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A simple but approximate theory is given for the acoustic attenuation in impure metals or semimetals in a
strong magnetic Geld. In the extreme quantum case the acoustic attenuation is an oscillatory function of the
magnetic Geld. It is shown that the qualitative nature of the oscillation depends on two parameters NqT and
It,/, where co~ is the phonon frequency, r the mean collision time, q the phonon wave vector, and 1 the electron
mean free path, and the z axis is chosen as the direction of the Beld. For co,v))1 the quantum oscillation is
gigantic, as pointed out by Gurevich et al. The large absorption occurs when the electrons near the Fermi
level drift in phase with the sound. In the intermediate region where or~r 1 but g,l))1, the oscillation is
still giant in the sense that only one quantum level contributes to the absorption, but the oscillation is
purely a density-of-states effect. When q,l &1, all levels contribute to the absorption, and the oscillation is
of the de Haas —van Alphen type. The e6ect of varying the direction of sound propagation relative to the
Geld is also discussed in all three regions.

I. INTRODUCTION

HE acoustic-attenuation measurement is a power-
ful tool for studying the electronic structure of

metals. Our classic example of its usefulness is that it
gives a direct measurement of the dimensions of the
Fermi surface. Measurements have also been made on
metals under high magnetic fields and low tempera-
tures. ' In this case, as a consequence of the Landau level
structure, the acoustic attenuation exhibits quantum
oscillations as a function of the Geld. ' Gurevich, Skobov,
and Firsov' predicted that, if the specimen can be made
pure enough, the quantum oscillations can become
"giant oscillations. " Several experimental observations
of such giant oscillations have been reported in the last
few years. Recently, one of the authors (A. M. T.) re-
viewed the present knowledge on the giant oscillations
and noted some important quantitative discrepancies
between the theory of Gurevich et al. and the experi-
ments. ' It seems that the main difIiculty of the theory is
that the finite mean-free-path eGect is not properly
taken into account. Gurevich et al'. first derived a result
based on perturbation theory on free electrons. Then
they relaxed the energy-conservation condition by re-
placing the 5 function by a Lorentzian function. This, of
course, is not the proper way to do the problem. Later,
Skobov' made a more sophisticated study by intro-
ducing a set of randomly distributed scattering centers
into the model and calculating the acoustic attenuation
in the presence of scattering. The paper itself is a
brilliant work of analysis, but for a person whose in-

f Present address: Department of Physics, Iowa State Univer-
sity, Ames, Iowa.' D. H. Reneker, Phys. Rev. 115, 303 (1959);J. G. Mavroides,
S. Lax, K. J. Sutton, and Y. Shapira, Phys. Rev. Letters 9, 541
(1962); Y. Shapira, ibid. 13, 162 (1964).' M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960); J. J. Quinn and S. Rodriguez, ibid. 128, 2494
(1962).

'V. L. Gurevich, V. G. Skobov, and Yu. A. Firsov, Zh.
Eksperim. i Teor. Fiz. 40, 786 (1961) (English transl. : Soviet
Phys. —JETP 13, 552 (1961)j.' A. M. Toxen and S. Tansal, Phys. Rev. 137, A211 (1965).' V. G. Skobov, Zh. Kksperim. i Teor. Fiz. 40, 1446 (1961)
LEnglish transl. : Soviet Phys. —JETP 13, 1014 (1961)].

terest is in the physical effects due to collisions, it is of
little value. Moreover, Skobov neglected the phonon
energy in his final formula. This is justified in practice,
but tends to obscure the physical effect because, for
instance, one cannot recover the perturbation-theory
result by letting the mean-free-path approach infinity.
The spin splitting is also ignored in this work.

In the present paper we give a more general formula
for the acoustic attenuation by including the spin
splitting as well as the phonon energy. A part of this
paper duplicates the work of Skobov. However, by ex-
hibiting more intermediate mathematical steps in the
derivation, we hope to achieve greater clarity. We also
point out that the qualitative nature of the oscillations
depends on two parameters ~,7- and q, /, where co, is the
phonon frequency, q, the component of phonon wave
vector in the direction of the field, v the mean collision
time, and l the mean free path of the electrons. Three
different regions may be distinguished, namely, the
giant oscillation region (te,r))1), the intermediate re-
gion (ca,r&1, q,/))1), and the de Haas —van Alphen
region (q,/&1). The amplitude of oscillation, the line
shape, and the tilt-angle e8ect are discussed in detail for
the three cases.

We use the same method for the acoustic attenuation
as Gurevich et al.' and Skobov. ' This method is a direct
generalization of the golden-rule calculation for the
phonon life time. We treat the finite-free-path eGect of
the electrons by the Green's function technique. This
calculation is not rigorous because it treats the electrons
as damped plane waves between successive interactions
with phonons. This simplihcation is valid only when the
electron mean free path is long compared with the
phonon wavelength. In the opposite case this treatment
ignores a di6usion e6ect. The rigorous treatment of this
e8ect was first given by Pippard' for normal metals.
Tsuneto~ reformulated the theory in the standard
framework of many-body problems. It will be shown by

' A. S.Pippard, Phil. Mag. 46, 1104 (1955).See also C. Kittel,
Acta Met. 8, 295 (1955), and T. Holstein, Phys. Rev. 113, 479
(1959).' T. Tsnneto, Phys. Rev. 121, 402 (1961).
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direct comparison that, in the case of no magnetic field,
our result is rather close to the results of Pippard for
both longitudinal and transverse phonons. Even in the
short mean-free-path region, where the error should be
the largest, our result has the correct frequency and
free-path dependence and is only about 20% larger in

numerical value. In the presence of a magnetic field we
can see no reason why the diffusion effect should be
more important. But our method has the advantage of
being much easier to carry out. So, it is hoped that we
can at least obtain a first understanding of the physical
effect from this calculation. A better calculation of the
Pippard or Tsuneto type is reserved for the future.

A=(0, —Hx, 0),
we can write down the one-particle wave function

(2.2)

P(ezk„)kz ) r) =L 'e"'z)l+"" X Px+ (k /mo) )] (2.3)

where n, k„, k, are the quantum numbers of the state,
X„ is the one-dimensional harmonic oscillator wave
function, I. the linear dimension of the sample, and ~,
the cyclotron frequency

o),= eH/m.

The energy of the state is

(2.4)

e(e,k„,k.) = + (e+-', )o), .
2m

If the spin splitting is included, the wave function is
simply multiplied by a spinor and the energy becomes

e(n, ky, k„s)= (k,'/2m)+ (rk+-', )o),+so)0, (2.6)

where s= ~—,'and coo= gp, j3II is the Zeeman energy. For
bismuth co& is very nearly equal to or, . We shall simplify
the notation by using Greek letters {(r), {p), etc. , to
denote the set of quantum numbers n, k„, k,. The wave
functions and energies will be denoted by P(es~ r) and
e(n, s), respectively. For the many-body system, we
write the wave function

II. SCATTEMNG OF LANDAU STATES
BY IMPURITIES

In the effective-mass approximation the unperturbed
Hamiltonian for an electron gas in a field is

Xo= (1/2m)g; Lp;—eA(r;)72 (2.1)

where m is the effective mass, p; the momentum, and e
the algebraic charge of the ith electron; A(r) is the
vector potential. We work in the unit system with
c=k= 1. Choosing the external dc f)eld H to lie in the s
direction and the gauge

V= p (~'s~ V ~~s)c. .tc.,
aa's

(2.10)

The matrix elements are

(~'s
( V[~s)
NLl)))'—( Q . ez(kZ —kZ') yZ+ ((kz kz') zz—

XX„~(x;+k„'/mo),)X„Lx;+(k„/mo), )j, (2.11)

where X is the total number of ions in the sample.
The effect of scattering on the Landau states is

studied by the Green's function technique. We define a
Green's function

G(r, r'; r) =(ZV(r, r)% t(r', 0)), (2.12)

4'(r, r) = expL —r(pK —X)]%'(r) expLr(pX —K)1,
x=xo+ V, (2.13)

X=g., c.,tc .,

and p is the Fermi energy. The operator T is the
v-ordering operator such that

G(r, r'; r) =(%(r,r)%'t(r', 0)), r) 0
= —(%t(r',0)% (r,r)), r(0.

Using Eq. (2.7) we may write

G(r, r', r) = P f*(n's'~ r')f(ns~ r)G(ns, n's', r), (2.14)
aa'es'

with
G(us,n's'; r) =(Tc,(r)c, t(0)). (2.15)

Furthermore, both G(r, r', r) and G(ns, n's', r) can be
Fourier expanded in v

G(ns, n's'; r) = (1/p)Q„G(ns, n's', o)„)e-'"" (2.16)

where P= (kT) ', (0„=(2)+1)s/P, v= integer.
For the unperturbed system it is straightforward to

find that

where c, is the fermion destruction operator associated
with the single-particle state f(n, s).

We now introduce a set of randomly distributed
scattering centers. To make the mathematics tractable,
we assume that the scattering potentials are 8 functions
in space

V(r) =lao+;8(r —r;), (2 9)

where I is the strength of the potential and Qo is the
volume of the unit cell. The sum is over the positions of
all the scatterers. The use of this potential corresponds
to the assumption that s-wave scattering predominates
and the scattering length concept is applicable. Using
the wave functions (2.7), we may write V(r) in the
second quantized form

+(r) =2- c-A (~,sl r),
and the Hamiltonian

(2.7) G(') (ns,n's' o) )=
e(o, ,s) —p —io) „

(2.17)

Xo Zaz E(Q'yS)czz Cz„t' (2.8)
8 A. A. Abrikosov, L. P. Gor'kov, and I. K. Dzyaloshinskii, Zh.

Eksperim. i Teor. Fiz. 36, 900 (1959) I English transl. : Soviet
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FIG. 1. The diagram for cal-
culating the electron-impurity
scattering lifetime.

energy:

gN2m(pc

O/ Z(s; or„) =
2m..V

The perturbed Green's function is related to the un-
perturbed Green's function by the Dyson equation

G (ns, n's'; or,)

= G&sr (ns; or,)8 5..+ Q Glor (mrs; or„)

xP (2.23)
4'~ e(rr )s) ra Lorp 'Z( s) orp)

From the expression for Z we may evaluate the energy
shift 6 and level width I' of the state with energy co from
the Fermi level.

XZ(rrs, rr"s"; or„)G(n"s",n's'; or„), (2.18)

where Z is the self-energy whose meaning will be ap-
parent shortly. In the lowest order perturbation theory
it can be shown that G depends on only one set of
quantum numbers and the self-energy is independent of
the quantum numbers {n). Then the Dyson equation
gives

G(ns; or„)= Le(n, s) —p —sor„—Z(s,or„)j '. (2.19)

~(', )=!{~(',(1/)L + &j)

+Z(s; (1/s)t or —Hj)),
(2.24)r(. ; )=(1/&){Z(s; (1/s)L +s&l)

—&(; (1/)L —&3).

One usually ignores the level shift because it does not
lead to any important consequences. Then we find,
after some simple manipulations, the following equation
for the level width

It is now clear that Z(s,or„) is the self-energy due to
impurity scattering. In the renormalized theory the self-
energy is given by the diagram in Fig. 1 where the solid
line represents the true Green's function. Explicitly,

P(s; or) =
2+@

sin~t))„
X

-' {L~.(~'+l)+s~o —~—~j'+LlP(s;~) j')'"
(2.25)

&(rrs; or„)=P, , (ns~ V~u's')(n's'~ V(rrs)G(ns; or,). (2 20)

-', I'(s; or)

or, (e'+-', )+sor p err or——
$=$ . 0&0„&rr, (2.26)tano„=

After averaging over the random position of the im-
purities the matrix element product becomes and

Pp ——cN'mQp(2m')"'/

Since the scattering preserves the spin direction, we
have where

( k„
((V)(V))..=c~'L,V-r X„~ x+

m.
krr )Xx„~x+

~

dx,
m, i

where c is the density of the impurities. If we assume
that the renormalized self-energy is also independent of
the quantum numbers {n), we can easily carry out the
sum over k„' in Eq. (2.20).

(2.21)

for I.much larger than the cyclotron radius. The final
x integration is trivial, so we obtain

Ps„((v)(V)), = (2rrlV) 'cN'mor, L'. (2.22)

The quantity I'0 may be recognized to be the width of an
energy level near the Fermi level in the absence of the
magnetic field. A similar expression for I'(s;or), not
including spin splitting, was derived by Skobov.

It is clear from Eq. (2.25) that, when the scattering is
weak, the level width becomes large when the energy
corresponds to a cyclotron level. Furthermore, when co

crosses a cyclotron level the quantity sin-', O„varies from
nearly 1 to nearly 0. This means that P (s; or) must va, ry
rapidly here. Since the Landau levels are equally spaced,
the level width is a periodic function of the energy.
Similarly when the field varies, the level width goes
through an oscillation every time a cyclotron level
passes through or. So P (s; or) makes de Haas —van Alphen
type of oscillations. A sketch of P(s; or) as a function of
co is shown in Fig. 2.

Finally, it is well known that the Green's function can
be expressed in the following spectral representation:

Putting this result into Eq. (2.20) and making use of
Eq. (2.19) we find the following equation for the self- G(ns; or„)=

der A (ns; or)

2x co—z(o„
(2.27)

Phys. —JETP 9, 636 (1959)]. See also L. P. Kadanoff and G.
Baym, Quantum Statistical Mechanics (%. A. Benjamin, Inc. ,
New York, 1962),

V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 37, 1467 (1959)
)English transl. : Soviet Phys. —JETP 10, 1039 (1960)].
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2-

the energy of the interaction whose value depends on the
band structure of the material. For a degenerate band,
E1 is of the order of the Fermi energy. Hence, the
matrix element U(a, n') of the electron-phonon inter-
action is

0 I

FIG. 2. The electron level width (inverse lifetime) as a function of
the energy measured from the Fexmi level.

where the spectral density A (Qs; M) ls given by

2 (ns; a)}= I'(s; &o)/(I e(n, s) —p —co)2

+Lll'(s'~)7) (2 2g)

III. CAI,CULATION OF ACOUSTIC ATTENUATION

The acoustic attenuation coefficient is calculated
from the phonon level width as a result of electron-
phoIlon 1QtcI'RctloQ. Thc dlRgI'RID for this ploccss ls just
thc self cnclgy diagram fol phonons Rs shown ln Flg. 3.
Explicitly, the self-energy II(»; v) is

II(»; 7)= —P i
U(n', n) ~'G(ns; r)G(n's; —g), (3.1)

where U(n, n') is the matrix element for electron-phonon
interaction. The expression for U will be derived from
the deformation potential model. V(e then take the
Fourier component II(»; ~ ) of Eq. (3.1).Since phonons
obey Bose statistics, the frequency co =2m~/P, where
m is an integer. The phonon level width is evaluated by
the relation

I'.(») = (1/')(IIL» (1/~) (~a+~~)]
—~r», (1/')(, —~n&.

The acoustic attenuation cocKcicnt is related to I'„by
~(») =I'.(»)/~. , (3.3)

where v, is the sound velocity.
The deformation potential as given by Bardeen and

Shockley" is

For a material with a spherical Fermi surface, the
deformation-potential model apphes only to the longi-
tudinal phonons. But for bismuth the Fermi surface is
highly anisotropic. As a result there shouM be no clear
distinction between longitudinal and transverse phonons.
Based on this reasoning, we use the same Inodel
of lntcI'RctloQ foI' both klQds of phonons Rs R 6I'st
approximation.

In the case of no magnetic field a simple calculation
gives the foHowing result for the acoustic attenuation:

n(q) = (m'EPq/~'pv, ) tan —'q/, (3 7)

where / is the electron mean free path. This relation
holds when +,v&&i, and v is the mean collision time of
the electrons. In Figs. 4 and 5 the quantity n(»}/q as a
function of ql is compared with the rigorous results of
Pippard for longitudinal and transverse phonons. The
value of El is chosen to 6t the curves in the short-wave
limit bccRusc this 18 thc I'cglon where thc goldeQ rulc
applies and the discrepancy between our method and
the rigorous method vanishes. It is apparent that the
approxlmatc formula 18 1Q I'Rthcl good over-Rll Rglcc-
ment with the rigorous ones. In the long-wavelength
limit where the discrepancy is large, our result gives the
correct wavelength and mean-free-path dependence.
This glvcs us con6dcncc that our I'csult for thc D1Rgnctlc"
6CM-dependent acoustic attenuation should be quali-
tatively correct. The quantity Zl comes out to be about
0.6-0.7 times the Fermi energy for both cases.

Going back to the main problem, we substitute into
Eq. (3.1) the spectral representation for the Green's
functions, take the Fourier components of both sides,

U(n, a') =(n's ibUins)

= (E,q/(2 pro,L') '~') 6 g„,g„~,„bI,;,g~ „J„„,
(3 6)

Qu |tu 'le"*'x„*ix'+- x x— id'.
251M~ 251COg)

8U= Egh(r), (3 4)

where D(r) is the strain induced by the phonons

(3 5)

RQd p ls the density of thc material. Thc quRntlty EI 18

FIG. 3. The dlagraIn fol' cal-
culating the acoustic attenu-
ation.

'0 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (I950);
A. Sommcrfeld and H. Bethe, in HarIdbuch der Physik, edited by
5. Flugge (Springer-Verlag, Berlin, 1953), pp. 499-579.

FIG. 4. CoIQPal'1-
'son of the acoustic

FOR attenuation in zero
6eld obtained froID
the approximate
method, Eq. (3.7),
with the more rigor-
ous result of Pippard
for longitudinal pho-
nons. The curves are
matched at the very
high-frequency 11Inlt.

IO IP.
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and calculate the phonon level width. The result is and mean free path
/= i|P/8, (4.2)

&& [/o(o/ —o/ )—n (o/)], (3.8)

where e(o/) = 1/(e//"+1). The procedures for evaluating
the various sums and integrals in the above equation are
given in the Appendix. The final result for the acoustic
attenuation is

2q2 (2yg)o/2/o P
d b«h'(l& )]

128m'pv, s n, =o

1 ~/f o

X
&oV'o (V" V'—«)'+ (~/f o)'

~/s o+,(39)(v'+4 o)'+(&/l. .)'
where the quantities 8, fo, E, oo .Xi are defined as
follows:

s=-', r( ),
f'o= qg/(2m) i/',

6= co+/ti —o/, (I+-',)—so/o,

«= (~o/2fo)',

Xi= the index of the last cyclotron level for which

e&0.

(3.10)

IV. DISCUSSION OF THE RESULT

We give a qualitative discussion of the result obtained
in the last section. From Fig. 2 we see that 6 is almost a
constant except when ~ is near a cyclotron level. The
periodic variation is caused by the change in density of
states of the electrons. For most values of co we may still
use the notions of relaxation time

This result is quite diGerent from that of Gurevich et al.
because their intuitive way of introducing the mean-
free-path effect is not justified. Equation (3.9) is a more
general result than Skobov's because both the phonon
energy and the spin splitting are included.

where or = (2p/m)'/' is the Fermi velocity. Furthermore,
to a good approximation r and / may be treated as
constants. It can be seen from Eq. (3.9) that the
acoustic attenuation depends on the product of three
peaked functions, the thermal broadening factor
sech'(-,'Po/) which is peaked at co= 0, the density of states
(o) "' which is peaked at o= 0, and the resonance factor
in the parenthesis which is peaked at e= eo. The proper-
ties of the last two peaked functions, and hence the
nature of the oscillations, depend on two dimensionless
quantities M,r and q.-l. For bismuth

(/o, r/q, /) = (r/, /i;/ )=10 '.
Hence, q,/»co, r unless the direction of propagation is
very close to being perpendicular to the external field.
We discuss separately the three regions, ~,r&)1, co,r(1,
but q,l»1, and q,/&1.

A. The Giant Oscillation Region

This region is characterized by ~,r&)i, or equiva-
lently «»(h'/f'o)'. The density of states function is only
peaked at ~=0, so the above condition implies that the
resonance function is sharper than the density-of-states
function as long as the direction of phonon propagation
is not nearly perpendicular to the external field. Since
usually oo((oo„one can see that n(q) can be large if
e—eo and +—0. This implies that the X&th cyclotron
level must lie below the Fermi level by the amount eo.

When the dc field is varied so that the cyclotron level
varies around this value, the variation of n(q) is ex-
tremely large due to the peaked nature of the resonance
factor. The peak is due to the $&th level only. It is easy
to show that the condition e= eo is equivalent to de-
manding energy momentum conservation for the elec-
tron phonon interaction. When it is satisfied the s
component of the electron velocity coincides with the s
component of the sound velocity. This is the condition
for giant oscillations as described by Gurevich et al. In

r= 1/8, (4.1)

Fic. 5. Compari-
son of the acoustic
attenuation in zero
field obtained from
the approximate &(q)
method, Eq. (3.7),
with the more rigor-
ous result of Pippard
for transverse pho-
nons. The curves are
matched at the very
high-frequency limit.

l l

io l2

H IN ARS~~ UNITS

FIG. 6. A set of quantum oscillations in the intermediate region.
The asymmetry in line shape is barely noticeable near the bottom
of the peaks. The Fermi energy and the spin splitting are chosen
to represent bismuth; the temperature is about 1.5'K.
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n*4
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FIG. 7. The ratio e, /n; plotted as a function of q„.l. The
number n represents the ratio p/co&. A peak occurs whenever this
quantity has roughly an integral value. The quantity n; is
de6ned as the trough on the high-field side of the peak.

H IN ARBITRARY UNITS

FIG. 8. A set of quantum oscillations in the
de Haas —van Alphen region.

fact, if we let 5 —+ 0, we recover the formula they ob-
tained by perturbation theory. For Gnite 5 the line
shape is a thermally broadened Lorentzian function.
The variation in n(q) is typically of the order of 10' or
more at 1'K. The giant oscillation is also a sensitive
function of the direction of phonon propagation when
it is nearly perpendicular to the Geld. In this case the
width of the resonance becomes very large and the only
variation in u(q) will be due to the density of states
effect. The amplitude of oscillation is thereby reduced.
This effect is somewhat analogous to the tilt eGect dis-
cussed by Spector" and Kckstein. "

In practice the condition co,7)&1 is extremely difficult
to achieve. For phonons at the frequency 10 Mc, we
need g)&2)&10 ' sec. Taking the Fermi velocity to be

10' cm/sec, we find that the mean free path should be
of the order of a few centimeters, roughly the size of the
sample.

B. Intermediate Oscillation Region

In this region co,r & 1 but q,/&&1. The resonance factor
is no longer as sharply peaked as the density of states.
We may put u=u' in Eq. (3.14) and obtain the follow-

ing formula for n(q):

X dko sech'(-', P&u) . (4.3)
1/E[fl O'+ ll]

This formula is the final answer in Skobov's paper.
Again Ei is the last cyclotron level for which e&0. The
density of states become very large when co is close to
but above a cyclotron level, so n(q) is large when the
E~th level is near the Fermi energy. When the field
varies, n(q) also oscillates. The quantity

(~ /)l'= .(4~/ .)(1/q.l)'« .,

because p/~, is of the order unity. Thus, again, only one

"H. N. Spector, Phys. Rev. 120, 1261 (1960).
'~ S. G. Eckstein, Phys. Rev. 131, 1087 (1963).

level contributes to the sum because the factor
8/Lel'0'+5'] is small for c»~,. This oscillation diA'ers

from the giant oscillation in that the peak is not due to
the resonance factor but rather to the large variation of
the density of states.

It is quite interesting to study the line shape in this
region. We have seen that n (q) is large when a cyclotron
level is near the Fermi level. If the Geld is decreased,
n (q) drops smoothly as described by Eq. (4.3). However,
if the field is increased so that this cyclotron level is
raised above the Fermi level, the corresponding term no
longer appears in the sum. As a result n(q) drops
abruptly to a very low value within a small region of
field corresponding to dion, kT. Therefore, the line
shape is asymmetrical, being sharper on the high-Geld
side and more gradual on the low-Geld side. When the
temperature is sufficiently low the line shape on the low-
Geld side reflects the variation in density of states while
on the high-field side it rejects the thermal broadening.
For this reason the line shape contains valuable in-
formation about the band structure of the material. At
higher temperatures the large thermal smearing may
render the asymmetry less noticeable.

The total variation of n(q) is still quite large in this
region. Typical ratio of 0, , to n;„ is of the order of
10 1000 depending on the mean free path and the
temperature. A set of such oscillations is displayed in
Fig. 6. One can still get a tilt effect by varying the angle
between the magnetic Geld and the phonon propagation.
As the angle approaches 90', lo becomes very small.
Equation (4.3) shows that all the levels with n&Ni
contribute to the sum. This increases the minimum
value of a(q) and reduces the net variation n, n;„. —
In Fig. 7 the dependence of the ratio n, /n;„ is
plotted as a function of q, /.

C. de Haas-van Alphen Region

This is the region where q, /&1 or (b/l o)'&~,. This
may either be due to short mean free path or small q,
when q is nearly perpendicular to the Geld direction. All
cyclotron levels contribute to the sum in Eq. (4.3), but
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the level closest and below the Fermi energy gives rise
to the peak. The oscillation is no longer large,
n,„/n; 1. The asymmetry in line shape is more
pronounced. Once in this region, further reduction in

q, l has no effect on n(q). Thus, if the mean free path is
short, varying the angle between the Geld and the
phonon propagation will not affect the absorption. A set
of oscillations of this kind is depicted in Fig. 8.

APPENDIX

Evaluation of the Integrals in Eq. (3.8)

We give here in detail the steps leading from Eq. (3.8)
to Eq. (3.9). Inserting the electron-phonon matrix
element Eq. (3.6) into Eq. (3.8), we find

g 2(2 Jco
r„(q)=

2' q13 s nn' 2~ Iry&u'

X{P 6»,. »~ P ( s; pr) A (n's; pr—,)}

X{n(pr—pr, )—n(pr) }. (A1)

From Eq. (2.31) we see that A (ers; pr) does not depend
on k„, so the summation over k„, k„' is easy to carry out:

8/gq& pq+qq —rnpr L/q2qr,
kyky'

The limits on k„are such that the center of the cyclotron
orbit should be contained in J.For the summation over
k, and k,', it is convenient to define the following
shorthand symbols:

f'=k./(2qn)'" 1'=k.'/(2nr)"'

»=er+I2 Pqq(n+ 2) SPrP r

e =pr prq+jl Grq(n +2) Sprp r

5= 22r (qq), 6'= 22r (pr —pr q) .

i p
——q,/(2m)" , 2

(A2)

Then we can write

P 82;,2,+q,A(ns;pr)A(n's; pr —prq)
ks, kz'

(2n2L) 'rq

(2n-)'
ei(r' r rq)»d(——

25d{ 28'd{'
X (A3)

[f2 »72+$2 [f r2 er72+g2

after a simple transformation. The f, {'integrations are
done by the contour method. We define

tans= b/»,

tan8=5'/e', 0&8, 8'&rr. (A4)
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u+Zn=u +2n =2+» r (A9)

for e&0. It is clear that if 8 is small enough (5&&pr,) the
contribution of those levels with c(0 are highly damped
compared with those with e)0. This allows us to carry
the sum up to N~ where N~ designates the last level for
which e)0. With these simplifications it is easy to
show that the acoustic-attenuation constant reduces to
the expression in Eq. (3.9).

The approximations in Eqs. (A8) and (A9) are only
valid for

l el)&iI but the or integration requires that all e

values must be considered. This is not a serious objec-
tion to the approximation procedure because the
integral about &=0 is convergent. Hence, we make only
a small error in replacing »+i' by e even for

l el &8.

Then the poles of the integrands are at

+ (»+i5)'12= + (univ),
aiid

& (e ~N')"'= ~ (u'+iv'),
where

u= (»'+P)'r cos-'tt v= (»2+5')"' sin'28 (A5)

and similar expressions for I', e'. The choice of 0, 0'

makes u, v, u', n'&0. We close the contours of the {,f'
integrations in such a way that the final integration
over t should converge. For instance, for $)0, we must
close the f' contour by an infinite semicircle below the
real axis, and the f' contour above the real axis. For
(&0, the reversed choice is made. The contour integrals
and the $ integral are all easy to do, and the result for
the quantity in Eq. (A3) is

(2n2)'"L/2 Re{((u+iv)(u'+iv') [v+ v' i(u—+u' fp)—7)
+ ((u+iv) (u' —iv')[v+n'+i(u' —u+f'p)7) —'

+ ((u —in) (u'+ in') [v+n' —i(u' —u —f'p) 7)-'
+ ((u —iv) (u' —in')[v+ v'+i(u+u'+f'p)7) —'}. (A6)

Finally, the thermal factor, the third bracket in Eq.
(A1), may be written as

n(pr pr ) n—(pr) —iilpr S=eCh2P22Ppr) . (A7)

Thus the final expression for the attenuation constant
contains sums over n and e' and an integration over co.

The result we obtain so far is still highly complex. To
facilitate further discussion, we must make a number of
approximations. Since the phonon frequency is usually
extremely small compared with the cyclotron frequency,
transitions from one cyclotron level to another are
forbidden by energy conservation. This eliminates all
terms with n/n' from the sum. The first and last terms
in the parentheses of Eq. (A6) are not of the Lorentzian
form because u+u' appears. Consequently they are not
important because they never resonate. For the other
terms we observe that the quantity e may be positive or
negative depending on the value of the index m. As long
as lel)&8 and pr„

u+iv=Qe+i( i2/Q2)e,
(AS)u'+ iv'—-Qe —(pr, /2+e)+i (fr/2+e),

for e)0, and


