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High-Frequency Conductivity of a Plasma in Quasiequilibrium.
I. Foritiulation of the General Theory*
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A general expression for the high-frequency conductivity is derived from the Bogolyubov-Born-Green-
Kirkwood- Yvon hierarchy for a fully ionized plasma whose unperturbed state is stable. The result includes
all the eftects due to the high-frequency field and the collective interactions up to first order in the plasma
parameter.

I. INTRODUCTION

HE recent studies of incoherent scattering of
electromagnetic waves'2 and other wave prob-

lems in plasma' ' have revealed the importance of the
collisional correction to the dielectric constant, dis-
cussed in the past in the self-consistent field approxirna-
tion (or the Landau-Vlasov theory). For instance, the
effect of collisions is shown to give rise to significant
broadening of the resonance line in the scattering
problem and to result in a constant damping of the
electron oscillations in the long-wavelength limit (the
usual Landau damping vanishes as the wave number k
approaches zero). For these and other reasons, discus-
sion of the dielectric constant or conductivity of a
plasma in the presence of frequency and spatial dis-
persions has attracted considerable interest6 "in recent
years.

The existing theoretical discussions may be divided
into two groups because of their distinct approaches;
one has made use of the diagrammatic methods'"

*This paper represents the results of one phase of research
carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under Contract No. NAS7-100, sponsort;d by the
National Aeronautics and Space Administration.
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originally developed in quantum many-body theory,
and the other has applied the kinetic-theoretical tech-
nique' " formulated by Bogolyubov, Born, Green,
Kirkwood, and Yvon (the BBGKY hierarchy's). Al-
though the two approaches are dificult to compare ac-
cording to the formalism, the available results are in
agreement. Nevertheless, to the best of the author' s
knowledge, all these discussions have been presented
under one common assumption, that is, that the un-
perturbed plasma is in thermodynamic equilibrium
(electrons and ions have Maxwellian distributions with
equal temperature). Because in reality the condition of
thermodynamic equilibrium is usually not met, a more
general theory is desirable.

This paper presents the first part of a series of studies
on the high-frequency conductivity of a plasma in
quasiequilibrium. As a first step we attempt to derive a
general expression for the conductivity based on the
truncated BBGKY hierarchy. We are able to express it
in a general but reasonably simple form in which the
velocity distribution functions of electrons and ions in
the unperturbed plasma are considered arbitrary. We
are interested in the case in which the unperturbed
plasma is stable under small perturbations according to
the linearized Vlasov theory, and we assume that the
time of relaxation of the plasma toward a final-equi-
librium Maxwellian distribution is very long compared
to the period of the applied field.

A general expression for the conductivity will be de-
termined in terms of an integral operator discussed in a
previous publication. "In principle, this result includes
all the effects of high-frequency dispersion and collective
interactions up to first order in the plasma parameter,
e=1/ssXDs (where n is particle density and XD is the
Debye distance). From this general expression, the
result for the equilibrium case previously derived by
Oberman, Ron, and Dawson' can be recovered im-

mediately.
In a subsequent paper (II, of this series) we shall

apply the result obtained here to the case of a non-
isothermal plasma (T;W T.).

'4 D. C. Montgomery and D. A. Tidman, Plasma E'~rletic Theory
(McGraw-Hill Book Company, Inc. , New York, j.964).

"C.S. Wu, J. Math. Phys. 5, 1701 (1964).
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II MATHEMATICAL FORMULATION
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