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Dispersion Theory of the Kondo Effect
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According to recent work by Kondo, the scattering cross section of an electron in exchange interaction
with a paramagnetic impurity immersed in a Fermi sea of electrons has a logarithmic infinity as the electron
energy approaches the Fermi energy. We examine this problem by means of the Chew-Low method first
devised for meson-nucleon scattering. It is found that the singularity is replaced by a resonant scattering
close to the Fermi level.

I. INTRODUCTION

A S recently demonstrated by Kondo' in a paper
treating the resistance minimum observed in cer-

tain paramagnetic alloys, a diffculty arises in the per-
turbation theory of a noninteracting electron gas ex-
change-coupled to the spin of a paramagnetic impurity.
Kondo showed that the scattering cross section of an
electron o6 the impurity spin, calculated to third order
in the exchange coupling, becomes logarithmically
infinite as the energy of the electron approaches the
Fermi energy. This difhculty arises essentially because
the paramagnetic scatterer has an internal degree of
freedom: the orientation of the spin. As a result, the
exclusion principle (whose effect in the intermediate
states cancels out for a structureless scatterer, such as
an ordinary imposed potential) does come into play. The
summations over intermediate-state energies, instead
of ranging freely from zero to infinity, extend only to
(or from) the Fermi level, producing the aforementioned
singularity.

A divergence of this sort calls into question the sta-
bility of the usual Fermi state when there is a 6nite
density of paramagnetic impurities. As an initial step
towards tackling this problem it is desirable to determine
if the Kondo singularity remains a singlarity in all
orders in perturbation theory, or is restricted to a finite-
order calculation.

Unfortunately, there is at present no convenient
method for evaluating the general term in the perturba-
tion series for a contact interaction of the form

e'=en, S s(0).

(Here S is the impurity spin; s(0), the conduction-
electron spin density at the position (0) of the impurity;
J, the exchange coupling which, with Kondo we assume
to be antiferromagnetic [J)0 for the form (1)];and
00 is some atomic volume. ) The usual methods which
are so successful for perturbations involving fermion
and boson operators fail in the present case, because of
the unwieldy commutation relations of the components
of S. (See Sec. 5.) For this reason, it is necessary to seek
some nonperturbative procedure. In a diferent context,
that of meson theory, a nonperturbative theory particu-

*Supported by U. S. Air Force Contract No. AF-AFOSR-610-
64, Theory of Solids.

~ J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

larly designed for scattering problems was introduced
some time ago by Wick, ' and by Chew and Low. ' We
will show that their general method can be applied to
advantage in the present problem also. Compared with
the original Chew-Low static-source model of pion-
nucleon scattering, the present problem has some in-
creased complexity because of the absence of a finite
threshold, and because the interaction (1) is bilinear in
the fermion field operators, while the static-source model
is linear in the boson field. This radically alters the char-
acter of the "crossing relations, " in the present case,
diminishing the powerful role they play in the solution of
the Chew-Low model. On the other hand, the present
problem is simpler in that there are fewer degrees of
freedom of the "target" than in that model.

2. LOW EQUATION

One of the great advantages of the Chew-Low method
is that it formally operates with exact eigenstates of the
target, and with exact scattering states of the target
+incident particle, and yet achieves results which
make no reference to the details of these states. (See,
however, Sec. 7.) In applying this method to the present
problem we make the following assumptions:

(1) At an infinite distance from the impurity, the
electron gas is in the Fermi state.

(2) There are an even number of conduction elec-
electrons, and the value of the impurity spin is one-half,
so the ground state of the target (impurity spin+elec-
tron gas) is doubly degenerate.

(3) The eigenexcitations of the target are of only two
kinds: (a) excitations with energies infinitesimally
above the ground-state energy, but with wave functions
which at infinity look like electron-hole pairs, or (b)
excitations whose wave functions decay at inanity, but
Whose energies are above that of the ground state by a
finite minimum amount. A band of exact eigenstates
with energies inhnitesimally above the ground-state
energy, but with wave functions falling oQ at inanity
would be fatal in our argument. It is plausible that
localized states, if they exist at all, correspond to excited
bound states and as such require 6nite excitation
energies.

' G. C. %'ick, Rev. Mod. Phys. 27, 339 (1955).
3 G. F. Chew and F. E. Low, Phys. Rev. 101, 1571 (1956).
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I k,&0,$)"=aJ' l(o,S)+ I
x)+

of the total Hamiltonian

H =Ho+H'= Qei, ai,~ai,+H'—

(2)

The states
I x) in each case denote the scattered waves.

If co is the ground-state energy of the system, then the
energy of this scattering state is ei,+&a. Schrodinger's
equation therefore reads

Note that these assumptions do not preclude a quite
complicated structure of the two exact degenerate
ground states. We denote these two ground states by
Is&,S) where S takes two values, but for conciseness we
shall usually drop the index S and distinguish the states
by primes on the ao. Were there no interaction, the

I
a&,S)

would simply be the two product states formed from the
Fermi state and the up or down state of the impurity
spin. Consider now an additional electron, with energy
e~ above the Fermi level incident on the target which is
in one or the other of the two ground states

I
&us). We

proceed to give a derivation of the Low equation, which
closely parallels that given in Schweber's book. 4 With
al,~ denoting the creation operator of an electron with
wave number k (incorporating spin orientation for
brevity), the incident state may be taken to have the
form

Gi I(ds)

and, because
I &o) at infinity is essentially the Fermi sea,

this state is nonzero only if e»0 (the Fermi level is
taken as the zero of energy). We now seek exact outgoing
and incoming scattering eigenstates

thus

l&,~&'=o" l~)+(~+~~—H~i~) 'j~l~& (g)

The scattering matrix element from one single-electron
scattering state k to another k' (likewise above the Fermi
surface) is defined as

si'(y';y(y= &k 6)
I kM)

which we re-express in terms of incoming states alone
by noting that, from Eq. (8),

I
&~&+—

I
&~&-= —2~i~(~+.,—H) j, I ~&,

so that

s,.„,„=-&u'~'I u~&- —2~z-&u'~'I s(~+~.—H)j, I ~&

= 8l.„y~5~~~ —2% Z5(07+ Kg N —ail—)
x-&&'~'I j~ I

~&.

Next, we define a T matrix by I
see Eq. (8)]

&~ ~
I jil~)

= &~'lo'j. l~&

+&~'I g~'(~'+~i, H+») —
g~ I

~). (10)

In terms of T, the transition rate for an incident elec-
tron in state k to any other state is given by the average
of

P ~(~~ y~' —~i—~) I » -,~- I'
k'es'

over the two indices S. Also, the S matrix is

(H —~—~.) (o"
I
~&+

I x))=o, (3)
gkl ~r k(q Skag'~~~ 27I 18(Q)+Ek GP 6kr) Tkz(u' &ra''

where we have dropped all obvious indices. But

Hoa~~ Ice&= ai,t(ei,+H')
I

co&

and

where
H'~" I~&=i ~I ~&+o"H'I ~&,

ji,= (H', ~a')

denotes the commutator of H' with a~i'. From (4) and

(5), it follows that

(H id ei) ait
I
4') = j—i

I

~)— (7)

Substitution in (3) then gives (recalling that Hler)
=~I~))

(~+~~—H) lx&= j~l~)

whose outgoing solution is

I
x&'= (~+"—H+i~) 'j~l~&,

where 8 is a positive infinitesimal. A similar result holds
for the incoming solution Ix) (with the sign of 5

reversed). The solution to Schrodinger's equation is

The normalization of the "in" states has been taken to
be unity. This is consistent with unit normalization of
the incident state a&~

I a&), so long as the density of scat-
terers is infinitesimal. For finite density, ai Ia&) would
have to be renormalized.

It is clear from the definition (10) that by inserting a
complete set of scattering states Q I ) & I

in the center
of the second term oo the right, some kind of expression
for T in terms of itself may be obtained. First, we proc-
ess the leading term on the right. jl, is the commutator
of H' with aI,~ and therefore depends on the components
of S, and linearly on all the a~'s. To get rid of the depend-
ence on the a~'s we write

oc jk= (ofj a)+jd4-
=px I —jim's &

where the anticommutator p~ I, depends on the com-
ponents of S alone, and not on the fermion operators.
To evaluate &o&'I ai ji, I

&o), we now need to know ai
I
&o).

But
Hog~

I
(0)= (H, op~)

I
GO)+Gp~M

I M)

4 S. S. Schweber, An Introduction to Relativistic Field Theory
(Harper 8z Row, New York, 1961), Chap. 12.

and

(H,aj, ) = eiai+fi, —



jk = (&'~k)
(H'—ak') '

Hence, we find that

Now the state jk t
I ru) can be expressed as a superposition

of various (1V—1) electron states, if
I a&) had Z electrons.

This means that we can invert this equation, obtaining

ak I(a)= —(P 9+~k—:) 'j;t
I
o—)) (12)

without ambiguity, provided our assumption (3) of
this section is satisfied. For, by that assumption, jk I

co)

can be expanded in a complete set of scattering states
which, asymptotically, all have the appearance of
excited target states with one electron (below the Fermi
sea) removed, and arbitrary numbers of hole-electron
pairs excited. 1Athen acting on any one of these states,
H produces a factor

interaction is linear in the 6eld operators, jk and jf,~ are
essentially the same. Here this is not the case, and, as a
result, it is impossible to solve the present problem
entirely without approximations. (Actually difhculties
of a minor nature remain in the Chew-Low problem
also. ')

Next we require an equation for TI, „,.I,„.This we
obtain by considering hole-scattering states of the form

I
»&'= ~k

I ~&+ I
x)'

with energy s&—ek(kk&0). We will then show that the
matrices T and T, though themselves de6ned only for
processes above and below the Fermi level, respectively,
can be continued into each other by certain equations,
which are the "crossing relations" for the present
problem. In exactly the same way as before, we find
that the 5 matrix for hole scattering is given by

gk'&o'; kryo ~kk"4(u'+2s k~(~ 'kk ~ +kk') Tk'm'; km y

where ek is the energy of the removed electron (always
(0), and p k~ the sum of pair excitation energies (all
positive). With kk )0, we then see that

will never attain values less than zero. This may also be
inferred from the fact that ak

I or), for ~k &0, must be a
purely local state; if there are no localized excitations of
arbitrary small energy (or more precisely, energies less
than kk. ), then (H co+ek.)ak. Ice) —must consist of states
with only positive coefEcients.

From (10), (11),and (12) we 6nd that

Tk'ry'key &~ IIkk'kl~)

+2 &~'I j"IN& (NI jkl~)/(~+k' —~-+~~)

+2 &~'I jk I ~) && I j"I ~&/(~- —~+ ~'& (13)

and both k' and k are inside the Fermi sphere. Noting
that

~k jI =pe I —j~ ~I

we see that we need ak t
I
a). In the same way as before,

we derive

ak tl(o)= (II—kk. —ao)
—'j„.

I &o),

where the reciprocal once again is well de6ned, subject
to assumption (3). Thus we conclude that

2'-', k-= &~'ink "l~&—&~'I j"(&+
I k'I —~) 'jk l~)

—&~'I j"(~'+
I ~'I &+~&—) 'j.l~&-

= (~'
I
~'k'I ~)

—P 2.;k;*&.;k./(~'+
I

kk
I

E„+iS)—
—Z T'.k *2'.;k./(&.+ I ek

I

—~), (14)
where &nl denotes any one of the complete set of in-
scattering states, and E„ its energy. Alternatively, we ~here we have explicitl used the f t th t
may wllte negative.

2'k. ;k.= &~'Iuk kl~)

gP 2;,k;*2'.;k /(~'+ ~k —F. +~&)

+P T. k 2;,k./(F ~+kk ), (13a)

3. CROSSING RELATIONS

%e now make the central approximation of this
paper; %e permit only one-particle intermediate states

In)-= Ik",k)")-.

with r„,k„=-&nljkl~), T„,k„&eljktI~),. an——d-stars
denoting complex conjugates. In contrast to the Chew-
Low static source model, the operators T and T are not
quite so simply related here. Because in that model the

~ It Inight be supposed that Eq. (13a) (together with a similar
equation T) can be regarded as the erst in a hierarchy; however,
at some higher stage it becomes impossible to perform the inversion
corresponding to (12) because of energy-conserving intermediate
states. The necessary generalizations which must then be made are
described in Ref. 6.
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Then (13a) and (14) form a self-contained set of equa-
tions, vrhose solution corresponds to a summation of
selected perturbation series terms. The nature of this
approximation is discussed in Sec. 5. Here we remark
only that, were we dealing with ordinary scattering
from a spin-independent potential, such a procedure
would actually be exact (see Appendix I).

Let us now examine p~~. in more detail. In second-
quantized notation, the interaction reads

H'=D«JS s(0)

= (J/2&)Z p'+A«to, t+S rl. t'A«

+S'(At ~st —A& ~c «)jr

where Ã is the number of atoms in the crystal, and
where the spin subscripts have been exhibited explicitly.
It follows that

jk.= (J//2&)g [&.tS+A«'+~. «S A«'

Tk'cu', kcu(Z) (Ol ~P«'« ~~) 2 Tk"ar"'k'c«Tk" cu";kr«/Z

g Tk"al" kcu' Tk"al" kral/Z+e ~ (19)

In terms of these, we have

T(") = T(z) IL- k+'k r

T(")=T(z)
~
L..)„)„k.

(2o)

Recalling that the p's depend only on the spin parts of
the k's and using Eq. (17), we see immediately from
(18) and (19) tha. t

and (14) does not alter the result. Finally, we observe
that by assumption (3) the intermediate energies are all
of the form ek"+a&", and we simply denote ek +&a"—&o

by e". It is now convenient to introduce operators T(z)
and T(z) which are functions of the complex variable z
and whose matrix elements satisfy the coupled equations

Tk'c«', kcu (~ ~f«k'k
~
~)+2 Tk"cu" k'c«' Tk"c«" kcu/(Z e )

+Q Tk-.-;k. *Tk".-;k ./(z+ e") (18)

Tk.'k. (—z) =Tk.'k. (z), (21)

I«« ";«.=$&/2&) P"«fiutS++&u t'ai««S

+(~;t~,t ~. &~.&)S j,
so that

(o&'i p„, k. i«u)= (J/2Ã)(o'ol'[S Rime), (16)

independent of k and O'. This independence is, of course,
due to the choice of a contact interaction and leads to
great simpli6cations. Here s is the ordinary vector matrix
corresponding to spin one-half.

On the other hand (and this is crucial),

(co'inst«. ..., k. ice)= (J/off)(ore'is sio'r0)
= (J/2N) (cr'tu'

~

S i
~
ore) (17)

where the tilde denotes the transpose of the spin
matrices.

It is clear f'rom the foregoing that there will be solu-
tions of (13a) and (14) which depend on the momenta
only through the energies. Furthermore, if, according
to assumption (3), there are no "internal" excitations
vrith arbitrarily small energies, then, if ~k is very close
to the Fermi level, eI, will be equally close. In fact, energy
conservation vrill require ~I,.=ok, so far as the one-
particle T's are concerned. As eA, moves away from the
Fermi surface, processes in which an electron emerges
accompanied by hole-electron pairs also become possible,
but to study these, more general T,.~'s have to be con-
sidered, and it would be necessary to treat these by
means of the previously mentioned Norton-Klein exten-
sion' applied to the present theory. In this paper, vre
'tlllls RsslllIle ekr = ek Rnd G)=re (hilt thRtdoes 110't B. leall
~co)= ~au') because of the silent index S). Furthermore,
we note that adding or subtracting i5 from the non-
vanishing denominators of the crossing terms in (13a)

' R. E. Norton and A. Klein, Phys. Rev. 109, 584 (1958).

which is the "crossing relation" to be used later. Another
crossing relation can be found by taking complex conju-
gates, but vre will have no occasion to use it.

4. PARTIAL WAVES

From the form of (18) and from (16), it is evident
that T may be regarded as a matrix function of s and S.
From considerations of rotational invariance, it must
have the form

T=~+a(s S).
However, it is physically more appealing to use a
decomposition' into triplet and singlet projection
operators I'» and I'0.

T(z) =le(z)Pe+it(z)PI,
where

J'e———,
' —S.S Et=-,s+S S.

From here on, vre explicitly use 0 and 0', the spin parts
of k and k', since T does not depend on the wave
numbers. The index co or co' continues to refer to the tvro
degenerate ground states. The crossing relation states
that.

Tcr'cu'; ac«(z) Tcrc«'u'cu( z) ~,

But that means that

T= re( —z)Pe+It( —z)PI, (24)

where the expressions for I'o and I'» are the same as
(23), but with the s matrices replaced by their trans-
poses. Ke note that I'0 and I'» are no longer projec-

'Note: For an interaction J'(~k —k'~l of 6nite range, it isneces-
sary to consider higher partial waves. For the p wave, there will
be three distinct t matrices corresponding to total angular mo-
mentum 0, 4, and 2 compounded from orbital angular momentum
1=1 and from the two spins.
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+" It, (x+ib) I'p(IxI)1 J
t, (s) =-—+4.V

It, (x+o7) t, (x—+o ) p
's o (I*I)

" ( ' '
I
Tt (x)T(x) I

ooi)II IIPl IP trteSI trrr too

and, similarly,

+" It(x+ib) I'p(IxI)dx

2

Imt(x+ib) =- —or
I
t (x+oh) I'p( x

or

c

h oes to 1/V atf this equation which gThe only solution o is
in6nity and has no poles is'

Po'= (-', —S.s)'= -', ,
Pio=-,o+2S s,

'" .(I"I), ,
x '

x iB—x't(x+ob) V

Por =PiPo —(S s). ——1 1 0

ina, —-' —BP,). Combining these resu ts,Finally, (s S)=-', (Pi— o .

Pi 1, we finally obtain-—US1ilg also Po+ 1=, iil

s = —-' t —ti, '+ toI'jPo7'(s) 2 (s) = L
——.

I
to—ti

+L-:
I
to-tiI'+

I
tiI'

ese e uations being taken at
'

ht-hand sides of these equa

sinE s. an

—s. For use in Eq. , i n

d i lx to —x, and regroupvariables from x o —, d
we obtain from (18)

x)

and

o,a familiar result, which
virtual bound state), if V has a sui a
enoug soh that the equation

1 p, {Ix'I)dx'—= —P
1V g—g

I' denotes the princip pi al art, and
=p/E is the density of states per epg

other han, i
were discar e, wc would have

o IgIo
p(I xI)dx,A(s) =J/Jl'+

3 J +" Ito(x+oB)I p(I
to(s) = ———+ dx

o It, (x+os) —t, (x+ts) Iop(Ix uations, translatedg q
Ld 0 ' T~ R. M. Radot:k {P.Noordho

lands, I953), Chap. 3, Sec. 26.
{27)

s—g(s—o")
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~'~)

p(x)dx,
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(S s)'= —,oo+-', (i S) (whereas s =—,', —' we

Im 1/t(x+ib)]=s. p(I xI).

And



A 520 H. SUHL

where A=t~ —tp, whose solution is

' p(IxI)dx1 E=—+
a(s) J . „x—s

For Rls&0, the integral has a real part only. Assuming
a very slowly varying density of states, we get for
Rts&0

1 LV s—=—

+plyn

—,J

time integral representing Fig. 1 no longer factors. It is
now clear what diagrams are being retained when only
single-particle intermediate states are admitted in
Eqs. (13a) and (14):all diagrams without closed loops,
that is to say, only simple chains. But this does rot
mean that the result becomes identical with that for
potential scattering, because the contributions of the
chains still depend on the labeling of their vertices. The
crossing terms, which lead to the

I
tt —tsIs integrands,

may be regarded as due to this dependence on time
label.

where the infinite limit has been replaced by a cuto6
sr. Writing s= as+ (s—ss), we see that 6 has a pole

with residue exp (—1/Jpt) at so ——sf exp( —1/Jpt). s For
small positive J (antiferromagnetic, as in Kondo's
work), this implies a bound state just above the Fermi
surface; for small negative J, there is a pole at a very
large value of s outside the range of validity of the
present assumptions, which can be dismissed as irrele-
vant. As we shall see in the next section, when the middle
term in (27) and (28) are included, there will be (for
positive J) two virtual bound states broadened by the
inevitable imaginary part of the middle term.

To conclude this section, we consider the relation be-
tween this method and perturbation theory. In the usual
time-dependent formulation of perturbation theory
using the interaction representation, we cannot in the
present case use unlabeled Feynmann diagrams, since,
in general, each diferent set of time labels on the vertices
gives a diferent numerical contribution. This is due to
the complicated commutation relations of the com-
ponents of S. The enormous simplification which the
Feynman-Dyson symmetrization of the time labels
brings about when only boson and fermion field

operators are involved is thereby lost. Of course we can
still draw diagrams. With crosses denoting the interac-
tions, a possible fifth-order term is shown in Fig. 1. For
ordinary potential scattering, we know that uncon-
nected closed loops, such as that in Fig. 1, factor out of
the perturbation series, yielding an unimportant uni-
modular multiplier of the S matrix. Unlinked diagrams
with closed loops can therefore be discarded. However,
in the case of spin-dependent scattering, the diagram of
Fig. 1 is not, in fact, unlinked, since the vertices must
not be deprived of their time labels, which now cannot
be symmetrized. Consequently, the five-dimensional

6. APPROXIMATE SOLUTION OF THE EQUATIONS

We have not succeeded in finding an exact solution
to Eqs. (27) and (28). One possible method, which
requires a computing machine, is the "S/D" method
used in high-energy physics. " However, since in the
present problem only a qualitative insight is desired and
no "bootstrap" solutions are expected (solutions with
J=O), such an elaborate method is hardly appropriate
here. Instead, we use the following iterations scheme:
From (27) and (28) we find

1 62
Im —=s-p —4ss p 1—— ri(—x),

tp

(29)

1 tp2
Im—=s p+-,'s.p 1—— ri( —x), (30)

4X +" pdx 3 ' I1—ti/tpIspdx

tp(s) 3J
(31)

1 4.V

t, (s) J
+" pdx 1 ' I1 ts/ttI'pdx—

(32)

Since by hypothesis I1—tt/4IsWO, singularities rise;
for small s, we may replace the integral

where g is the step function. If tp
—t~ is nonzero at x=0,

then tp and tj will have logarithmic singularities there;
if tp —t& x with n&0, no singularity will arise. First,
assume that ts —tt/0 at x=O. Then (29) and (30) may
be "solved" to give

by
I
1 tt(O)/to(0) I'p(0) In

I
s

I /ef

assuming
I
1—tt/to

I
and p to vary slowly. Very close to

FIG. t. A 6fth-order unhniced diagram which may be factored for s=0, the first two terms on the right of (31) and (32)
potential scattering, but not for the present problem.

9 This being the case, a single term embodying the contribution
from this pole should be included on the right-hand side of the
equation for A. The term is Ao/s —s0, where AO is the aforemen-
tioned residue. The solution for 1/n remains unchanged.

"A simple exposition of this method is found in D. Y. Wong,
Bispersion Relations and A pplications, Rendiconti della SNola
Internasionale di Fisica "Enrico Fermi, " XXIX Convention
(Academic Press Inc., New York, 1964).
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may be neglected. , and, taking the ratio, we find

2

tI

&, (x+iS)

4X +" pdx'
i xi

+ —-', p ln

all evaluated at x=O. Hence tq(0)/to(0) is real, and in
fact

to(0)/ti(0) = —3 .

Hence in this approximation,

(32) then has no dominant region of integration. Such
solutions are, however, so far removed from any
resemblance to the perturbation series that they can
very likely be ruled out.

Note added im proof. Given tq and to, it is possible to
derive the single particle causal Green's function for the
conduction electrons. This is done by expressing the
resolvent operator 1/s 8 i—n terms of the over-all
scattering matrix of the system, and writing the latter
as a multiple scattering series. This series is averaged
over impurity configurations and impurity spin orienta-
tions, and resummed. To lowest order in the concentra-
tion $, one then finds

4X
+

4(x+ib) J

——34krpq( —x),
2xGg(/) = (1—eI) dse '*'[s—eI,—${-,'I, (s)+-,'r, (s)j];+~ pdx'

+4p ln +4is pg( —x).„x'—x—j5
sg dM [5 cj'g /{4/Q( s)+ffl( s))] j

For small J we may now discard the real part of

pdx/(x —s)

and obtain, finally, for x&0,

3 1 fxJ
$0(x+ib) = — —+pg ln 43ixp,—

4E J

fg(x+i8) = —+pg ln +-,'is pg
4E j

The two partial-wave resonances occupy the same posi-
tion, xo= «exp( —1/Jpq), but have different widths.
When J='0 the CGcct disappears fol 811 s other than
x=O, exactly. " (For x/0, both the strengths and the
widths of the resonances diminish exponentially with
J'.) On the left-hand cut, we have

SJ
—= —3 1+Jpg ln + i7rpg—

4

t&0
integrated around a contour enclosing the real axis.

7. AMBIGUITIES

The trick of considering Imi/t instead of Imt has
one obvious pitfall: It does not allow in any simple way
for points at which t vanishes. The ambiguities arising
from this have been pointed out by Castillejo, Dalitz,
and Dyson, '2 who showed that the solution of the original
Chew-Low equation was not unique in that an arbitrary
number of pole terms could be added to a particular
solution 1/t. In the case of potential scattering, the
results of Ref. 8 are that if

1m[1/~(x+9)] =xp(x)

at values of x for which t&0, then the general form of
1/t is

dE(x')

x+ih —x'

E(x') = p(y)dy —P p,g(x—x;),
ix) J

1+Jpg ln +~s pg
4 where the p; and x; are arbitrary but subject to certain

constra, ints (see Ref. 8). [The much more special solu-
tion which we have used, and which is given in Ref. 6, is
restricted to weight functions which satisfy the Holder
condhtion R'(xg) —R'(x2) & (xg —x2)& along the cut. ') It
followers that

[1+J»»(l xI/~f)]'+~'pi'J'
=4

[1+Jp, in(~x~/«)]'+x p, J/16

This ranges from 4 at the Fermi 1evel to 64 at x= —x'0,

which shows that at least one more iteration should be
performed. This must be done numerically; no major ~ x—x;
qualitative change is likely to result, however. Solutions
for which 30—tq x, with u)0, cannot be derived as where 1/tq denotes the pole-free solution previously
simply as this, because the last integral in (31) and obtained.

"A generalization to 6nite temperatures mould presumably "L.Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
remove this exceptional point. 453 (1956).
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The physical meaning of the extra pole-terms is that
the target may have hidden structure in the sense that
there may not be a one-to-one correspondence between
all the states of the unperturbed Hamiltonian, and the
scattering states of the perturbed Hamiltonian. Such
structure is missed by the Chew-Low equation. Fairlie
and Polkinghorne" have demonstrated this explicitly
for potential scattering from a Hamiltonian HO+V,
where V is factorizable. In the case, the x; are the ener-
gies of the bound states of H0 and the p; are ~N(i) ~',
where

(i
~
V

~

i') =n*(i)u (i') .

When the incident particle has an energy corresponding
to one of these states, the scattering amplitude goes to
zero.

In the present case, these considerations may well

imply that to obtain the solution of the previous section,
we must altogether rule out all localized target states,
not just those with infinitesimal excitation energy, as
in assumption (3).

8. COMPLEX POLES

In the preceding section, we have diagonalized, not
the whole S matrix, but only a truncated version consist-
ing of single particle to single-particle matrix elements.
Unitarity is therefore no longer guaranteed. The
possibility that the neglected processes lead to spurious
effects cannot be discarded. The lowest iterant to the
solution discussed in Sec. 6 does, in fact, show one such
spurious effect: a pair of complex conjugate poles with
real part below the Fermi surface. Taking ~1—ti/to~'
= 16/9, we find poles in to of the form xo(1+i) with

xo ———2 '~'ef exp( —1/Jpi) .

Such poles should not occur (causality requires g to be
analytic in the upper half-plane). If these poles survive
higher iterations, their nature would have to be tracked
down by considering single-particle —single-particle+ pair
processes also. Even then they may not disappear be-
cause the neglect of higher processes amounts to replac-
ing the perturbation H' by PH', where P is the projec-
tion operator of the manifold of all the scattering states
admitted in the approximation. Since PH is non-
Hermitian, complex poles may appear.

9. CONCLUSIONS

We conclude from these results that the divergence
found by Kondo in the scattering cross section of an
electron by an impurity spin disappears when a selected
class of processes is summed. It remains to establish the
connection between the present method, and more con-
ventional ones using Green's functions, as recently in-

vestigated by Nagaoka, "who likewise found that the

divergence disappears. We finally note that the T
matrices may be used to calculate some ground-state
expectation values, as described in Appendix II.

APPENDIX I: POTENTIAL SCATTERING

We show here that for a Hamiltonian

H=Z &tan +I++ Van'&k +z'—:Ho+ v
kk'

(A1)

there are no T-matrix elements from scattering states
with one incident particle, to states with one particle
and hole-electron pairs. It is sufhcient to consider

&I,,;~= (&',p~ (v,~~") ~~),

where p denotes one pair. The Hamiltonian (A1) has
no "hidden structure" in the sense of Sec. 7. We can
change from the fermion operators u& to a complete
set of in-scattering operators AI, . In terms of these,

i
0'p)-= A,'8„'i(a),

where the operator B~t creates the pair p. Also

(v,~k') =Z V)„~it

=P V),„(X~ v)
—A„t

=Q IV„A„~, say.

Hence

In evaluating these ground-state averages, the electron
operator in B„must not be contracted with A~. , other-
wise A I, tB„t

~
co) would again be a one-particle state. We

may only contract the hole operator of B„with A,t.
But this leaves averages of the form A),tAI, , with X/k',
and these vanish, since AqtAI, . is an excited eigevstate
orthogonal to ~&v). This proves the result.

APPENDIX II: GROUND-STATE
EXPECTATION VALUES

As is to be expected, a knowledge of the single-particle
T matrices permits one to evaluate ground-state expec-
tation values of various observables. As an example, we
quote the shift in th» ground-state energy due to H'. By
Feynman's theorem, we have, for this shift,
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stant J'. Some algebra shows that to order l/S,

jtjt'+ j~j~'= (~"/4&) [(3/4»)Z(~~t'~~ t+~&,~'o~ ~)

(where again the k index has been suppressed). Averag-

ing over the two degenerate ground states, we then And

—2S.s(0)00j,

j t'j t+j~'j~ = (I"/4&)[—(3/4~ )Z (~~tt~~ t+m~ "~~ ~) 2

—2S s(0)001,

where the momentum subscripts of the j have been
omitted, since j is the same for aH.

Now, for example,

(li tittl)=Z &1 jt l~)

rk'e' t +k'o' t
k'o'

which, together with the crossing relation, determines
the ground-state shift.

Pote added in proof. The ground state shift is thus
given in terms of the unknown matrix elements of S
within the ground manifold. These play a role analogous
to the "renormalized" coupling constants, and must be
determined from some experiment likewise describable
in terms of them.
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Inhuence of Local Phonon Damping on Mossbauer Spectra
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Bell Telephone Laboratories, Murray IIill, Ãm Jersey
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(Rccclvcd 20 November 1964)

The contribution of localized-mode phonon emission and absorption to the MOssbauer emission process is
evaluated in the presence of damping. Net-zero-phonon processes, in which the number of localized phonons
(of a given type) emitted is the same as the number absorbed, are shown to contribute to the intensity in the
vicinity of the unshifted gamma-ray energy. This contribution is shown to be distributed over a minimum
width I"+2y where F is the gamma-ray natural width, and y, the width of the localized phonon, is larger
than j. . The complete Mossbauer spectrum including all multiphonon contributions can be obtained in our
approximation by using the continuous spectrum of nonlocalized phonons plus a Lorentz-broadened peak
associated with each localized phonon. Optical absorption at impurities in solids may have linewidths I'&
the phonon widths y, thus permitting local phonon enhancement of the zero-phonon transitions in impurity
absorption or emission.

1. INTRODUCTION

" "N this paper we shall treat the Mossbauer effect in
- the quasiharmonic approximation which includes

frequency shifts and damping due to anharmonicity
and other causes. The Mossbauer line is usually de-
scribed as the emission of a gamma ray with no change
in the internal state of the crystal. '

The intensity in the vicinity of this line is determined
by transitions in which very small changes in vibra-
tional energy occur, e.g., by the simultaneous emission
and absorption of the same number of phonons of
essentially the same energy. Continuum phonons can
contribute to this region but only as part of a smooth

~ Permanent address: University of Uppsala, Uppsala, Sweden.
lH. Frauenfelder, Tjge 3IIossbaner Egest (W. A. Benjamin,

Inc. , New York, 1962); Rev. Mod. Phys. 36, 333-503 (1964),
constitute excellent reviews and sources of reference to the
literature on "recoilless radiation. "

background unless the continuum spectrum has sharp
peaks. If a phonon localized around the impurity atom' '
is present, it contributes a separate sharp peak to the
spectrum. If this peak were infinitely narrow, then the
emission and absorption of the same number of such
phonons ("net-zero-phonon" process) would enhance
the intensity of the Mossbauer line in comparison with
the usual Debye-%aller factor. This "Bessel-function
enhancement emphasized by KaufInan and LlpkIn

'I. M. Lifshitz, Suppj Nuovo Cimento 3, 716 it956l, which
includes references to earlier Lifshitz work; M. Lax, Phys. Rev.
94, 1392 (1954); E. O'. Montroll and R. B. Potts, i'. 100, 525
(1955);A. A. Maradudin, P. Mazur, E. %. Montroll, and G. H.
gneiss, Rev. Mod. Phys. 30, 175 (1959);P. G. Dawber and R. J.
Elliott, Proc. Roy. Soc. (London) A273, 222 (1963); Proc. Phys.
Soc. (London) 81, 453 (1963).' I. %aller, Arkiv Fysik 24, 495 (1963).'B. Kaufman and H. J. Lipkin, Ann. Phys. (N. Y.) 18, 294
(1962). See also A. A. Maradudin, Rev. Mod. Phys, 36, 41$
(1964).


