80) are exact. We must of course use the
rigorous expansion

S+, BSOS+
X= + I SRR I
3 3

for the x=x(0,0) which appears in expansion (81).
The sperhical continuum model of Appendix A then
gives us for y tan~y>>1:

oy 272
C2(0) — an~ly, 83
P 0 grongge (83)
5,02 3,4
C3%(0 _ —1)2
3<)53274A462h4<tan v, ()
C2(0) — v tan™
1%( e (85)
5jv?(tan—1y)?
C52(0) (86)
BB 262h47r4)\4
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The corresponding limits for Dy, become

JA27S(S+1) v tan—ly\ V2
sm > T (87)
b0 p 3 160mA®
and
JAZ 1 o tan~ly\ V2
Dsm > _< ) . (88)
B=Bc f1 x 7\ SBJmA®

The high-temperature limits of Dy and Dsn agree
quantitatively very well, the ratio is (Dsm/Dn1)=0.97.
In addition, in a simple cubic lattice with a preponder-
ance of nearest-neighbor interactions, we have

D, (87=0)=0.20(Ja/B)[S(S+1)12,  (89)

and
Dy (8] =0)=0.19(J@*/W)[S(S+1)]"2,  (90)

if we use A=1.13d, y=4.40, and j=06J in relations (77)
and (87).

Because analytic evaluation of D,(8/=0) from
Eq. (58) with the exact nearest-neighbor interaction

J(a@)=J, for a a nearest neighbor, (91)

=0, fora nor a nearest neighbor

is not feasible, we have introduced the spherical con-
tinuum model. In order to be consistent, when we com-
pare Do, with Dy for the 3J=0 case, we have also
used this model in the evaluation of Dy, [refer to
Eqgs. (83) and (84)].

The treatments of de Gennes? and of Mori and
Kawasaki® contain evaluations of C2(0) and C32(0) at
BJ=0 for the simple cubic lattice with the nearest-
neighbor interaction (91). In order to compare the
BJ =0 predictions of our theory with those of the above
authors, we use the interaction (91) in Egs. (79) and
(80) and evaluate the quantities Cy? and Cy? at BJ=0
for the simple cubic lattice:

[C2(0)/xJsr=o= (2/3)S(S+1) (J/h)*d?,
[C2(0)/xTs7—0= (20/3)S2(S+1)2(J /)d2.

All evaluations of [Cy?(0)/x] agree. However, our
evaluation of [C3?(0)/x] differs from the evaluations of
de Gennes and Mori and Kawasaki. de Gennes makes
a spherical approximation for the Brillouin zone and
finds,

[Cs(0; dG)/xJsr=0= (27/6)S*(S+1)*(J/)*d>.

Mori and Kawasaki make a small wave-number ap-
proximation and find

[C&(0; MK)/x Jsr=o= (16/3)S*(S+1)*(J/h)'d?
X[1—(13/60){1+[3/265(S+1) 1} 1.

Our value, Eq. (93), is exact because we use expansion
(81) which yields the rigorous high-temperature result
up to the second term. Comparison is made more
complicated because each of us has substituted into a

(92)
and
(93)

(94)

(95)
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different form of the exact expression for C% We have
worked from

([(Gha/08)2S.(t), (4h3/0)S. (o' ,8)]);
while de Gennes computes from
((1h9/02)%S (a,t) S (/1) );
and Mori and Kawasaki compute from
((1hd/30)2S . (a,t) (370 / 3)2S . (1))
by assuming that
(L(h8/0)S (), Soa,'t)])

decays in time according to a two-parameter Gaussian
distribution.

The final BJ=0 results for the simple cubic lattice
with the interaction (91) are:

D (87 =0)=~0.26(Jd*/m)[S(S+1)]2,  (96)

Daa (87 =0)~0.23(Jd*/ m)[S(S+1)T"2,  (97)
and

Dy (BI=0)=~0.33(Jd%/n)[S(S+1)J2.  (98)

The results (96) and (98) follow from Eq. (68), while
the result (97) follows from Eq. (69). A more sensible
comparison of approximation procedures involves
using the exact evaluation of Ci?(0) in the compared
expressions:

Dqc[BJ=0; Eq. (93)]

~(0.72)(0.26) (J@*/M[S(S+1) 1", (99)
Dux[BJ=0; Eq. (93)]
~(0.26)(J&*/m)[S(S+1)]*. (100)

In other words, with the same evaluation of C; the
difference between Dyx and Dgg is smaller. On the
other hand, the close agreement between Dgg and
Dy~ Dy results from compensation between the differ-
ent expressions (68) and (69) and different evaluations
of C3(0). Equivalently, we may write,

Deu[BT=0; Eq. (94)]

~(1.39)(0.23) (J&/H)[S(S+1) ]2, (101)
Dsu[8T=0; Eq. (95)]
~(0.33) (J&/B)[S(S+1)T2. (102)

Our Eq. (78) predicts that D,, behaves as (x )~/ for
8 near 3.; while our Eq. (88) predicts that Dy, behaves
as (xj)* for B near B.. Thus, both methods agree
qualitatively with the conclusions of other authorss:8
predicting that D vanishes at the transition point. These
conclusions are essentially assertions that in the Einstein
relationship D= (L/x), Eq. (3), L is not as badly
divergent at 8, as x. If, for example, [C:#(0)/C3(0)],
and therefore L, is not singular at =4, the coefficient
D behaves as (x 7)™ for 8 near 8,. Since different inter-

8 L. Van Hove, Phys. Rev. 95, 1374 (1954).
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polation procedures give different singularities for L,
quantitative agreement is not obtained in the transition
region. Indeed we feel that all estimations of the
behavior near 8, are so unreliable that even a non-
vanishing value of D has not been truly ruled out.

To summarize, we have presented two methods for
treating the time-dependent finite-temperature behavior
of the paramagnetic state of the isotropic Heisenberg
ferromagnet. We obtained two diffusion coefficients,
D,y and Dy, which characterized long-wavelength
decay in the paramagnetic state of the system. The
two estimates agreed closely in the high-temperature
limit and were in qualitative agreement with other
treatments. Both methods predicted that the diffusion
coefficient vanished near 8., but the predictions in this
region are much less reliable.
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APPENDIX A: THE SPHERICAL CONTINUUM
MODEL

The physical content of Eqgs. (58), (73), and (74) will
be much more accessible after we introduce into the
theory simplifications concerning the lattice structure
and the exchange interaction.

The first simplification assumes that the first Brillouin
zone of the wave-vector space contains many points.
This is equivalent to stating that NV is extremely large.
Replacing fthe discrete summation by an integral is
justified in the limit as V approaches infinity, that is,

To effect a further simplification we approximate the
polyhedron for the first Brillouin zone by a sphere in
wave-vector space. The identity

(I/N)LJ=1 (A2)

determines the radius ¢o of this sphere and in the
continuum limit, identity (A2) assumes the form

? 0 2w T
qdq / d¢ | sinfdo=1,
(277')2 /; 0 —_—

go= (67%/v)1/3. (A3)

We must know the behavior of the exchange inter-
action J(a—a') before we can make any additional
statements about j(q) beyond those implied by

J(@=2% J(a)sin’(q-a/2).

1
lim —>'(--+)=
N-bocN q

(A1)

or,

(A4)
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A rigorous investigation of the function j(q) would be
out of place due to the complex nature of the equations.
Therefore, we will motivate a crude approximation for
7(q) which simulates the behavior of the exact expres-
sion (A4) in a qualitative manner.

When there is one electron per site, the Heisenberg
model gives the result

J(a— a')——62/d37 /d:‘ra,

where U, (r.) is a bound-state eigenfunction localized
about the site at a. Because a bound state is character-
ized by an exponential decay at large distances, it is not
unreasonable to replace the exchange interaction by

J(@)=JINe1V/]al),

ng (ra) Un,' (ra ) ’ (AS)

ro—1Tq I

(A6)

where J >0 for a ferromagnetic crystal, \>0, and «7%0.
The quantity X plays the role of an effective interaction
range.

When we replace the discrete summation by an
integral, we obtain

1
@)= / da[1— )T (@) =t/ (1+a2)], (AT)

where x=X\|q|, 7=[4rJ)\?/v], and where the crystal,is
of infinite extent in the evaluation of the integral in
Eq. (A7). The function j(q) as given by Eq. (A7) be-
haves as (- - +)¢? when q approaches zero, in accord with
the exact expression (A4). Also, the form (A7) for
values of q near the Brillouin zone simulates more closely
the behavior of the exact Eq. (A4) than the form

j(@)= ja? (A8)
used by other authors.?

The parameter A (the effective interaction range)
determines an effective number of neighbors which
interact with a given site. These neighbors contribute
most significantly to the function 7(q) and are contained
inside a sphere of radius X which is centered at the site
in question;i.e., Zegs= (4wA%/3v) is the number of lattice
sites within a sphere of radius A\. There are six nearest
neighbors in a simple cubic lattice and hence the
condition Z>6 must be satisfied if the continuum
limit is to be representative of the physical system. We
then have a lower bound on A,

N> [6(3v/4m) JV3=1.134.
We denote by v the dimensionless quantity Ago.

9D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English transl. :
Soviet Phys.—Usp. 3, 320 (1960)].



