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High-Frequency Conductivity of a Plasma in Quasiequilibrium.
I. Formulation of the General Theory*
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A general expression for the high-frequency conductivity is derived from the Bogolyubov-Born-Green-
Kirkwood-Yvon hierarchy for a fully ionized plasma whose unperturbed state is stable. The result includes
all the effects due to the high-frequency field and the collective interactions up to first order in the plasma

parameter.

I. INTRODUCTION

HE recent studies of incoherent scattering of
electromagnetic waves'2 and other wave prob-
lems in plasma’~® have revealed the importance of the
collisional correction to the dielectric constant, dis-
cussed in the past in the self-consistent field approxima-
tion (or the Landau-Vlasov theory). For instance, the
effect of collisions is shown to give rise to significant
broadening of the resonance line in the scattering
problem and to result in a constant damping of the
electron oscillations in the long-wavelength limit (the
usual Landau damping vanishes as the wave number %
approaches zero). For these and other reasons, discus-
sion of the dielectric constant or conductivity of a
plasma in the presence of frequency and spatial dis-
persions has attracted considerable interest® in recent
years.
The existing theoretical discussions may be divided
into two groups because of their distinct approaches;
one has made use of the diagrammatic method?®1

*This paper represents the results of one phase of research
carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under Contract No. NAS7-100, sponsored by the
National Aeronautics and Space Administration.

1D. F. DuBois and V. Gilinsky, Phys. Rev. 133, A1317 (1964).
( 2 ?3) Ron, J. Dawson, and C. Oberman, Phys. Rev. 132, 497

1963).

3D. F. DuBois, V. Gilinsky, and M. Kivelson, Phys. Rev. 129,
2376 (1963).

4C. S. Wu and E. H. Klevans, Proceedings of the Sixth Inter-
national Symposium on Ionization Phenomena in Gases (Paris,
1963), p. 201.

5 There have been a few other publications on the collisional
damping based on the usual Fokker-Planck equations or using the
BBGKY hierarchy (Ref. 14) but including the electron-electron
correlation only. Since these references are not directly relevant to
the present discussion, the omission of them seems excusable.

6J. Coste, AF61 (052)-613 TN-6 Service de Physique des
Plasmas, Université de Paris, 1963 (unpublished).

7J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962); C.
Oberman, A. Ron and J. Dawson, #bid. 5, 1514 (1962) ; J. Dawson
and C. Oberman, sbid. 6, 394 (1963).

8 0. Aono, J. Phys. Soc. Japan 19, 376 (1964).

9 V. I Perel and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 41,
886 (1961) [English transl.: Soviet Phys.—JETP 14, 633 (1962)].

0 H. L. Berk, Phys. Fluids 7, 257 (1964).

1 D, F. DuBois and V. Gilinsky, Phys. Rev. 135, A1519 (1964).

2M. G. Kivelson and D. F. DuBois, Rand Corporation
Technical Report RM-3755-PR, April 1964 (unpublished).

13 In order to shorten our reference list we have excluded those
works which include the effect of the external magnetic field or
analyses based on Boltzmann and Fokker-Planck equations. How-
ever, some of these works will be referenced in our later publica-
tions whenever such reference seems desirable.

originally developed in quantum many-body theory,
and the other has applied the kinetic-theoretical tech-
nique*®7? formulated by Bogolyubov, Born, Green,
Kirkwood, and Yvon (the BBGKY hierarchy). Al-
though the two approaches are difficult to compare ac-
cording to the formalism, the available results are in
agreement. Nevertheless, to the best of the author’s
knowledge, all these discussions have been presented
under one common assumption, that is, that the un-
perturbed plasma is in thermodynamic equilibrium
(electrons and ions have Maxwellian distributions with
equal temperature). Because in reality the condition of
thermodynamic equilibrium is usually not met, a more
general theory is desirable.

This paper presents the first part of a series of studies
on the high-frequency conductivity of a plasma in
quasiequilibrium. As a first step we attempt to derive a
general expression for the conductivity based on the
truncated BBGKY hierarchy. We are able to express it
in a general but reasonably simple form in which the
velocity distribution functions of electrons and ions in
the unperturbed plasma are considered arbitrary. We
are interested in the case in which the unperturbed
plasma is stable under small perturbations according to
the linearized Vlasov theory, and we assume that the
time of relaxation of the plasma toward a final-equi-
librium Maxwellian distribution is very long compared
to the period of the applied field.

A general expression for the conductivity will be de-
termined in terms of an integral operator discussed in a
previous publication.!® In principle, this result includes
all the effects of high-frequency dispersion and collective
interactions up to first order in the plasma parameter,
e=1/u\p? (where % is particle density and Ap is the
Debye distance). From this general expression, the
result for the equilibrium case previously derived by
Oberman, Ron, and Dawson’ can be recovered im-
mediately.

In a subsequent paper (II, of this series) we shall
apply the result obtained here to the case of a non-
isothermal plasma (7';#T.).

14D, C. Montgomery and D. A. Tidman, Plasma Kinetic Theory
(McGraw-Hill Book Company, Inc., New York, 1964).
16 C, S. Wu, J. Math. Phys. 5, 1701 (1964).
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II. MATHEMATICAL FORMULATION
The Governing Equations

We assume that both the unperturbed plasma and the applied high-frequency field are homogeneous. Conse-
quently, we can list as follows the first two members of the truncated BBGKY hierarchy,* which describes a fully
ionized plasma with Coulomb interactions only:

A, (1, 2) 9
(-—+v1 Vit B vvl)ssa t)———Zn, / G, (1,2,)Br o, (1)
Ms s ary av
1 95,(1,)
( +V1 V1+V2 V2+——E Vvl+—E sz)gs,-(l 2 t)—'—‘
M ms OV

¢s,(1,3) 1 0%,(2,0) 3¢-4(2,3
XY n, / ———; G, q(2,3,0)d®rsdvs—— DI / —3(*—)8“1(1,3#)11!%%3
q q

I my OV I

a¢s,. (s,(z,t) %, (1,f) F.(1,0) 6€F,(2,t)) 2

ary M vy My Ve

Here, F(1,f) is the one-particle distribution function; G(1,2,¢) is the pair-correlation function; the subscripts
s, 7, - - - designate the species of particles; ¢, and m, are the charge and mass of the s type of particles; 1, 2, - - -
denote the state variable in phase space; for instance, (ry,vi), (rs,Ve), -« ; ¢sr(1,2) = (eser)/| 11— 13| is the inter-
particle Coulomb potential ; V1=9/8r;; Vv,=48/8v;; and E is the applied field which can be also written as

E=Egiot, (3)
Let us split F,(1,f) and G,,(1,2,f) into two parts:

‘Js(l:t) =F, (Vx,t)"‘f, (vlyt) )
9"(1:2’0 =G8r(v1) Vg, I1—1I2, If)+g"(V1, Vo, I1— I, t) ’

where F, and G,, designate, respectively, the distribution function and correlation function of the unperturbed
plasma, and f, and g, apply in a similar manner to the perturbed part. We assume,

Fs>>fa y GerDger,

since the applied field E is considered to be weak. Furthermore, since we have postulated that the period of the
oscillating field, 1/w, is very short compared to the time of relaxation of the unperturbed plasma toward equi-
librium, we may remark that &, and G, belong to a long time scale (slow process) but f, and g,, vary according to
a much finer time scale (fast process).

Linearizing Egs. (1) and (2) we obtain two sets of equations. The first set describes the relaxation of the un-
perturbed (nonequilibrium) plasma and takes the form

aF, 1 9¢s+(1,2) 9
=3 n,/ ———Gr(1,2,8)drod%,, 4)
at ms r dry v
] 0F (1) 9¢44(1,3)
—+V1'V1+V2'V2 ,"(1 2 t Z Nq ————G,q(2,3)d3r3d3v3
at M I
1 6F7(2) 39+4(2,3) d¢sr (F.(2) 0F (1) F,(1) 9F,.(2
s / 1) 3= ( 2) 9F.(1) Fi(1) ()). )
m, OV ar, ms OV m, Ova

The second set, which describes the small perturbations due to the high-frequency field, can be written as

afs dF, d¢.-(1,2) 8
——+V1 st+—E'"—‘=—Z nr/ —_— a—gsr(l 12,0)dr o0y, (6)

ms OVi Mgt ar; \%
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3 1 8F,(1) s 4(1,3) oF, (2 3,4(2,3
(—+V1 V1+V2 Vz)g"'——— Z nq/ ;(—g,-q(Z 3)d37’3d31)3——— ( ) Z nq/ -;,E—(:L——)g,q(l,\?)d%ad%s
q q

ms OV or, WMy 6V2 Iz

1 af.(1 sqll, 4 T
— f( ).an/ 0(}5 ( Grq(z 3)d3r3d3v3+- f (2) an/ wqu(l,\S)dsrsdsva

Mms avl . q My 8V2 ) ¢
a¢sr 1 9 1 s ey aGsr
L ORI P i Ry
dry \mg, vy m, dVs me OV M, OV2

Obviously, if one makes use of Bogolyubov’s adiabatic approximation and synchronization assumption,'¢ Eqgs.
(4) and (5) constitute essentially the usual plasma kinetic equation derived independently by Balescu,!” Lenard,!8
Guernsey® and others® provided F, is stable, subject to small perturbation.

Preliminary Derivation of the Conductivity

Our next task is to determine a general expression for the conductivity. It is convenient to rewrite Eq. (6) in
terms of the Fourier transform of g, :

afs dF ] 1/‘ 4

+__Eoe iwt,
ot M 6v1 8v1 (27")3

Z n,e,/dsvzgu(k, Vi, V2, [-—)00) ) (8)
msk? r
where gs-(k, v1, Vs, £ — ) represents the asymptotic solution of g.(k,v1,vs,f) at large time and

Zor (K, v, Vo 0) = / &Prie= i g (11—1y, V1, Vo, 1) 9)

On the other hand, the equation governing g..(k,v1,vs,) takes the following form:

dme, JoF; 4me, oF,
(_‘+1k1 V1+1k2 V2——1k1 ses/d '01'_”—_1 2° Z nrer/d v2)g8f(k V1,V2,t) Rsr(k V1,V2,t), (10)
mskl (')Vl 8 m,kg 6V2 r

‘where R, is the forcing function, which can be written as follows:
4rreqenik

1 9 1 9
Rur(kyviyvayd) = -(— ——)[fr(Vz,t)Fs(V1)+fs(vl,t)Fr(V2)]

k2 Ms OV1 My OVe

f8 fr ’Lk
+— —+4re, Z nqeq—— d%3Gro(—K, va, va)——~— 4re, Z el q—
M OV1 My OVy k2

1 9 1 9
X / dsvscs.,<k,vl,w)—Eoem.(—-—+— —)Gua{,vl,vz) (11)

Mms OV1 M, V2
and

Gs,(kl,vl,vz,t)=/dsrle""“'(““’)G"(rl— Ta, V1, Ve, t) .

Since we are interested only in the high-frequency conductivity (by the term “high frequency’” we mean that
the frequency is assumed to be much higher than any collision frequency for particles of arbitrary species??), the

16 N. H. Bogolyubov, Problems of a Dynamic Theory in Statistical Physics (Moscow, 1946) ; translated by E. K. Gora, AFCRC-TR-59-

%ggz)orvStludws in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North- Holland Publishing Company, Amsterdam,
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2 For an isothermal plasma, the electron-electron collision frequency is the highest collision frequency. However, in a nonisothermal

plasma this is not always true.
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reactive solution of Eq. (8) is certainly dominant. That is,
es Epei@t 9F,
Js(vit)=—— — (12)

ms tw  0Vy

This situation suggests that if we require the solution of g, to be accurate only to first order in 1/Ap*z, we replace
fsin Eq. (11) by the reactive solution given by Eq. (12). Substituting Eq. (12) into Eq. (11), we obtain

 [4mese, 1 9 1 9 es OF, e, OF,
Rur(t)= —Eoewf{ (o —)feo-[— A e X0
wk? ms OVy My V2

Ms OVy M, OVy
1 I¢] €s , an k
+—“ ~—(——ko )'47!'63 Z nqeqﬁ /ds’UaGrq(—k, V2, V3)
q

mew OVi\mms IV
1 0 /e, OF, k . fe 0 e O
o ——-(——ko- ) Are, Y noe— /d%aqu(k,vl,vs)—}—ko- (— R —)G”(k,vl,vz)}
M Ve \,  OV2 g k? Mms OVL My V2
=—EgiR, 2, (13)
whereé £q is a unit vector parallel to E.
Since according to Eq. (20) in Ref. 15,
11
Z nrer‘/ds%gsr(t_)oo):‘/ dTer(vll v1,7 VZI; T, k7 _k>R8T(k) Vl’) v2l7 = T> ) (14)
T 0
where Q,-(v1|v{, v¢'; 7, k, —K) is an operator which in the present case takes the following form:
+oe—iy1 +oo—iy3 1
Q"(VII V1’, VzI; t, k, —k)———- - dﬂ1/ dﬁgei(k%—ki”)t
(27'"‘)2 —0—i71 —oo—1y2 (ul‘i‘ﬁl)
Dx(v yk) Zs Ns€s ZT WrCr
X[/d3v1’6(v1— vi')— i /daful’ :I/d%’~—————— ,
€(iy k) w1+ €(f1,K) (us' +i2)
where
4mek OF, kev,
Ds(vl) )=—__ y M= )
msk3 (9V1 k
Ds(Vl,k)
e(ﬁl,k)= 1+Z nsesfd3v1 .
w1
We may rewrite Eq. (8) in the following form:
af"+ “ e 00 " / dSkWSkE w0, (ve| v, ¥o' 3@, k, —K)R. (K, v1,v2) (15)
—Epeiwte—=— e “tQsr(v1| Ve, vo' s w0, k, —K)R,O (K, v,V
at  ms dvi  9vi (2m)? mk? ’ T T v

where we have extended the upper limit of the 7 integral in Eq. (14) to infinity and used the definition
Qsr(vi] Ve, v2'; 0, K, —k)=/ dte= Qs (V1| Ve, v’ 5 1, K, —K).
0

In the present case,!s
1 +oo—1iy1 _ Ds(vl)

1 8(vi'—vy)

_ D Mer
Qar=—— d® /-dsvz' - diiy
ik e(—w/k—u1, k) (s —w/k—u1) 2mwik J gy 3(u171) (T k) e(—w/ ki1, k)
/dsvll Zs nées‘/‘ d3v2l ZT n.er
X .
(r +152) (e —w/k-+11)
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Now, let us multiply Eq. (15) by #.e,v1, integrate with respect to vi, and then sum up all components. If we
introduce the definition of the current density J as

J=Z ﬂses/dsvlvlfs(vlat) )

then we have

aJ nseszE L \ 4rnsetk o~ L, o
—_— Wl — iwt . ol
Py = 0€ (27r)3 Zs: /d k m3k2 EQC /d lesr(V1|V1 ,V2 ,w)Rsr (k,Vl ,Vo ) y (16)
or
iwf ezwt
J=—Y —Epiot— /d’“‘k—— /d"les,(vllvl Vo' s )Rk, vi vy, an
s drw (21r)3 s W

where w.?=4wne.2/m; If the conductivity o is defined in the usual way,
Jzanei‘”, (18)

/ &k
s 47rw (27r)3 s W

The first part of Eq. (19) yields the usual dominant reactive contribution which is designated as

then we have

/d 91Q31(V1| V1 ,V2 ,w)Rs, (k V1 ,Ve ) (19)

ao=—2_ (iw:2/4nw) (20)
and the second term is the higher order correlation contribution ¢;:
1 ws2
g1=— d3k /.d vl@sr(vll vl ,v2 Jw)RsT (k,V1 7v2 ) (21)
@27) s w

To complete the derivation, let us return to Eq. (13) and discuss possible simplification of the expression for a;.
First, we should remark that the solution of G,.(k,v1,vs) at large time for the stable case has the following form?:

1 8 s( 1) oo Z nses2F8 (V’)
S N R .1 DY ]
k- (ve—vi)+ir e (k, —u, o (k-v'—k-v;+iA) | e (k,— ') |2
€. r(V2)

> nelF.(v)
-v’—k-vz——i)\)le—(k,—u’)lz:”. @2)

If we substituted (22) into (13), the result should obviously be woefully complicated. Fortunately, the manipulation
can be handled in a much better way, as we shall discuss in Sec. III.

+-00
FED, (K, vl)l: A2 /_ e

y U

III. REDUCTION OF THE GENERAL EXPRESSION

Obviously, the result given by Eq. (21) with R, defined by Eq. (13) is by no means satisfactory, since it is too
lengthy and complicated for application. Any possible reduction or simplification is undoubtedly desirable. The
principal task of this section is to show how this simplification can be made.

Let us take a closer look at the definition of R,%(k,v,vs) from Eq. (13). It is observed that we can rewrite
R..°(k,v4,v2) in the following form by mterchangmg the order of differentiation:

esé() a €s an k
R.A(k,vy,vo)= -—-—[ng,(k,vl,vz)+—~ Ar—3 nqeq[d“vaGrq(—k, Va, V3)

Mmaw V1 ms v k2 ¢

i%oa

41::erk (_}_ a1 _a_)F (VO)F, (Vz):l

ms OVy M, OV M Ve

41res6rk (i ot i)F (v)F, (vg)] (23)

Me OVY My OVe

e. OF, k
X [wGs,(k,vl,w)——— -4:7r—2 Z 74e q/ﬁvsqu(k,vl,vs)-l—

My 6V2

28 We omit the derivation of such a solution here since it is straightforward. One may first make use of the operator discussed in Ref. 15
to obtain Z, n,e,/d%:Ger(k,v1,v2) and 2, n,es/ d*01Gsr(k,v1,v2). Then by substituting these results into the Fourier transforms of
Egq. (15), one can obtain the solution of G, (k,v1,v2) after some simple reduction.
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However, from the Fourier transform of Eq. (5), we see that the asymptotic solution G, (ky, vy, Vs, f —>)
should satisfy the following equation:

k 1 9F,
(—i6+k-vl—k-vz)G,,(k,vl,w)—;a—z-— dres Y, nqeq/d%aG,q(—k, Vg, V3)
q

Mms AV

k 1 9F,
— Aes Y n4eq / @03G 4 o (k,v1,v5) =
q

4rese,
k

.(i 0 i_a_)p,<v1>F,<v2>, (24)

k? ms V1 M, Ve

k2 m, v,

where 6 is a positive and arbitrarily small number (5§ — 0).
Making use of Eq. (24), we are justified in writing

8sko d k ey aF,
R, (k,vy,ve)= -——[ (0 vi—Kk:v))Ger(k,v1,ve) +———47 Y n4e, / d3v3qu(k,v1,v3)j|
msw OVy R m,0ve q
e By 9 k e, OF,
+—"" —'—I: (w+k'Vl—k‘Vg)Gcr(k,Vl,V2)""—'— —_— 4 Z nqeqx d31)3G,-q('—k, Vo, V3):] . (25)
Me @ OVy kR m, 9vy q
Moreover,
€s kok €y Eok
R,® (k,vl,Vz) = Gsr(k,‘l}l,'l)z)——‘ —G,,(k,vl,vz)
Mms Me

eséo k €s aFe k €y aF,-
+ 'I:(w+k-vl—k-V2)—~—-—- LD nsea/d%rl—;e—-— %aner/dsvﬁ]

Mg 2 ms Ovy e

3Gr esko k e, OF, k e, OF, 3G,
X—+ -[(w—l—k-vl——k-w)——-—— %Znses/d"v1+——-- %Zn,e,/d“vz]a , (26)

vy M k2 m, 9vy B k2 m, 9, ” Vo

where we have added two »ull terms, namely,

k e, 9F, G,

—— e, Y, n,esfd3v1 ,

k2 Mg 6v1 8 6V1
and

k €r aF,- aGsr

———Are, Y. n,e,/d%z .

k2 My Vs r aV2

The advantage of writing R,,® in the above form will be immediately apparent. Since in order to determine oy
we only need the result of /' @10.,(v1|v1,vy'; 0, k) Rs®(k,v1',v2'), we shall pay special attention to this quantity.
As we can see from the discussion of Q!5 that

/ 0105 (V1] v, ve 3 0 K) RO, vy v ) =Y nrer / d®; f 0o Py (v, V2| Vi, Ve s 0, k)R (k,vo', Vo) .

Here P, (v1,v2| v/,vs'; &, k) is an operator which can be defined as follows:

P, (vi,va| vi,ve s 0, k)R, (k,vi,ve)

4re, k OF, 4re, k OF, 1
= —i[w+k-v1—k-V2——~—- Z n363/d3v1+ —_ Z nrer/d3v2:| Rsro(kyvl,v2)~ (27)

ms k* 0vy s m, k2 Ovy r

Therefore,
_ es e bk
/ @010 (V1| v/, V2 3 0, k) R0 (kv vy ) = f @01Qsr(v1| vy ,w’;w,k)[——-——]—Gs,(k,vl’ ,ve') (28)
Ms Med ©
since

[ Eo aGs,. €r Eo aGsr
/dam/davz["—_'”‘_“‘l'_—"_]:o‘
Me @ VY My w OVy
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Substituting (28) into (26), we now obtain

I (kk )? €s €
g1 /d3k k20 fd%l(?"(vllv;',vz’; w,k)(——"—)G"(k,Vll,Vzl). (29)

 3(20)% me m,

As discussed in Ref. 15, for the stable case, Q,r(v1|vi’,v2'; w,k), may be written as
8(vi—vy)

€ (—w/k—uy, uk)

X / T dit; D.(v) / &y’ 3 neesdy (flai—uy’) / dPvy’ 3 n,.e,6_<z+12,-u2’) ,

—cot- 104 (r—wu) et (— i k) e (—w/k—1i1, k)

27 (3 2w
Gsr (w,k) = —k:‘ / d®v,” / div 3 %reﬁ—(z-l"m—uz')'l'—k—

where
b1(a)=36(c) iPl li ’
+(a)=36(a)E —= im -

: 2r « 27ri7"0+a:|:”y,

and other notations are defined similary as in Ref. 15.

IV. CONCLUDING REMARKS

A general expression for the high-frequency conductivity has been derived for a plasma whose unperturbed state
is assumed to be stable. Besides the above assumption, our result is quite general and reasonably simple, allowing an
arbitrary number of species and arbitrary distribution functions for the electrons and ions.2?5 The theory can be
extended to the weakly unstable case by using an expansion scheme similar to that recently proposed by Frieman
and Rutherford.?s

The correctness of our result may be examined by considering the equilibrium case

€sCr

Gor(ky1)09) =—————F ,(v1)F +(v2) , 3
()= () (30)

where « is the Boltzmann constant, kp is the Debye wave number, and F, and F, are Maxwellian distributions.
From (30) and (29), we readily obtain

3rwsz 63(01-2

— 47 fd k
o= dk > w,2/d3v Os(v1,| Vi',¥ ';ws,k)[ - ]Fs(’v ")F,(vy)
' 3(21r)3xTw2/; Bkt Q[ vove P PR

which [see Eq. (53) in Ref. 15] leads to the result that Oberman, Ron, and Dawson? derived by using the singular-
integral-equation technique.
In the next paper we will discuss the application of Eq. (29) to the nonisothermal case.
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