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translational invariance. Summing over k yields

dM/dt = —(M 3f—,)/r, ,

1/r, =)I( 2—p g k Bk ) .

MP ——PyH/(2 —P Qk Bk;)

for the magnetic polarization gk qk. Equation (18)
confirms that at high temperatures an Ising system
relaxes qualitatively like a paramagnet, with small
quantitative differences. In particular this means that
if a system is for t&0 below the Curie point at equi-
librium, and is suddenly brought in contact with a
reservoir at T&&&u;/k, the magnetization relaxes without
any "sudden" or discontinuous behavior. The equations
for the r;k become with (15)

«; k/dt= —4~rrk+&0 zl(&; Ku+&kl~t;)

XPyH(q—k+q ) jNh. (19)

The equations do not depend on higher moments. In
particular, if translational invariance is assumed:

r, k
——r(j —k), qk

——q;

and nearest-neighbor interaction only, (19) becomes

dr(f, g,h)/dr+4r(f, g,h)+2PHq
=2PB Qs r(f+3t, g+3g, h+3k), (20)

w~ere
dr(0, 0,0)/dt=0, r(0,0,0) =1,

where r=ht, and f,g,h are the components of j—k.
The vector 6= (bt, 8g, 5k) is a vector to a,ny of the nearest
neighbors. The solution to the one-dimensional version
of (20) is given by Glauber. The homogeneous parts in
the two- and three-dimensional cases are very similar
to the equations of coupled harmonic oscillators in a
lattice with one defect. It is consequently to be expected
that they can be solved by the same methods, in
particular by the use of Green functions, "or generating
functions. "
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Hot-carrier conduction in many-valley semiconductors in the presence of microwave signals has been
considered. The time-dependent Boltzmann equation applicable for different cases of applied steady electric
and microwave fields in diferent directions is solved to obtain the distribution of carriers. The microwave
conductivity and change in dielectric constant to be observed in diferent cases are also deduced from the
distribution function. Two cases are considered: {a) small microwave field in the presence of large steady
electric and magnetic field, and (b) large microwave field in the presence of steady magnetic field. For
case (b), an expression for the efTiciency of third-harmonic generation is also obtained. A microwave experi-
ment for the measurement of the Sasaki-Shibuya voltage is also proposed. The approximate numerical
calculation for the eKciency agrees with that of the reported experimental value.

I. INTRODUCTION

OT—ELECTRON conduction in semiconductors
. ... has been studied' experimentally using micro-
wave 6elds. In some of these studies, the microwave

6elds have been used to eliminate the problem of carrier
injection and in others to detect whether the conduc-

' J. B. Arthur, A. F. Gibson, and J. W. Granville, J. Electron.
2, 145 (1956).

'A. F. Gibson, J. W. Granville, and E. G. S. Paige, J. Phys.
Chem. Solids 19, p. 198 (1961).

3 J. Zucker, V. J. Fowler, and E. M. Conwell, J. Appl. Phys.
32, 2606 (1961).

'S. Kobayashi and M. Aoki, J. Phys. Soc. Japan 17, 1066
(1962).

~ S. Kobayashi, S. Yabuki, and M. Aoki, Jap. J.Appl. Phys. 34,
1608 (1963).' K. Seeger, J. Appl. Phys. 34, 1608 (1963).

tivity characteristics are frequency-dependent or not.
Seeger' also reported signi6cant amounts of third-
harmonic generation using high-microwave pulsed 6elds
in e-type germanium samples. Results of these micro-
wave experiments cannot be explained by applying the
theories of dc hot-electron conduction directly. Some
work relating to the theory of hot-electron microwave
conduction has been reported by Paranjape, ' Gibson
et al. ,' and Nag and Das. '

Paranjape and Gibson et al. assumed the distribution
function of the carriers to be Maxwellian, which is valid
only for highly doped samples. Gibson et al. considered
only the case where a small microwave field and a large

~ 3. V. Paranjape, Phys. Rev. 122, 1372 (1961).' B.R. Nag and P. Das, Phys. Rev. 132, 2514 (1963).
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dc field are applied in the same direction. Paranjape
developed the theory of harmonic generation consider-

ing acoustic-phonon scattering only, and numerical
values calculated from his expression show an order-of-
magnitude discrepancy with Seeger's experimental
values. Nag and Das also considered the case of large
dc and small microwave fields, and by solving the time-
dependent Boltzmann equation found the values of
microwave conductivity and change in dielectric con-
stant. The effects of acoustic- and optical-phonon scat-
tering were considered but the effective mass of the
carriers was assumed to be isotropic. For actual semi-

conductors like e-type germanium, however, it is neces-

sary to include the many-valley band structure of the
material. The use of such a band structure is well

established and its inclusion has revealed some inter-
esting results, such as the Shibuya-Sasaki effect. ' The
purpose of the present communication is to incorporate
the effects of many-valley band structure of semi-

conductors in different cases of hot-electron microwave
field conduction.

In Sec. II, the results of Ref. 9 are extended to include
the effects of many-valley band structure and the pres-
ence of a steady magnetic field. The microwave con-

ductivity and change in dielectric constant are deduced
from the distribution function of the carriers obtained

by solving the time-dependent Boltzmann equation.
Section III deals with, high-microwave-field conduction.
The generation of a third-harmonic component is con-
sidered in solving the Boltzmann equation. The ef-

ficiency of third-harmonic generation and the occurrence
of a microwave Shibuya-Sasaki voltage are also dis-

cussed in this section with special reference to e-type
germanium.

II. MICROWAVE CONDUCTION IN THE PRESENCE
OF HIGH STEADY ELECTRIC, SMALL MICRO-

WAVE, AND STEADY MAGNETIC FIELD

1. Distribution Function of the Carriers

The semiconductor is assumed to have e valleys with

the effective masses in the principal directions of a valley
given by ml, m2, and m3. The energy E of a carrier is

given by

F= A'/2[Ei'/mi+E2'/m2+Ep/m3$,

where Kl, E2, and IC3 are the components of the wave
vector K along the principal directions. For the jth
valley, Eq. (1) can also be written in terms of E„E„,
and K„ the components of wave vector K in the z-y-s
coordinate system, as"

where M& is a tensor defined by

3f
Sf' &

M, ~

M, &

3fyz

3Egg

where M p=Mp for PWn , n, 'P=x, y, z

3 3—=Pm; ';
P.2

M„'=m Q —;
i=1 mi

M,y'=m Q
m;

M„'=m Q
i=1 m;

and

l .2

M„„'=m Q —;
i=1 m

3 n2
M.,=m Q —.

i=1 m.

M„.=m Q
i~1 mi

(fi,b, )3), (fi,t g,i 3), and (gi, g~, q3) are, respectively, the
direction cosines of the principal axes 1, 2, 3 of the jth
valley with respect to the x, y, and s axes.

The distribution function of the carriers in the jth
valley, f&'(K), at a time t, satisfies the Boltzmann
equation

af'(K)

f ield

af~(K) afr(K)

coil
(4)

Solution of Eq. (4) may be obtained assuming that
f'(K) can be expanded as

where g has components g„g„,and g, in the x, y, and s
directions. The first term on the left-hand side of Eq.
(4) is given by"

ap'(K) e - 1
=—F+—(VIE)X8 VxfJ(K), (6)

af&' 1
+K M F +—(g&xB) . p)

2m BE

where F and 8 are the total applied electric and mag-
netic fields, respectively, e the charge of the current
carriers, and 2irh Planck's constant. Using Eq. (5) one
obtains

ap(K)

E= (h'/2m) [cV„'E,'+M„y&E„'+M„&E,'
+2M y'X E~+2M~ ~EyR +2M~EE'

=h'/(2m) KM &K, (2)
af'(K)

coll

af&(K) a f&(K') af~(K)
+ +

Bt „ Bt

In the case of many-valley semiconductors,

lI14-v
W. Sasaki, M. Shibuya, K. Miziguchi, and G. M. Hatoyama,

J. Phys. Chem. Solids 8, 250 (1959).' P. Das and B. R. Nag, Proc. Phys. Soc. (London) 82, 923
(1963).

where the terms on the right-hand side ot Eq. (8) are
due to acoustic, optical, and intervalley phonon scat-
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tering. These terms also can be written as'"

Bf&(K) B Bf' E2 — K g'
E2 +=P=

QE" BE BE kT

&'(K) 8 B- Bf ,g9
h~, (e'o+1) E +2(e'o 1)(—Eft)—

Bt „p 2/E BE BE tQ P

Bf'(K) 8; -
(h(o;)

{E(E+h~;))'"{fo'(E+h~;) expl
I fo (E)

Bt j~g v lAJ hMj+E kkT J

(10)

+{E(E—h~') }'"{f"(E—h~') —fo'(E) exp(~')) —K.g'/r .~-.=X—K.gtlr .1--, (11)

—=3gE/2mc';
8

=—(~"+1)V'E'
Top ARs 71nt V

(e—1)8;
(e"+1)v'E,

A

Sec'
s{)=

3(ukT)'" tl.

AGOg %Ps
Ss=

kT kT

9 AD' hg 1
8— 0

j.6 C' 2mkTe" —1

and p .js Bo]t7mann's constant, T thc 1Rttlcc temperature, Acro thc chR1Rctcllstlc cnclgy of Rn optlcRl phonon,
Aw; the characteristic energy of an intervalley phonon, c the velocity of sound in the semiconductor, D the coupling
constant between a conduction electron and an optical mode of vibration, C the coupling constant between a con-
duction electron and an acoustical mode of vibration, { the first nonvanishing reciprocal vector of the lattice, tI,
the low-6eld mobility considering only acoustic-phonon scattering, and 8; a constant for the intervalley scattering
similar to 8 in optical-phonon scattering.

Pllt'tlllg Kqs. (7)—(11) 111 Kq. (4) olle obta1ns

B Bf' E" — B 8kT Bf')
E(f') = E' + f' + ~0(~"+1) E — I+8(~"—1)(Ef')

BE BE kT BE~ 2A BE)

e B=—2+ LE3/2F. gjj+
h Bjv gE Bt

A
+X(f') (12)

h' e Bf& 1 - -g& Bgt-
+-(g~'II 8) =M~' ——

fg A BE A 7. BI

~ac ~op ~in%-v'

The total electric 6eld for the case considered here is given by

F=ReFo(1+Re'"')

where Fo——the steady electric field applied, &Fo——the smail microwave signal applied parallel to Fo snd ~—the
microwave frequency. The effect of the microwave field would be to perturb both p' and g~. Since y ls a smail
quantity, this perturbation is considered small and p' and g' may be written as

fj f i+gf jeicvI—

g'= go'+&gi'~'"'

Using the above two equations in Kqs. (12) and (13), one obtains, collecting the first-order terms only and solving
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for go' and g~' "
2e d

L(fp') = —A——[—E'"F gp']+X(fj),
3A dA

ek dfp' (er/m)(detM)FpX(M 'B)+(er/m)'B(Fp B) detM+M F, ek dfp&

g 2— ~ Qw

SPY 1+(er/m)'(B M 'B) detM m dF.

2 e
L(fi') = ———A [E'"&p(gi'+ gp') j+,&~ fi'—+X(fi'),

3 It dE~

ek (dfp' dfi'
gi&= —

r~ + O..
m kdE dE

where

(18)

(19)

(20)

Putting
r, = (kT)i~«/A,

r = rX(kT)'"P/gE,

(8/2A )(e"+1)sp ——q,

(&/A)(e" —1)= r

(er/m)(detM)FpX(M 'B)+(er/m)'(detM)(1+ippr) 'B(Fp B)+M Fp(1+icor)
Qw

(1+ippr)p+(er/m)p(B M i B) detM

and

2 e 1 eIg 2mc'
p*=-——— Fp M Fp,

3Am'' 0

s'=E/kT.

p *=p*/D+q

and eliminating gp' and gi' from (18) through (21) one obtains

sp dfp~
s'+ OIr p.+qs +(2«4+2rs') fp' ——X(f,')

dz 0 ds
(22)

d sp* dfi' d sp dfp' d sp dfp'
«P+ — OJr „+q +(2s'+2rs') fi' =i4cur. s fi' ——O'H gg OIr +X(fj), (23)

dz 0 ds ds 0 ds ds 0 ds

where

and

1+(er/m)'(detM) (Fp'B) /Fp' M 'Fp
Op p. =[Fp Op.]/[Fp M Fpj=

1+(er/m)'(detM)(B M—'B)

OH =[Fp'8 oj/[Fp'M'Fpj. (25)

Generally, the value of &vr (=cars) for the range of microwave frequency of experimental interest assumes a negligi-
ble value with respect to 1. With this approximation one has

Oae. =Oa-,
and Eq. (23) simplifies to

d sp*
«'+ Hnpo+qs

dz 0

dfi~ 2P* d dfpr
+(2«'+2rs') fir =X(fj)+i4ppr, s'fi& —s

'
O—H p,

ds 0 ds ds
(26)

The distribution function for the carriers of the jth cussed in Ref. 10, in place of using the complicated
valley may now be obtained by solving Eqs. (22) and equations, one can simplify for two particular cases.
(26) considering all the valleys together. But as dis-

Case (A) Independent Valley Model-
"B.Lax and J. G. Mavroides in Solid State Physics, edited by

I'. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 11, p. 285.

In this case the terms contributed by intervalley scat-
tering are completely neglected. Then fp' can be written
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foj~ exp 2z3+2rz

F„and Ii, will be developed in the y and s directions.
These fields can be evaluated by equating the currents

z2+ OH o +/lz (27) in the y and z directions to zero and solving for F„and l~, .
0 The current density in any direction is given by

fo'~ exp (2z'+2rz) dz

which, for 8=0, reduces to

z'+ p
* . (27a)

n

J;=p n, e K; (go,+Xgi;e'")(pxE);doK, (31)
=1

It is evident the Eq. (27a) is similar to that for fo'
derived in Ref. 8 considering isotropic effective mass.
Only the term p*, which is dependent on the direction
in which the electric field is applied, is different and in-
troduces the anisotropy in conduction. For a magnetic
Geld applied transverse to the applied electric field

F= Qo-'J, (32)

where i =x, y, z. Equation (31) for current density con-
sists of two parts: (i) the dc pa, rt and (ii) the microwave
part. The dc part is given by

where
0/3 o„.~ 1/(1+ (M.,M'„„—M.„2)co.2),

4o,= (eBr/rn), (2g)

0

Qo-p= 2 -"-p'
n=l

zof j
(33)

2 'vg' 8 1

3 n jn r (ttT)'/2

Whence we get
detgo

g'g ZZ g

(34)Case (B) Interi/alley Scattering Considered &dc =

The intervalley term" '4 X in Eqs. (22) and (26) pro-
duces two effects: redistribution of number density of
carriers in different valleys and equalization of the aver-
age energy of the carriers. But generally, consideration
of the first effect only gives a result consistent with dc
experimental results. Here this effect only will be con-
sidered, i.e.,"

Similarly for the microwave component of current one
obtains

(35)F= Q,.4-'J,
where

Q,.4
——QO+ Qi,+iQ1, ,

and the factor O~jj p, effectively decreases the term p*. for &=0 and
Thus the function of a transverse magnetic Geld is to
reduce the effect of high-steady electric field on the
semiconductor as far as microwave conductivity and
change in dielectric constant are concerned.

where

e&' n—T,1/2/Q T.1/2

g
(29)

Q1ra, p Q ~ap'
j=l

zodz(fi„'r+ 124or 2fhj)-

(36)

T; = TLp*O/j o,/r Q], (30)

n; is the carrier density of the jth valley, and T,. is the
effective temperature of the jth valley. Equation (30)
is not strictly valid for acoustic-phonon scattering. In
this approximation the effect of the term X on the in-
dividual valley distribution function is neglected.

Using the above equations for fo' and nj in different
cases, one obtains the complete equation fr' which must
be solved to obtain the values of microwave conduc-
tivity and change in dielectric constant.

2. Microwave Conductivity and Change
in Dielectric Constant

Let the applied field be in the x direction. Owing to the
presence of the Hall and Shibuya-Sasaki effects, fields

"J.Yamashita and K. Inoue, J. Phys. Chem. Solids 12, 1
(1959)."E.G. S. Paige, Proc. Phys. Soc. (London) 7S, 174 (1960}.

"H. G. Reik and H. Risken, Phys. Rev. 126, 1737 (1962).
"H. G. Reik and H. Risken, Phys. Rev. 124, 777 (1961).

sL™0

Ql' p ZZ 8
j=1

zodz(fi, r '21( r~2(fi, +fo)—)-
(37)

1rxx
o„=microwave conductivity = a o, 1+ (3g)

dC lixx
change in dieleotric constant= Ao=' ———. (39)

&0 ox~

For the microwave susceptance also one obtains an
expression similar to that of Eq. (34).

For cubic semiconductors, the above terms become
much simplified and one obtains approximately (ne-
glecting terms of smaller order due to Shibuya-Sasaki
effect):
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To evaluate the constants Qi, e, Eq. (26) is solved for
fi', once fp& is known, this can be done by expanding
fi' in terms of s in a power series. The coefficients of the
expansion can be determined by solving a set of linear
algebraic equations, as discussed in Ref. 8.

It is worth mentioning that the above equation simpli-
fies to that of the isotropic-mass case for e-type ger-
manium if the applied electric field is parallel to either
of the crystallographic axes. But for other directions of
the applied electric field, the different valleys have dif-
ferent effective temperatures and one must solve fi'
for each valley, since p* is different for different valleys.
Also it is to be noted that some amount of microwave
power is excited in the transverse direction because of
the Shibuya-Sasaki eGect.

fr f 1'+f—reiwt+ f eight+. . .

gf goring&&ei~i+g. pij i~i+. . .

(40)

(41)

where fp', fi' . and gp~ gii' ' are functions of energy
only.

Putting the above two equations in Eqs. (13) and
(14) one obtains

and

gj=gj—.. .gp i=0

The nonvanishing terms fz) fi', a,nd gp', g,
are successively smaller and, neglecting terms higher
than fp' in the expansion of f' and higher than gp&'in the
expansion of go', the following equations are obtained:

2 8
L(for) = L-',E'"F—g—,]—+X(fj),

3&A dE
(42)

III. MICROWAVE CONDUCTION IN THE PRESENCE
OF A HIGH-MICROWAVE FIELD

1. Energy Distribution of Carriers

In the presence of a high-microwave field ReI"~e'"',
one expands f' and g' of Eq. (5) in terms of Fourier
series:

By eliminating gi& and gp' from the above equations
and simplifying, one obtains

(s +—sP Oa o+i7s) +2(s4+2rs2)fo'
dk

d sp* dfp'
Orr .. +X(fo') (46)

dk 4Q dk

d ~p4 spQ df j
s'+ OH—,+ ea„, p.+ i7s

dk 40 40

+(2s'+2rs') fi' igopr——,fj

p d dfo'———s Orr „+X(fj). (47)
2Q dk dk

The term due to fs' on the right-hand side of Eq. (46)
is negligible in comparison to other terms. On neglecting
this term and also considering ip small, the value of fo'
reduces to Eq. (27) in the independent-valley model,
and the same applies to the case where intervalley scat-
tering is considered. Only in the calculation of p* must
one consider the rms value of the applied microwave
field and not the peak vs, lue. The equation for f&' also
simplifies to

d sp*
~ df&'

s'+ OIr e,+qs
~

+(2s'+2ris')f. ~

ds 2n 'r3
ds

. p* df'
=pgopr. fp' s O—ir—e, +X(fp ). (48)

20 dk

The above equation is similar to that of fi& in Eq. (26),
'

and the time-independent parts of the symmetrical
component of the distribution function of the carriers
are identical.

eh dfp 1 dfo-

gyg&

= r+— 0'—„~,
m dL&" 2 dE

(43)
2. Microwave Conductivity, Change in Dielectric

Constant and Conversion EKciency of
Third-Harmonic Generation

2e 1 d
L(fp) =——— L-:E'"F (gi'+go') j3hd dE

The fundamental and the third-harmonic component
of current may be written, respectively, as

+ 2iidfp+X(fp'), (44)
'n

Jii ——Ree' ' Q n, e E;gi;&'—(V x)E,
' d.K

h
(49)

eh )1df&'~
g=—I-

m k2 dFP

where 0„,3„& is given by the same expression as O~„but
with coo- replaced by 3'~ wherever it occurs.

a
Jp;——Ree" ' P n;e E' gp' —( Vx)E,

' d.K(50)
h

Proceeding as in Sec. II.2, one obtains approximate
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values of 0- and Ae for cubic semiconductors given by POWER OUTPUT OUE TO
SHIBUYA SASAKIEFFECT

2rgx
rrrx 0 do 1+ (51)

&dc 2ixx

7

&&0 - O~~—
(52) SEMICONDUCTOR SAMPLE

when the applied microwave field is in the x direction.
The conversion efficiency for third-harmonic genera-

tion, defined as the fraction of total input power con-
verted into the third-harmonic component, can be
written as

3. 2 3i*. 2

'9 (53
Oxx 2rxx 2i~z 3rxz 3izx

M I CROWAVE
POWER INPUT

where

(fpr&g+ pi pi7~'f„&)z'dz
FIG. 1. Crossed-waveguide arrangement for measurement of

the microwave Shibuya-Sasaki e8ect.

2rap=2 M ~ap
J=l

s'fp'ds

(54) approximations

Qprxx+&Qpixx
F„=(applied field) &&

Qprxx+&Qpiixx
(58)

2iaP 2 ~ ~aP

z'fp'ds

szdz(fp r+zirdr Pfp„')

so if one places a semiconductor slab at the junction of
the two crossed wave guides as shown in Fig. j., then for

(55) low electric fields, when there is no transverse voltage
F„,no power is transmitted in the other waveguide. ""
But for large pulsed microwave power, hot-carrier con-
ditions generate a transverse voltage Ii„, which excites
some power P, t in the other waveguide. F„can be ex-
perimentally determined from the relation

3iap =
2 ~ ~np

/~1

s'fp'ds

s'ds( fp '~ z~r~'f pr)—

z fp~ds

(56)

(57)

(59)

This experiment, the microwave counterpart of the
Shibuya-Sasaki experiment, will throw much light on
the microwave interaction in many-valley semiconduc-
tors and will be crucial test of the theory developed
here.

3. Numerical Results

Since the components of the new tensor defined above
depend on the direction in which the electric field is

applied, the conversion efficiency will depend on the
orientation of the sample. The effect of the magnetic field

will be similar to that discussed in Sec. II, i.e., to reduce
the effective temperatures of different valleys. Though
we shall make no further calculations taking 8 into
account, it is expected that the effect of a steady mag-
netic field will be to reduce the conversion efFiciency of
third-harmonic generation.

Solving for F„, the electric field developed due
to the Shibuya-Sasaki effect, one 6nds with the above

fp=z(&p+&is+ )fp, (60)

"G. E. Hamilton and W. W'. Gartner, J. Phys. Chem. Solids
8, 329 (1959).

'7T. Stubb, Acta Polytech. Scand. Phys. Nucl. Ser. 11, 18
(1961).

In this section a calculation of the values of 0. , Ae,
and p for a 4.68-0-cm e-type germanium sample will be
presented considering isotropic effective mass. The
reason for doing this is that using the solution of fq&in'
Ref. 8, one can obtain the results very easily without
any further solution of f&& by computers. Exp'anding the
second-harmonic component of the symmetric part of
the distribution function fp in the form
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where ao, a~, . are constants, one 6nds that these con-
stants are the same as those tabulated in Ref. 8 for two
cases; predominantly acoustic-phonon scattering and
optical-phonon scattering for s&= io$2.18&&10"rad/sec]
and Fi= 2%2kV/cm.

Using the above values of the constants one obtains
the following results:

Case A Acou—stic phonon -scattering only

&dc Om,

change in conductivity = ——=—=0.000517,
0 dc &dc

change in dielectric constant= De=0.149

=0.018%.

4. DISCUSSION

In the treatment above, two configurations of the
applied electric 6eld were considered. Another case,
where the steady high electric field and small micro-
wave Gelds are applied at right angles, is of special inter-
est since Erlbach" has shown recently from dc incre-
mental calculations that negative resistance is expected
for certain favorable conditions of carrier population in
the valleys of many-valley semiconductors. The cal-
culations for this case can be made easily using the
technique developed in Sec. II.i.

At low temperatures, the effects of ionized-impurity
scattering become equally important. One can easily
include them in the theories by considering"

BP K g,'
(61)

Case B Optic—al phonon-scattering

/oo a.=0.05572,

6&=0.262,

where
4e 6(hoT)'

3m(~ho T) '"tj, EQ E
(62)

rt =0.35% .

Paranjape's formula gives, for acoustic-phonon scat-
tering only

ao/o~, =0.0005%,
Do=0.09% ~

it=0.006%, 0.02% (at 9.378 kMc/sec).

Experimentally Seeger obtained, at 2v2 kV/cm, a
conversion efficiency of about 0.45%. From an examina-
tion of the above table, it is evident that considering
acoustic phonon scattering only (Case A) and from
Paranjape's formula, one obtains a negligible difference
between the dc and microwave conductivities, but the
theoretical eKciency so obtained is an order of magni-
tude lower than the experimental value. Consideration
of optical phonon scattering (Case B) shows that though
the result predicts a negligible frequency effect, never-
theless, the conversion efficiency at 17.38 kMc/sec is
of the same order as obtained experimentally at the fre-
quency of 9.378 kMc/sec.

Consideration of ionized-impurity scattering is also
important in connection with negative resistance. "

Few numerical results are presented in this report.
The author is at present working on the numerical
evaluation of microwave conductivity, change in di-
electric constant, and conversion eKciency of third-
harmonic generation. The results of these numerical
calculations and also that of the microwave Shibuya-
Sasaki-eftect experiment will be reported at a later date.
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