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Earlier work dealing with the optical properties of Cu and Ag is extended along two directions. The optical
properties of Au are discussed and interpreted in terms of intra- and interband processes as well as plasma
eftects as elementary excitations of the system. In addition, the previous tentative interpretation of the low-

energy optical structure in terms of interband transitions near L and Xin the Brillouin zone is examined care-
fully by means of absolute calculations of the imaginary part of the frequency-dependent dielectric constant,
using as input data the results of band calculations as well as Fermi surface experiments. The agreement of
the results for all three noble metals with experiment strongly supports the previous interpretation. It is
shown that in metals, sharp optical structure may arise from transitions between relatively Rat, 6lled bands,
such as the upper d band, and empty states just above the Fermi surface. This structure complements that
arising from transitions at critical points and accounts for the region in the noble metals where direct inter-
band transitions 6rst set in. Finally, the present calculations are used as a basis for comment on recent data
of Spicer and Berglund and the relative importance of direct and indirect transitions in photoemission
processes.

1. INTRODUCTION

'HE optical properties of Cu and Ag extending
from the infrared to the far vacuum ultraviolet

were discussed and interpreted in a previous paper. ' The
observed structure was attributed to intra- and inter-
band processes, as well as plasma effects. Some promi-
nent pieces of interband structure were tentatively asso-
ciated with transitions in various regions of the Brillouin
zone on the basis of existing band calculations. '—4

The present paper extends the previous work in two
directions. First, the survey of optical properties of the
noble metals is enlarged by a discussion of data for Au

along the lines of I. Section 2 is devoted to this topic.
Second, the interpretation of the low-energy structure
due to interband transitions near L and X in the
Brillouin zone made in I is examined carefully by means
of absolute calculations of the imaginary part of the
frequency-dependent dielectric constant, using as input
data the results of band calculations, as well as Fermi
surface experiments. '—' As discussed in Secs. 3 and 4,
the agreement of the results for all three noble metals
with experiment is such as to support very strongly the
previous interpretation. In this connection, it is showa
that in the case of metals, sharp optical structure may
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arise from transitions between relatively Aat, 6lled
bands, such as, for example, the upper d band and
empty states just above the Fermi surface, in addition
to those at conventional critical points. Finally, in
Sec. 5, we use the present calculations as a basis for
comment on the extent to which the optical properties
of the noble metals can be explained on the basis of
direct vertical transitions in k space only. This point is
of current interest in view of recent comments by
Berglund and Spicer, ' who have called attention to the
fact that this conservation law is apparently violated in
the optical processes associated with photoemission. An
examination of their data along the present lines indi-
cates that, while a part of the structure in the energy
distribution of the emitted electrons can probably be
explained on the basis of direct transitions, there re-
mains structure which is much more dificult to account
for by direct transitions alone.

2. OPTICAL PROPERTIES OF Au

In I, the complex frequency-dependent dielectric
constant for Ag and Cu was evaluated over an extended
energy range by the well known Kramers-Kronig
analysis of reflectance data. ' The curves for e& and 6g

described three distinct effects, namely, (1) free-electron
e8ects at low energies, characterized by large negative
values of e,, (2) interband transitions which produce
structure in e~ and e~, and (3) plasma effects which are
associated with peaks in the energy-loss function,
—Imc '. The analysis of e(a&) was reasonably straight-
forward, once it became apparent that for each of these
metals the intra- and interband eGects could be sepa-

9 C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030
(1964); Phys. Rev. 136, A1044 (1964)."F. C. Jahoda, Phys. Rev. 10?, 1261 (1957);H. R. Philipp and
E. A. Taft, Phys. Rev. 113, 1002 (1959).
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rated quantitatively without use of a specific theoretical
model. In this connection, it is possible to write the ex-
presston for ego) ln 'the foHI1

e {to)= er ((a)+be'(a&), (0
which separates explicitly the intraband contribution
characteristic of free electrons,

er (rd) = 1 ap—.'/co (a)+i/r, ),
from the interband contribution, dies(to). Here
rep, =L4sfs.e'/m, j'" is the plasma frequency for free
electrons of density e, and optical mass m„and v, is
the relaxation time for intraband processes.

The separation indicated in Eq. (1) was feasible for
these materials, since interband transitions set in at
sufficiently high energies where, to a good approxima-
tion, e2f=0. Hence it was possible to isolate rather un-
arnbiguously the free and bound contributions to e2,

noting that, for energies below the gap for interband
transitions, A&2'= 0. The Kramers-Kronig relation

d Ql+Go
Ocr'((o) =— Lro'ger'(o)')$ 1n de' (3)

5'GO p dG) M —
GO

was then used to obtain 8e,s and etf ——s&(expt) —Sets by
subtracting the interband contribution from the ex-
perimental value.

For each of these metals, the curve for er(&o) was
found to 6t accurately the description of the Drude
region given, by Eq. (2) for free electrons having an
average "optical" mass m . The interpretation of
8e'(&o') followed the guide lines of available band calcu-
lations. Structure in ge'(o&'), associated with interband
transitions near symmetry points in the Brillouin zone,
was identihed tentatively with the help of these calcu-
lations. In addition, the ability to display simul-
taneously e(ro) and its components greatly facilitated
the explanation of certain features in the energy-loss
function, —Imc—'.

As we shall see, the resu1ts for Au resemble closely
those for Cu. ' Accordingly, the presentation below will
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Fxo. 1. The spectral dependence of the reflectance of Au. The
curve is a composite of the data of Refs. 11 and 12.
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FxG. 2. The spectral dependence of the real and imaginary parts
of the dielectric constant ei and e2 and the energy-loss function—Ime ' for Au obtained by Kramers-Kronig analyses of the curve
of Pig. 1.The extrapolation used is indicated in Ref. 13.

be relatively brief, since it follows the procedures
sketched above and the more complete treatment of I.
The ldentl6catlon and dlscusslon of lnterband tran-
sitions in Au, as well as Ag and Cu are given in Secs. 3
and. 4 and represent a more detailed analysis of the
subject than that previously presented.

The reflectance spectrum of Au is shown in Fig. 1.
These data are a composite of the tabulated values of
Q. Hass" and the recent measurements of Can6eld,
Hass, and. Hunter. " Plots of the real and imaginary
parts of the dielectric constant ei and c~, as well as the
energy loss function —Im~-', obtained by Kramers-
Kronig analysis of the curve of Fig. 1, are shown in
Fig. 2. For this purpose, the reflectance curve was
extrapolated" at energies above 50 eV to give closely
the e and k values reported in Ref. 12 for energies
between 6 and 50 eV. The results of Fig. 2 are then also
found. to agree well with those of Schulz" for energies
in the range 1 to 3 eV.

The close resemblance between the present results
and those for Cu' is evident from Fig. 2. The onset of

"G. Hass, in AmeI ~can In''fute af Physics Handbook (McGraw-
Hill Book Company, Inc. , Nerv York, 1963), Chap. 6, p. 119.

"L.R. Canield, G. Hass, and W. R. Hunter, Colloquium on
the Optics of Solid Thin Layers, Marseilles, September 1963
J. Physique 25, 124 (1964).

"The extrapolation is indicated by the dashed line segment in
Fig. 1 for energies to 60 eV. In the range 60 to 100 eV, d 1nR/d 1nau

=—7.4. Above 100 eV, the asymptotic slope d lnR jd ln~= —4
was assumed. See H. R. Philipp and H. Ehrenreich, J.Appl. Phys.
35, 1416 (1964).

'4 L. G. Schulz, '
Suppl. Phil. Mag. 6, 102 (1957).
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FIG. 3. Comparison of experimental (open circles) and theoreti-
cal (solid lines) values of e1 for Au in the "free electron" region.
The experimental points ~1(~) = e1{expt)—Be& are adjusted for
Be1~ using Eq. (3). The theoretical fit is achieved using Eq. {2)
with Euo~ =8.83 eV. The corresponding value of m, is 1.04.

interband transitions near 2 eV is associated with the
peak in e~ and the abrupt rise in e2. It shows up in the
reAectance curve as a sharp decrease from the near-
unity values which characterize the free-electron region.
Near 2 eV, &2~ is decreasing rapidly according to Eq. (2)
and, at higher energies, may be neglected from further
consideration. We have thus achieved the desired sepa-
ration of free and bound contributions to ~~ if we
assume that be~b= 0 for all energies below the minimum
in the curve for e2.

The optical mass m may now be determined by
matching the real part of the intraband component of
the dielectric constant as determined. from e,~= e~(expt)
—5&~~ and Eq. (3) with values obtained from the Drude
formula given by Eq. (2). The result for e,= 1 electron

per atom and m, = 1.04 is shown in Fig. 3. This value of
the optical mass is close to the result, m =0.98, re-
ported by Schulz. " Excellent agreement between the
two determinations of e&~ is seen both with respect to
magnitude and frequency dependence, even above 2

eV where 6y~ and 6e&~ are comparable. This verifies that
the separation of the intra- and interband parts of e is
reasonable. It should be noted that since ~~,&&1 for
most of the range considered here, the 6t in Fig. 3 is
practically independent of v,

Now that the intra- and interband contributions to
e have been separated, it is convenient to discuss the
curve for —Ime ', also shown in Fig. 2. Both interband
transitions and collective electron effects can give rise

to structure in the energy-loss function. " It is often
possible to discriminate between these by observing the
behavior of e(&o) in the vicinity of the loss peak, pro-
vided broadening effects are not too large. Plasma reso-
nam, ces are distinguished from interband transitions by
the fact that, in the former case, both e~ and e2 are small
near the maximum in the loss function and have positive
and negative slope, respectively, whereas, in the latter
case, e~ and e2 have peaks or structure resembling that
of an oscillator. It is not necessary for e& to vanish near
the plasma frequency. However, when damping is
small, that is, &2&& 1, the condition for plasma resonance
is closely e&(&o&) =0. For this case, —Imc—' would exhibit
a peak of magnitude approximately 1je2(&o~), a value
rather greater than unity. Sharp structure of this kind
does not appear in Fig. 2 for Au. '

For Au, as well as the other noble metals, one expects
to observe a resonance near 9 eV corresponding to the
density of free electrons having mass m, determined
earlier. This resonance may be both broadened and
shifted in energy due to the presence of interband tran-
sitions at higher and lower energies. Weak structure in
the curves of —Ime —' for Ag and Cu near 7.5 eV was
assigned to this resonance. For Au, structure in this
region is even weaker. The small peaks near 7 and 15
eV appear to be associated with interband effects.

A second resonance is expected near 30 eV corre-
sponding to collective effects involving the s plus d
electrons. The peak near 33 eV may be associated with
this resonance, the behavior of ~~ and e2 being consistent
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FIG. 4. The effective number of electrons per atom versus I' ob-
tained from numerical integration of experimental e2 and —Im6 '.
The n, «are deined by Eqs. (4) and (5).

"Y.H. Ichikawa, Phys. Rev. 109, 653 (1958).
'6As pointed out in Ref. 12, the curve of —Em~ ' is in good

agreement with the characteristic energy-loss measurements of
J. L. Robins, Proc. Phys. Soc. {London) 78, 1177 (1961).
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with this interpretation. However, this structure in
—Ime ' is still weak and indeed quite similar to other
peaks near 25 and 53 eV, which appear to characterize
the curve in the entire energy range to 60 eV. Hence
this assignment must be considered highly speculative.

It is apparent that effects which produce broadening
of the optical structure are important in the noble
metals. These may well be associated with the presence
of the d bands in which one expects electron correlations
to be significant. With the single, somewhat remarkable
exception of Ag, the separation between collective and
interband effects cannot be made unambiguously.

The sum rule

(0,0,0)
+0.8

+0.6-

+0.4-

+0.2-

p6
25'

COPPER

(I,p,p) (I 0,~2) (~) ) () (0,0,0) (~4~40) (l,p,p)

(4)

which yields n,«, the effective number of electrons per
atom (in a crystal of atom density Ã) contributing to
the optical properties in the range to coo, has been used
in previous work on Ag and Cu' to indicate energeti-
cally the onset of interband transitions, as well as the
distribution of oscillator strength for such transitions.
A plot of e.g~ versus Pi~0 is shown in Fig. 4 for Au. It is
based on a numerical integration of the experimental val-
ues of e2 in Fig. 2 for energies above about 0.3eV. Atlower
energies, where the results of Kramers-Kronig analysis
are less reliable, since reflectance data are not available
for the longer wavelengths, the integral for e,ff was
integrated analytically, using Eq. (2) with cuz, as de-
termined in Fig. 3 and 7,=2.57)&10 '4 sec evaluated
from the dc conductivity 0.(0)= (1/4~)&uz, 'r, . For the
present purposes, it is sufficient to ignore any possible
frequency dependence of v, .

In the free-electron region at low energies, n.~~ rises
rapidly and essentially saturates at a value character-
istic of e,= 1 electron per atom and m, = 1.04. The rise
above 2 eV is associated with the onset of interband
transitions. At still higher energies, e,ig increases
smoothly, as in the case of Ag and Cu, ' indicating proba-
bly that the oscillator strengths for transitions involving
the d electrons are distributed over a wide energy range.

The n, gg plot corresponding to the sum rule for the
energy loss function, —Ime ',

~o ~27r2.lily&~

co Im6 (M)d(v —
~

~niff
m i

is also shown in Fig. 4. Such a plot has been useful in
the case of Al, ' where the entire energy loss was con-
centrated in a small energy range near the fundamental
plasma resonance or in Ag' where there occurs a strong
relatively undamped plasma resonance associated with
the valence s and d electrons. For Au, this curve is quite
smooth, as might be expected from inspection of the
energy-loss function plotted in Fig. 2. In the present

"H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev. 132,
1918 (1963).
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Fn. 5. Calculated band structure of Segall (Ref. 2) for Cu. The
heavily drawn bands (bands 5 and 6) give rise to the structure
discussed in Secs. 3 and 4. The lightly drawn solid band (band 4) is
relevant to the discussion of photoemission in Sec. 5.

context, the sum rule on —Ime ' is mainly useful in
substantiating the internal consistency of the Kramers-
Eronig analysis. From inspection of Eqs. (4) and (5),
one expects the two integrals to approach the same
asymptotic values. This is indeed seen to be the case in
Fig. 4 near 60 eV. The two curves coincide at larger
energies in the extrapolated region, since a~~1 and
&2~ 0. Thus, the integrands of Eqs. (4) and (5) are very
nearly identical.

A. Survey of Low-Frequency Interband Structure

The interband contribution to the imaginary part of
the dielectric constant for transitions between two

3. LOW-ENERGY INTERBAND TRANSITIONS
NEAR L

In this section, we will present absolute calculations
of b~&' showing that the lowest frequency interband
structure in Cu, Ag, and Au, responsible for the char-
acteristic color of the 6rst and last of these metals, can
be associated with the onset of direct transitions
between the heavy-mass I» band and the J2 band as
the 1.2. band crosses the Fermi surface. The band struc-
ture for Cu is shown in Fig. 5. The bands involved in
the transitions in question are the heavy solid curves.
The band shapes for Ag are qualitatively similar, ' but
the d bands lie about 2 eV lower, relative to the Fermi
energy, than those in Cu. For Au, band energies have
been calculated only for a few symmetry points'; how-
ever, one expects the band structure to be quite similar
to that of Cu. This is borne out by the calculations. The
various experimental measurements dealing with the
Fermi surface~ (see 8 below), as well as the optical
measurements, indicate that the Au band structure and
Fermi surface are more like those for Cu than for Ag.
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For a perfectly Qat lower band, surfaces in k space for
which co„~ is constant and those for which or is constant
coincide. This situation is illustrated schematically in
Fig. 6(a), which shows a (110) cross section of the
Brillouin zone. The solid curves represent constant ~„~
surfaces, for the case of a perfectly Rat lower band. The
Fermi surface is represented by the dashed curve. It
coincides with one of the constant or„~ curves. As a
result, p„&(s&) rises abruptly from zero to a finite value
when 8 crosses the Fermi surface. The resulting be-
havior of 6e&&" is shown by the solid curve in Fig. 6(c).
There is a vertical rise in be~(b', followed at higher fre-
quency by a decrease. This results both because the
area of the contributing ou„~ surface decreases asone
moves into the corners of the Brillouin zone, and, more
importantly, because of the 1jco' factor in Eq. (7).

If the lower band is not Qat, the constant co„g surfaces
no longer coincide with the constant or surface. This
situation is indicated in Fig. 6(b). Again, only the part
of a given cv„~ surface outside the Fermi surface con-
tributes to A&2&". It is obvious that, for this case, the
optical transitions are turned on more gradually and the
optical structure is correspondingly smeared out. The
frequency range for nonzero be~b' divides itself into two
parts: a lower frequency range where the part of the
available constant ~„~ surface contributing to be(b~ in-
creases with co &, and a higher frequency range where the
maximum available surface in the Brillouin zone cor-
responding to each ~„~ contributes. If the lower band is
almost Qat, then the only qualitative change from the
ideally Rat situation is that the initial rise, while still
abrupt, is no longer vertical. This behavior is indicated
by the dashed curve in Fig. 6(c). If the lower band
departs markedly from flatness, the rise in 5&2'b) will be
more gradual. Then one may obtain a situation such as

——Fermi surface

constant hauug surfaces

(energy in eV indicted)

FIG. V. Cross section in (110) plane of surfaces of constant &„~
and Fermi surface for calculated Cu band structure.

'r,'. muj

Fro. 8. Band struc-
ture near I for the
noble metals.

m

that shown in Fig. 6(d), where the 1/~' factor causes
the peak in be2&b& to occur at frequencies below that for
which the maximum available constant co„~ surface con-
tributes. The resulting curve for A&2& b& will then be much
broader and of smaller amplitude.

Turning now to the case of interest here, the constant
~„~ surfaces for the L2 and heavy-mass L32 bands for Cu
obtained from Burdick's bands' are shown in Fig. 7.
The lower band is indeed almost Bat. The Fermi surface
therefore nearly coincides with one of the constant
co„~ contours over much of the Brillouin zone. Thus one
expects sharp optical interband structure with a fairly
abrupt onset at about 2.15 eV.

It should be emphasized again that the possibly rapid
variation of the joint density of states just discussed is
not part of the usual catalog of Van Hove singu-
larities. '~' The present eRect depends intimately on
the existence of a sharp Fermi surface and, for this
reason, has no parallel in semiconductors for which the
most detailed analyses of optical int&rband structure
have been made. To be sure, Van Hove singularities
play an important role in other regions of the spectrum.
However, in the present case (cf. Sec. 3.C), transitions
associated with the lowest energy optical structure
occur in the cone whose cross section is the triangle
$1'f of Figs. 6(a) and 6(b) for which there are no evident
critical points. [Transitions do not occur at L because
E(L& ) &Er.] On the other hand, the joint density of
states connecting X5 and X4 is representative of a
saddle point of the S2 kind. "The vicinity of this point,
as represented by cross section $1'i1 centered about the
Xl' axis is not included in the cone $1'i' and must be
treated separately. In I, the upper of the two peaks at
low frequencies was assigned to this transition. In
Sec. 4, we shall present arguments which support this
interpretation.
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TAsLz I. Band parameters and optical matrix elements. ' the cyclotron mass m, is

w, =EF—E(L, )
neck radiusb
m„g ——mg(L2 )
m rr=mri(L2)r,=E(L, )—E(L„)
mrrr =mrr (L32)
E~

Cu

0.61 eV
0.305 m/a
0.46 mp—0.15 mp
1.48 eV—2.65 mp
0.58 eV

Ag

0.30 eV
0.214 w/a
0.35 mp—0.11 mp
3.67 eV—2.25 mp
2.04 eV

Au

0.39 eV
0.276 m/a
0.44 mp—0.17 mo
1.96 eV—2.65 mo
0.83 eV

a At the completion of the present calculations, the paper of A. S. Joseph
and A. C. Thorsen I Phys. Rev. Letters 13, 9 (1964)j appeared giving dif-
ferent values for mg(L2r) and mr 1 (L~r) for Ag and Au than those obtained
from Ref. 7. For Ag, Joseph and Thorsen give mg(L2r) =0.39&0,02 and
mg(L21)/err (L2r) =3.14~0.10, in good agreement with Ref. 7. For Au
Joseph and Thorsen give mL(L2r) =0.29 and mg(L2r) jmlr (L2r) =2.38~0.10.
The smaller value for m J (L~r) would give a slightly sharper initial rise for
Au, but we expect no qualitative change from that using the value from
Ref. 7.

b Used in determining firof for Ag and Au.
o Acro determined for Ag and Au from fact that energy for onset of optical

structure =fi(coo+oof).
d Value for Au assumed equal to that for Cu.

While our present remarks have been directed spe-
cifically at Cu, the same arguments concerning the
mechanism responsible for the interband structure at
onset, as well as the higher peak, will be seen to be appli-
cable also to Ag and Au.

B. Band Parameters

The model for the band structure to be used in con-
sidering optical interband structure arising from tran-
sitions in the neighborhood of L is shown in Fig. 8. The
optical transitions of interest are from the dashed band
to the dotted band in the region where the dotted band
is above the Fermi energy.

The heavy mass L» band will be assumed to be com-

pletely flat in directions transverse to LF. This is con-
sistent with band calculations.

For Cu, the value of EF and the band separations at
L are those calculated by Burdick. 4 Some numerical
values are given in Table I. While Segall's results' are
quite similar to and equally as accurate as Burdick's,
differing at most by several tenths of an electron volt,
we used Burdick's values because the calculated onset
of optical transitions at A(res+ref) agrees almost per-
fectly with experiment. In the case of Segall's results,
the onset energy would be about 0.50 eV higher.

The values for the transverse and longitudinaP'
masses pertaining to the upper band, m~i= m, (Ls ) and

m„„=m[~(L& ), are obtained from cyclotron resonance
experiments. ' Here m, (Ls ) is the cyclotron resonance
neck mass when H is parallel to the Ll' direction. The
longitudinal mass m~~(Ls. ) is obtained by fitting the
experimental curve of the variation of the cyclotron
mass with angular deviation of the magnetic field direc-
tion from the (1, —1, 1) direction in the (110) plane.
For an energy surface given by

P. E(Ls )= f'r'k(P /2m—) (—+f'r'kis/2m, , (10)

"We use ~( and J throughout to denote band structure quan-
tities which are appropriate, respectively, parallel and perpen-
dicular to the LI.' direction.

sin2nm, )m,
-

COS

+
mo tnt. terr neo mx mo

'The value mrr {L2 ) = —0.15 mp differs from that (—0.27 mp)
quoted by J. C. Phillips and L. F. Mattheiss LPhys. Rev. Letters
11, 556 (1963)j, presumably obtained by the same procedure
using the experimental results of Ref. 5. However, the agreement
with the values for mq(L2 ) and mrr (L2 ) obtained from de Haas-
van Alphen measurements by A. S. Joseph and A. C. Thorsen
(Ref. 6) is excellent."G. C. Fletcher, Proc. Phys. Soc. (London) 65, 192 (1952).

where n is the angle between II and the (1, —1, 1)
direction in the (110) plane, and ms is the free-electron
mass. The value of m„(Ls ) found by fitting the experi-
mental curve of m, versus a using (11) and also nr, (Ls )
are shown in Table I"

For Ag and Au, present band calculations' have not
determined the s-d band separations accurately. Ac-
cordingly, we use the experimentally determined neck
radius and neck mass found from de Haas-van Alphen
measurements" to find fso&f. (The neck radii from de
Haas-van Alphen measurements are in excellent agree-
ment with the values obtained by magnetoacoustic
resonance. ') The value of the frequency for the onset
of optical structure, obtained from I for Ag and from
Sec. 2 for Au, gives PF E(Lss). T—he values of Ares and
Acof, as well as the experimental data from which they
are derived, are shown in Table I. As we shall show
below, absolute calculations using these values of Ago

and A~f yield optical structure of the proper shape and
magnitude to agree reasonably with experiment. There-
fore our use of the optical data to obtain the s-d splitting
[i.e., E(Ls)—E(Lss)], when accurate values are not
available from band calculations, is self-consistent.

The values of m„(Ls ) are obtained by fitting the ex-
perimental variation of de Haas-van Alphen period for
the neck oscillation P„(n) with angle of the magnetic
field from the (1, —1, 1) direction in the (110)plane. r

Equation (11) can be used for this purpose by noting
that P„(a)/P„(0)=m, (0)/m, (u).

The remaining masses necessary for the present cal-
culations must be determined from band calculations
rather than experiment. For Cu Bin[ tg„(Lss) is ob-
tained by fitting the curvature of the corresponding
band in Burdick's calculations. 4 The same procedure is
followed for Ag, using Segall's bands. ' For Au, band
energies are available only for I', L, and X. Since, ac-
cording to various Fermi surface and optical measure-
ments, Au behaves quite similarly to Cu, we assume
m„(Lss) to be the same as in Cu. These values are
shown in Table I.

As an alternative procedure, we could have used the
expressions of Fletcher, "based on the method of linear
combinations of atomic orbitals (LCAO), for the Lss
band energy Ez(L») as an interpolation formula con-
necting the more precise band energies calculated at
symmetry points. A rough application of this procedure
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indicates the results to be quite comparable to those ob-
tained by graphical fitting.

m, (L0')

I(L Ip IL )I'
=1+—P

m f=caE(L2) E(L,)—

=1+ +—,(»)
E(L0 )—E(L00) E(L0 )—E(Loi)

where

E„=(2/m) I
—(Lo lp, lL„h„„i „,) I',

=(2/m)I(L0 Ip. IL..lioh&--)l'. (I»
The last approximate equality in Eq. (13) is exactly
satisfied, using the general symmetry properties of L2,
for wave functions in the tight binding approximation"
for both L» and L». However, using only the general
symmetry properties of L2, there is no equiva1ence
between

I (Lo I p, lL00) I
and

I
(Lo I p, lLoi) I

in thetight-
binding approximation.

For Cu, the determination of E„ is straightforward.
The band separations are obtained from Ref. 4 and the
value of m, (L& ) is the experimentally determined one. '
These values are then substituted into Eq. (12) to
obtain E~. Because the relative positions of the s and d
bands depend very sensitively on the crystal potential,
it is necessary in the case of Ag and Au to make empir-
ical adjustments of E(L& )—E(L00) in order to obtain
agreement with the onset of interband transitions. The
band separations within the d-band complex, by con-
trast, are extremely insensitive to the crystal potential.
In particular, E(L00)—E(Loi) for Ag and Au, in dis-
tinction to E(L&.)—E(L»), is accurately determined by
Segall's band calculations, ' and can be used in Eq. (12)
without further adjustment. For example, in Segall's
Hartree-Fock free-ion Ag calculations, E(L00)—E(Loi)
= 1.70 eV, whereas using Hartree functions he obtains
1.71 eV. The calculated values of E„are given in
Table I.

E„for this transition is seen to be about an order of
magnitude smaller than the almost universally constant
value ( 1 Ry) characteristic of allowed transitions
between band edges which would be degenerate in the
absence of a periodic potential. '4 For example, the strong
interband transitions in semiconductors are all char-
acterized by E„of this magnitude. "The reason for the
difference, in the present case, is that the L»—L2
transition is only quasi-allowed. By this we mean that

2' J. C. Phillips, Phys. Rev. 125, 1931 (1962).
2~ H. Ehrenreich, J. &ppl. Phys. 32, 2155 (1962).

C. Optical Matrix Elements

The only nonvanishing momentum matrix element
between Loo and L, involves p, . Its value is obtained
from the experimentally determined m, (L0 ), using
k p perturbation theory and the assumption that s-d
matrix elements at L are equal. We find

the L»—L2 transition, while allowed in the solid by
general symmetry considerations, is forbidden for L»
wave functions in the tight-binding approximation and
L2 wave functions expressed as the appropriate sym-
metrized combination of plane waves. The small non-
zero values for E„result from the fact that the L2 and
L» wave functions differ s1ightly from the symmetrized
plane-wave and tight-binding function, respectively.

c =I'r/2m„„c ~~= —k/2m„~~.

Similarly, for the lower band we have

rpl (&f+&0) Cllki Clllkll

with
ci,———k/2mi„c l„———k/2mi„.

The relevant gap at each k is then given by

rpel Oio+Clkl Ctlkll

with
Ci=cei+Cii ) Cti —Centi Ciii ~

By means of the transformation

k.= (1/c, '") (rp„&—roo)'~0 cosh) cosy,

k„= (1/ci'") (&o l
—coo)'" cosh& siny,

kir= (1/c '")(~.i—~0)" sinhP

where kio=k, '+k„', we find

(15)

(16)

(17)

(18)

(19)

(20a)

(20b)

(20c)

p l(&) = (oi—ohio)' '/2ir'c c "'
X (slnh& pp slnh&ie~er) (21)

Here sinh)„pp, „and sinhpl, „are determined, respec-
tively, from the conditions E &Ep and E&(Ep. For
the case at hand, sinh$i, „——0 and

—&f+ (c~i/ci) (rp —0~0)
slnhgupper = (22)

((c ~~/c, ~)
—(c i/ci))(rp —rpo)

D. Calculation and Discussion

The contribution to the interband part of the di-
electric constant near each of the four equivalent points
L is given by Eq. (7). In order to find the total inter-
band contribution, which corresponds, in the case of a
cubic crystal, to the equal elements of a diagonal tensor,
it is necessary to include an additional fa,ctor of 8/3 on
the right-hand side of Eq. (7) when Ep is given by
Eq. (13).This accounts for the fact that when the con-
tributions of the four (111) directions are added,
IP~l&l' should be replaced by

(8/3) I ~-i'I'+(4/3)
I
~-i" I'.

In order to evaluate p &(co) given by Eq. (8), we define
the zero of energy and wave number k at Ep and L,
respectively. Thus, in connection with Eq. (8), we may
write for the upper band

Co+= Q)f+CeJki Ctctlkll

where
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near X is seen to be excluded. Indeed, Eqs. (14)-(19)
for the constant co„~ surfaces are assumed to take ade-
quate account of the region surrounding L, but none at
all of the critical point at X.Thus any structure caused
by transitions between the heavily drawn bands of
Fig. 5 near X will be additive to the structure obtained
by the present calculation. These matters are discussed
further in Sec. 4.

The condition that the part of k space contributing
to the optical transitions falls within the cone defined
above is

k '+k„'& (7/9) (L—Ix, „)' (23)

2.0— 0
where L is the 1'L, distance (=%3xr/a). Use of the trans-
formation (20) shows that (23) is equivalent to the
condition

sinh$ &sinh$coo„ (24)

1.0—
o EXPERIMENTAL POINTS

ABSOLUTE THEORY——THEORY SCALED TO

EXPERIMENTAL

AMPLITUDE

I I

2.0

I

4.0
I

im(eV)

FIG. 9 be2b for Cu

'6 J. M. Ziman, Advan. Phys. 10, 1 (1961).

The preceding formulas are valid for any value of m&&.

However, in the present calculation, we assume the
heavy mass L» band to be completely Rat in directions
transverse to L—I'. Thus m~L= ~, and our results
simplify, since c„x/c, = 1.

There is a restriction, however, that the upper limit
given by Eq. (22) can be used only so long as it falls
within the maximum volume in k space that can be
associated with the neighborhood of a given L point.
This maximum volume amounts to one fourth of that
for the entire Brillouin zone and is characterized by the
cross-section XULKI'X in the (110) plane, shown in
Fig. 6, plus the corresponding area on the opposite side
of the Brillouin zone.

When this condition is not satisfied, it is necessary to
use an alternate cuto8 corresponding to the situation
discussed in Sec. 3A where the entire surface of constant
~„~ lies outside the Fermi surface and contributes to
be2(~&. For calculational convenience, we make the ap-
proximation that, in this case, the part of the Brillouin
zone associated with the transitions at a given L is the
cone subtending a solid angle 4XP/8 at I' cross section
]I'i' in Fig. 6 plus the corresponding volume on the
opposite side of the Brillouin zone. As can be seen from
Fig. 7, this is a reasonable approximation to the be-
havior of the pertinent constant co ~ surfaces associated
with the Cu band structure in the energy range near 2.0
eV. This particular approximation is closely related to
Ziman's" model for energy surfaces near the Fermi
level in the noble metals. The contribution of transitions

3 (b)
2

S ILVER

4.0—

3.0—

2.0—

-o-~ EXPERIMENT

ABSOLUTE THEORY

THEORY SCALED TO

EXPERIMENTAL

AMPLITUDE

1.0—

I

2.0
I

4.0
I

6.0 &~(ey )

Fze. 10.B~P for Ag.

where sinh$„„, is determined by

7CA Slnh )cone f CiiAL 1 —1I=1.
9cTT(sinh'(eeoc+1) k h(ox —cop) sinh$cone

(25)

Then p T(ox) is determined from (21), with sinhgT, „——0,
and sinh$„»„given by either (22) or (25), whichever is
smaller.

From (7), (21), (22), (25), and the values of parame-
ters given in Sec. 38, one obtains absolute theoretical
curves for the frequency dependence of be&' in Cu, Ag,
and Au resulting from transitions between the heavy
mass L32 band and the L2 band in the neighborhood
of L.
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FIG. 11.Be2 for Au.

These curves are shown in Figs. 9, 10, and 11 together
with data for be2~ deduced directly from experiment.
The latter were obtained from e2(&v) as determined by
Kramers-Kronig analysis by subtracting e2'f'(cv) which

is quite small. In the case of Cu and Au, the experi-
mental curves exhibit two well-dehned peaks, the lower

of which is attributed to the L32~ L2 transition. The
higher peak, which we associate with a transition at X,
will be discussed in the following section. The results
for Ag reported in I showed only a single peak which

rose sharply at low energies and fell off slowly at higher
energies. Since the multiple structure observed in Cu
and Au would also be expected to occur in Ag, the
Kramers-Kronig analysis for this material reported in

I was repeated at smaller intervals between successive
co in the region of the peak in order to search for any
further structure. The resulting curve, shown in Fig. 10,
indeed displays an additional shoulder above 5 eV which

was overlooked in I.
In order to permit a better visual comparison of the

shape of the experimental and theoretical results, we

also show, in each of Figs. 9—11, a curve obtained by
multiplying the absolute theoretical results by a scaling
factor chosen so as to yield agreement with the ampli-
tude of the experimental peak.

Examination of Figs. 9—11 reveals that the observed
structure associated with the lower energy peak is

represented quite well by the calculations. The rapid
rise of 5&2~ at low energies in Cu and Ag is closely re-
produced. In the case of Au, the experimental onset is
somewhat broader than theoretically expected. Further,

the predicted decrease of A&2' at higher energies is, in
all cases, somewhat more rapid than experimentally
indicated. Finally, the magnitudes differ by the factors
2.9 for Cu and Ag, and 3.2 for Au, which are almost the
same for the three materials.

We begin our discussion of these results by noting
that the maximum for each of the three curves occurs
at the value of frequency for which sinh$„», „given by
(22) equals sinh$„„, given by (25). This corresponds
to the frequency at which the entire constant or &

surface begins to contribute to A&2'. As discussed in

Sec. 3A, in general the maximum of A&2' need not occur
at this energy. It occurs so, in the present case, because
the lower band is almost Qat. If m~ also were infinite,
the initial rise in 5&2' would be vertical. This can be seen
formally from Eq. (22), where for [,~[[/c[[ c J/[, [, 1,
sinhf„»„ is inhnite for all frequencies of interest
(&a) &oo+[df)[ and the upper limit on sinh) in Eq. (24)
is given by sinh$„„, of Eq. (28) for all frequencies.

Several possible reasons may be advanced for the less
abrupt onset of interband transitions in Au. We note
first that the two peaks in Au are su%ciently close
together, and the second peak sufficiently strong, that
the apparent gradual onset may result from a contribu-
tion of the higher energy peak. However, it is quite
possible that there is a genuine discrepancy between
theory and experiment. This may, in part, be due to our
assuming a value for m„(L,3~) in Au equal to that for
Cu. If m[[(1.~~)= —1.09 mo, the theoretical onset of
structure would take place over the same frequency
range as that observed experimentally. Finally, broad-
ening eRects to be discussed below may play a more
prominent role in Au than in Cu or Ag. In this regard,
it should be noted that the electron-phonon interaction
is expected to be greater for Au than for Cu or Ag."

Because of the close proximity and resulting overlap
of the two peaks in Ag and Au, quantitative comments
concerning the shape and strength of the transition
must be con6ned to Cu. The too rapid falloff character-
izing the theoretical peak may be due to several factors.
First, no broadening eRects have been included in the
theory. These would tend to become more important
with increasing optical excitation. This circumstance
may account for the correspondingly better agreement
near the onset of the transition. Second, there will

certainly be some contribution in this range from the
process giving rise to the peak at 4.5 eV. Third, since
the transitions between the bands in question (heavy
curves in Fig. 1) are only quasi-allowed for the relevant
range of k and energy, the quantity E„, defined by
Eq. (13) may vary appreciably with frequency rather
than remaining constant as it does for allowed tran-
sitions. In this case, a small variation in the wave func-
tions involved in P„[(k) might have a relatively pro-
found eRect on B~. For example, the theoretical struc-

"L.J. Sham and J. M. Ziman, in Sold State I'hysics, edited
by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1963), Vol. 15.
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ture would be broadened if E„ increased going away
from L. As discussed in Sec. 4 below, there is a strong
indication that E„ increases going from L toward X.
Fourth, there is the possibility that the band model de-
scribed by Eqs. (14) and (16) leads to an error in the
area of the surfaces of constant or„~ contributing to be2b.

It should be recalled, however, that the decrease in
8e&b comes primarily from the 1/co' factor and that the
effective area of each surface of constant ~„~varies rela-
tively slowly with co once the whole surface is contribut-
ing to 6~2~. A crude estimate of the decrease of be~' with
co when the surfaces of constant co„~ are obtained from
the detailed Cu band structure of Fig. 5 rather than
from the approximation of Eqs. (14) and (16) shows
that this effect is not likely to be greater than about
13'Fo

Finally, it should be remembered that the present
calculations have all been done within the framework
of band theory and the random-phase approximation.
One expects effects due to electron correlations to be
important, particularly since d bands are involved for
the transitions in question here. Such effects would be
expected to contribute both to the breadth of the tran-
sitions and to their amplitudes. It should be recalled
that even for Al, ' which is considerably simpler and
therefore lends itself to more reliable calculations of
both the band structure and the optical properties, there
were appreciable discrepancies between theory and ex-
periment for both intra- and interband contributions
to e. Yet from sum-rule considerations, it was possible
to show that the calculations of both contributions was
almost perfectly self-consistent. In order to obtain
agreement with experiment, it was necessary to shift
some of the oscillator strength from the intra- to the
interband terms, which is consistent qualitatively, for
example, with an increase of effective masses such as
might be produced by dressing e6ects. As already
pointed out, in the noble metals one finds that the cal-
culated contribution of the interband terms is also
somewhat too small. Application to Cu of the sum rule
given by Eq. (4) for Aces=4 eV shows that the ratio of
the experimental to the absolute theoretical results is
approximately 3.5. This magnitude is quite similar to
that found for the total interband contribution in Al. '

4. TRANSITIONS NEAR X

In I, the higher frequency of the two experimental
peaks for Cu (Fig. 9) was tentatively identi6ed with
transitions near X associated with the X5 —+ X4. critical
point. "As has been discussed in Sec. 3, the calculations
of that section omit the volume in the Brillouin zone
centered about the I'X axis with cross-section $1'ri in

Fig. 6. Thus the effect of transitions occurring in that
part of the Brillouin zone and associated with this
critical point will be additive to the structure calculated
in Sec. 3.

"The X2 ~ X4 transition is not allowed.

For Cu, the experimental peak in question occurs at
4.50 eV. On the other hand, the X5 —+ X4 separations
calculated by Burdick4 and SegalP are 3.97 and 4.58
eV, respectively. Since equally reliable information is
unfortunately not available for Ag and Au, we shall
assume Segall's results' for these bands to be correct
except for the s-d splitting, which is the result most
sensitive to the choice of potential in such calculations.
The d band, passing through L32, 8'~, and X5, will be
assumed to move rigidly relative to the s band passing
through L2, 8'3, and X4. The magnitude of this shift
is determined by matching the onset of the interband
transitions near L discussed in the previous section
with experiment. The X~ —& X4 separation determined
in this way is 5.75 or 5.65 eV for the Ag bands based on
Hartree-Fock or Hartree atomic wave functions, re-
spectively, and 4.15 eV for Au. By comparison, the
shoulder in Fig. 10 for Ag, which we associate with this
transition, occurs near 5.5 eV, whereas the second ex-
perimental peak in Au lies at 3.9 eV. Thus the location
of the higher frequency experimental peaks of Figs. 9,
10, and 11 corresponds quite well to the energy dif-
ference at the X5 —+ X4 critical point, and it seems quite
reasonable to associate this structure with the transition
in question.

For Cu, it is possible to estimate the magnitude and
detailed shape of the structure associated with these
transitions. As already noted, the energy difference
between the heavily drawn bands of Fig. 5 at X has a
saddle point of the Ss kind (maximum in two directions,
maximum in one) just as that at L. The pertinent
masses can be estimated from Burdick's Cu bands4 by
fitting the curvatures near X. This procedure" gives
m[[(X4I) = —0.16 m, ra, (X4~) =0.41 m and m„(Xs)
= —1.89 m, m&(X&) = ~. The value of E„, the energy
corresponding to the only nonvanishing momentum
matrix elements for the X5~ X4. transitions, can then
be estimated by the use of k p perturbation theory,
since this interaction determines m, (X4~). The pro-
cedure is the same as that described in Sec. 3C for
evaluating E„between the same bands at L. For the
transitions at X, E„=2.86 eV. This value is much larger
than the value E„=0.58 eV which applies to transitions
between the same bands at L. This marked increase in

E„ is consistent with the quasi-allowed nature of the
transitions between these bands and contrasts with the
nearly constant values characterizing allowed
transitions. "

The calculation of 5&2' for the higher energy transi-
tions, which include the sects of the X5 —+ X4 critical
point, proceed in the same manner as those described
in Sec. 3D for the L transitions. For A~)E(X4)
—E(Xs), the same formulas may be used, while for
Ao&(E(X4)—E(Xs) it is a straightforward matter to
modify the calculations to take into account the fact

~ In Sec. 4,
~ ~

denotes the FX direction and J denotes the direc-
tions perpendicular to it.
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that the constant energy difference surfaces for the two

bands are hyperboloids of two sheets rather than

hyperboloids of one sheet as for Ace)E(X4) —E(X5).
It is, of course, just this change in geometry of the

energy difference surfaces that leads to the critical-point
effects for A&o=E(X4 )—E(X5). We make the approxi-

mation that the part of the Brillouin zone associated
with the transitions at a given X is the cone subtending
a solid angle 4m/3 at i' whose axis is the I'X direction.
By comparison with the energy-difference curves of

Fig. 7, we expect this approximation to be reasonable
in the vicinity of the X5 —+ X4 critical point near 4 eV
but not for energies near 2.0 eV where the structure
discussed in the previous section occurs.

A synthesis of the numerical results obtained in this
and the preceding sections is shown in Fig. 12. The re-
liable portion of the calculations centering around the
peak near 4 eV which arises from the X5—& X4 critical
point is shown by solid lines, as are the results near 2

eV obtained in Sec. 3. The heavy dashed line joining the
two pieces represents a hand-drawn interpolation which

is characteristic of what might be obtained from a more
accurate calculation. The critical point near X is seen
to provide structure in be2b of magnitude comparable
to that near L in agreement with experiment. We also
indicate by the light dashed line how the structure near
2 eV is represented by the calculations of this section.
The present results tend to overemphasize the magni-
tude of the lower frequency peak because of the use of
the much larger value of E„appropriate to the transi-
tions near X.

Despite the elements of agreement between theory
and experiment that have just been noted, it should be
emphasized again that there are approximations in-

volved in the present calculations that prevent the
results from being quantitatively valid. One of the most
serious among these is the assumed frequency inde-

pendence of E„in the vicinity of L and X, respectively.
E„has, in fact, been seen to vary by almost a factor of
5 in the range between 2 and 4 eV. The inclusion of
the actual frequency dependence of E„ in the region
surrounding the peaks would appreciably broaden the
structure. A similar effect would result from the inclu-
sion of damping effects arising from the finite lifetimes
associated with the quasiparticles. Explicit scattering
contributions from the electron-electron interactions
may also modify the calculated structure.

Comparable calculations of the structure arising from
X are not possible for Ag or Au, since there are no band
calculations of sufhcient detail or accuracy to be useful

in the estimate of the pertinent band curvatures. The
question as to why this structure, relative to that arising
from L, is much weaker in Ag than in Cu, or Au can,
however, be answered qualitatively.

There are two ways in which such differences can
come about: first, through changes in the band curva-
tures, and second through changes in the relativemag-

4.0-

5.0-
3

{bj
Se,

I
/

I

t
I

l

w&vr. R

2.0- '

1.0-

I

20
I

4.0
Tie{ev)

I

6.0

Fn. 12. Calculated be2b for Cu. Heavy solid and dashed line
shows the synthesis of numerical results for Secs. 3 and 4. Dashed
portion refers to interpolation. Light dashed curve shows the in-
accurate results for low-energy structure from the calculations of
Sec. 4.

nitude of E~ at X and L. With regard to the first point,
one observes that for both the critical point at X and
that at L, 5&2'~m, (m~~)'", where m, and m~, are the
interband reduced masses, which, however, are almost
the same as the s-band masses. For Cu, the ratio of
E(X4 )—E(X~) to E(L2 )—E(L32) is larger than for Ag.
These separations are the most important energy split-
tings determining m, (X4 ) and m~(L2. ). From this rela-

tive change in energy splittings and the consequent
change in m, (X4 )jm, (L&.), one roughly estimates that
the ratio of Se~ from transitions near X to 5&2 from
transitions near L is about 1.5 to 2 times larger for Cu
than for Ag. The same ratio for Au falls about midway
between those for Cu and Ag.

The other point to be considered is that the X5 —+ X4
transition is quasi-allowed. We have already noted the
consequent large variation of E„between L and X for
a given metal. Since the ratio of E(X4)—E(X5) to
E(L& )—E(L») differs between Cu and Ag, one may
expect a corresponding difference between the ratio of
E„at X and L. This would also cause a difference
between metals in the relative strength of the two low-

frequency peaks in 8&2 .

5. DIRECT VERSUS INDIRECT TRANSITIONS

In the preceding sections, we have shown that the
low-energy optical interband structure in the noble
metals is explicable at least semiquantitatively in terms



FIG. 13. Energy distribu-
tion of photoemitted elec-
trons from Cu plotted
versus E (electron energy)—hv (photon energy} (This
is Fig. 9 of Ref. 9.)
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of direct transitions. In this context, it is of interest to
examine recent photoemission data for Cu and Ag,"
which were interpreted by Spicer Rnd Berglund on the
basis that indirect transitions play a dominant role in
the optical absorption processes. Using the insight we
have obtained from the preceding calculations, it is
possible to examine to what degree the direct processes
utilized here explain the observed results. We should
stress that while it is valuable to correlate the photo-
emission results and the ordinary optical absorption,
photoemission is basically a more complicated process
since in addition to the photon absorption it involves the
processes of electron escape from the solid to the
vacuum. It is not clear to what extent, if any, this com-
plication obscures identification of initial excitation
Pl OCCSSCS.

The photoemission data of Berglund and Spicer' "for
Cu are given in Fig. 13 as a plot of the energy distribu-
tion of photoemitted electrons versus electron energy
minus photon energy~ ~ h~."There are two peaks ln

the electron-energy distribution which shift linearly with
photon energy. The higher energy peak is associated
with transitions between the two heavily drawn solid
bands in Fig. 5, which we label as bands 5 and 6, re-
spectively. "These are just the bands involved in the
transitions discussed in Secs. 3 and 4. It is possible to
understand the linear shift of this peak with photon
energy on the basis of direct optical transitions. Band 5
is seen to be Rat through most of the region where
band. 6 is above the vacuum level. There is a smooth
variation of the density of states in the upper band,

"W. E. Spicer and C. N. Berglund, Phys. Rev. Letters 12, 9
(1964).

3' The curves in Fig. 13 have no common normalization. The
proper normalization would be obtained if the area under each
curve were proportional to the total yield for that value of hv ob-
tained from Fig. 1 of Ref. 30. We are indebted to Professor W. K.
Spicer for this information.

3' Throughout this section we will follow the notation of Ref. 4
and number the bands in order of increasing energy.

since there are no critical points in this region except
for the point X which lies immediately above the
vacuum level and the point 8'. The effects of the latter
are discussed below. Under these circumstances, we
expect the photoemission to reAect the sharply peaked
density of states of the d band and to shift linearly with
hv, even for direct transitions. Indeed Berglund and
Spicer state that for this case of a Qat lower band the
linear shift does not distinguish between the direct and
indirect transition cases.

If the above identification is correct, the band 5 —+

band 6 peak should disappear at a photon energy equal
to the S'3 to Wi separation. The band calculations of
Burdick4 and SegalP indicate this separation to be 8.6
and 9.2 eV, respectively. Figure 13 indeed shows the
peak in question to disappear at some photon energy
between 8.6 and 10.4 eV, in support of this interpreta-
tion. Thus the photoemission behavior in this respect
does satisfy a rather strict requirement imposed by the
direct transition behavior. It is unlikely that transitions
to band 7 would lead to a reappearance of this peak
since the optical matrix elements between bands 5 and 7
are probably weaker than those connecting bands 5 and
6. In pM tlcular~ thc tIRnsltlons I32 ~ I yg RIll X5~ Xy
are forbidden. For their indirect transition picture,
Berglund and Spicer associate the disappearance of this
photoemission peak with lifetime broadening. It is
quite reasonable to expect such broadening to be present
for either indirect or direct transitions, and to increase
with increasing excitation energy. The point we stress
is that the energy for disappearance is predictable on
the basis of direct transitions. However, we cannot
rule out a coincidental disappearance due to broadening
near this same energy.

There ren1ains the fact, stressed by Berglund and
Spicer, ' that the lower d bands, in particular band 4,
are not suSciently Qat to account for the linear shift of
the lower electron-energy peak with hv on the basis of
direct transitions. This indicates that indirect transi-
tions make an appreciable contribution to this peak.
However, it does not necessarily imply that indirect
transitions predominate. The direct transitions con-
tributing to the lower electron-energy peak would
connect bands 3 and 4 as initial states and band 6 as a
final state. Since bands 3 and 4 are decidely narrower
than the conduction bands, we would expect a peaking
in the photocmitted electron energy distribution cor-
responding to such transitions. It should be emphasized,
however, that these bands are considerably broader
than band 5. Accordingly, we would expect this peak
to be correspondingly broader than the higher energy

peak and also not to shift linearly with photon energy
to nearly so precise a degree. It is the fact that the peak
expected for direct transitions is so broad that may
allow indirect transitions, whose width is determined

by the relevant part of the d-band complex, to deter-
mine the peak location even if the latter do not pre-
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dominate over the former. In this case, the peak will

again shift uniformly with photon energy.
If the preceding viewpoint is correct and direct tran-

sitions predominate, the relative strength of the two
photoemission peaks at a given hv is expected to be com-

parable. Indeed, this can be estimated from a considera-
tion of transitions near TV between bands 5 and 6, and
4 and 6, respectively. For hv= 7 and 9 eV, we find that
beg~ for the two kinds of transitions lie within a factor
of 2 of each other. It should be noted, however, that
such comparable magnitudes could also be obtained if
the interaction determining the indirect transition were

strongly coupled.
In attempting to account for the apparent failure of

k conservation, one might be tempted to invoke the
fact that since photoemission effects take place within a
short distance of the surface, surface effects are in some

way disrupting this selection rule. However, the same
could be said of the optical constants as determined by
the present reflectance techniques, which are known to
be well correlated with bulk properties.

In conclusion, the optical structure for the noble
metals in the low-frequency range can be explained
quite satisfactorily on the basis of direct interband
transitions. While indirect transitions appear tocon-
tribute, as suggested by some of the photoemission
data, there is no clear experimental evidence indicating
that they must be the dominant factor in determining
the interband optical properties for the noble metals.

ACKNOWLEDGMENTS

We wish to thank Professor W. E. Spicer for pre-
prints of Ref. 9 and a helpful discussion of both his
photoemission work and the present manuscript.

PHYSICAL REVIEW VOLUM E 138, NUM B ER 2A 19 A P R IL 1965
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The magnetostriction of Tb single crystals has been measured from 4 to 350'K in applied fields up to
30 kQe by strain-gage methods. The temperature dependence of the four magnetostriction constants has been
determined under the assumption that the magnetic moment remains in the basal plane. Two of the con-
stants were evaluated by strain measurements as a function of applied-field direction in the basal plane, and
the remaining two by isofield magnetostrain measurements and subtraction of the thermal strain extrap-
olated from the paramagnetic region. The theoretical dependence of the anisotropic basal plane constants
on the magnetic moment has been evaluated.

INTRODUCTION

'HE magnetostriction of a material is a result of
the interaction between the magnetic anisotropy

and exchange energies and the elastic energy. In the
process of magnetization, if it becomes energetically
favorable, the crystal lattice will distort, producing the
observed magnetostrain. This strain is normally on the
order of 10 in. /in. in ferromagnets such as iron, nickel,
and cobalt. In some of the magnetic rare earths how-

ever, owing to the large anisotropy energies, the ob-
served magnetostriction is larger by almost 2 orders of
magnitude. Most work in the past on the rare earths has
been on polycrystalline material because of the lack of
single crystals of suKcient size. Single crystals oGer
considerable advantage in that they permit a direct
measurement of crystalline and magnetic anisotropies
so that direct correlations with theoretical results can be
made. Magnetostriction of the polycrystalline rare

*Contribution No. 1609. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

earths has been studied by Belov et a3.,' by Nikitin, ' and
by Lee and Alperts. ' More recent single-crystal studies
have been made at this laboratory on Ho, 4 Dy, 4 and
Gd. ' Studies elsewhere have been made by Clark et ul.
on Dy, ' and by Bozorth et al. on Gd. ' The principal
strain measurements have been made by the use of
strain gages (initially by Goldman and Smoluchowski')

' K. P. Belov, R. Z. Levitin, S. A. Nikitin, and A. V. Ped'ko,
Zh. Eksperim. i Teor. Fiz. 40, 1562 (1961) /English transl. : Soviet
Phys. —JETP 13, 1096 (1961)$.

s S. A. ¹kitin, Zh. Eksperim. i Teor. Fiz. 43, 31 (1962) i English
transl. : Soviet Phys. —JETP 16, 21 (1963)j.

3 E. W. Lee and L. Alperts, Proc. Phys. Soc. (London) 79, 977
(1962).

4 S. Legvold, J. Alstad, and J. Rhyne, Phys. Rev. Letters 10,
509 (1963).' J. K. Alstad and S. Legvold, J. Appl. Phys. 35, 1752 (1964).

sA. E. Clark, R. M. Bozorth, and S. F. DeSavage, Phys.
Letters 5, 100 (1963).

A. E. Clark, B. F. DeSavage, and E. R. Callen, J. Appl. Phys.
35, 1028 (1964).

R. M. Bozorth and T. Wakiyama, J. Phys. Soc. Japan 18, 97
(1963).' J. R. Goldman and R. Smoluchowski, Phys. Rev. 75, 140
(1949).


