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The effect of wave-wave scattering of longitudinal oscillations in a homogeneous collisionless plasma with
an external magnetic Geld is derived. The nonlinear dynamics of the modes existing near multiples of the
electron cyclotron frequency are discussed, and it is shown that resonant wave-wave scattering of unstable
low harmonic modes is an important mechanism for transferring energy to the higher harmonics.

I. INTRODUCTION

' N the linearized theory of collisionless plasma
~ - dynamics, a large number of collective oscillations
are known to exist which have the property that
initially small disturbances grow exponentially in time.
However, as these unstable excitations increase in
amplitude, the nonlinear terms in the equations of
motion become important in determining the dynamics
and ultimate state of the system. A large class of these
linearly unstable excitations, called micro-instabilities,
have the property that nonlinear effects limit the
amplitudes so that the total perturbed energy remains
small compared to the unperturbed energy, and the
state of the excitation remains well de6ned. In homo-

geneous 6eld free systems, for example, these charac-
teristics for high-frequency oscillations are equivalent
to the requirements that

E2+E'
dx-

8w eKT

and co~&yq, where E and 8 are the perturbed electro-
magnetic fields, mKT the total kinetic energy of the
system, and co& and pl, are the characteristic frequency
and growth rate of the excitations with wave vector k.
Because of the small amount of energy available to such

modes, their excitation cannot produce a gross dis-

tortion of the plasma. But, phenomena such as turbu-
lence, enhanced resistivity, and anomalous diffusion of
particles across magnetic 6eld lines are to be anticipated.

The determination of the turbulent state of the
system brought about by the excitation of linearly
unstable modes requires analysis of the nonlinear terms
in the equations of motion. For modes in the micro-
instability class the dominant nonlinear effects can be
analyzed into the "elementary processes" of wave-

induced particle diffusion in phase space and wave-wave

scattering.
In this paper the e8ect of wave-wave scattering of

longitudinal oscillations in a homogeneous collisionless

plasma with an external magnetic field is analyzed.
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Many of these modes have instabilities of the "velocity-
space" type which have linearized growth rates that
depend on detail characteristic of the electron and ion
distribution functions. The amplitudes of these modes
are then limited by wave-induced particle diffusion in
velocity space, but do attain amplitudes so that three
and four wave-wave scattering processes are as im-
portant in the dynamics as the linear processes. Par-
ticular emphasis is placed on describing the wave-wave
scattering of modes which exist at multiples of the
electron cyclotron frequency. It will be shown that
because these modes satisfy the three-wave resonance
condition

cokg+ccgs= toy~ q

kr+kp ——ks,

wave-wave scattering is an important mechanism for
transferring energy between the various harmonics.

II. THE NONLINEAR EQUATIONS

The time evolution of the system's dynamics is
governed by the Maxwell-Vlasov equations,

(8 e (vxBpq ct q e k rig——Z ~ V
I

—If.+
m& c )av) m Pgv

and

8 (k—k') ctf„.=——2 &t-t . (2.1a)
ttt t 'w Ik—k'I ctv

where

ft i-=z
species

eft r

dv{ ).

(2.1b)

» &q. (2.1) all quantities have been expanded in
Fourier series, e.g., E(x,t)=gt, e-st'*Et, (t), and trans-
verse wave effects have been neglected. ft, is either the
ion or the electron distribution function and superscripts
denoting species have been dropped, but are implicit.
The function, g(v, t)=ft, p(v, t), is the usual background
velocity distribution function which is assumed to be
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slowly varying in time and determines the usual quasi-
linear dispersion relation. ' '

For the high-frequency modes to be considered, the
linear coupling of transverse to longitudinal waves is
proportional to

Eq. (2.1) can be written

e keg e
IGk] 'fk= ——Ek————Q Ek-k

(k—k')

(2.3)

P= «1,
8os/8s.

and hence is negligible. However, the transverse waves
can couple to longitudinal waves nonlinearly, and if the
three wave resonance condition (1.1) is satisfied, provide
an important source or sink of energy for the longi-
tudinal modes. For simplicity these effects will be
ignored, but the generalization necessary to include
them is obvious.

Introducing the Green's function G~, de6ned for
t—t') 0, and which satisfies the equation

I
k—k'I

G~ is now the operator

~ (2 4)

Gk{ }= dt' dv'Gk(v, v'; i,t')( ) (2.5)

Neglecting terms proportional to initial values of fk,
which if nicely behaved phase-mix away for long times
in the equation for Ek(t) and g(v, t), Eq. (2.3) is simply

e keg e (k—k')
fk ( yv~)

=— GkEk———Q GkEk 'k

sz k Bv tps &'8o

and operates on all terms to the right of it. Iterating
——ik v+—

I I

—Gk=g(1 —1)$(v—v), (2.2) the Eq. (2.4) for fk in Powers of Ek, uP to order Ek',
81 mt c ) Bv

'
one finds

e tag e (k-k') cl e k' rig

f (vk)1) GkEk ' 2 GkEk —k' Gk'Ek'
m k clv mk'wo Ik —k'I clv m k' civ

t'e )' (k' —k") cl k" rig
+I —

I 2 GkEk-k" —Gk-Ek"——. (2.6)
iml k" Ik' —k"

I
clV k" rlV

Using Poisson s equation, the equation for Ek(1) is

1 k ag o~„'e (k—k') cl k' ag
Ek(t) —— (o,'GkEk —Q —GkE—k——k Gk Ek. —

ik k av k' ikm Ik—k'I av k' clv

„'(e)' (k—k') rl k' —k" a k" rig
I

—
I
GkEk-k —G'Ek -k-- —Gk-E,"——. . (2.7)

ik hami' lk —k'I av Ik' —k"
I

av k" Bv

The last term on the right-hand side of Eq. (2.7) is simplified when use is made of the condition that initially, the
phases of the waves are random. To the order that is being considered here, then only the terms k"=k, and
k"=k' —k contribute to the dynamics. Therefore, Eq. (2.7) becomes

e(k)Ek(t) = —Q
o~,'( e ) (k—k') cl k' Bg

I

—IGkEk k Gk Ek-
ik ~m) Ik —k'I Bv O' Bv

o~,'( e )' (k—k') 8 k' —k cl k rig

ik &ml Ik—k'I Bv Ik' —kl av
'

k av

k cl (k' —k) ag
+Ek—.—Gk kEk k* .—,(2.8)

k Bv Ik' —kl av
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where the operator e(k) is de6ned as

1 keg
c(k) = 1—— (o„'Gk——(

ik k Bv
(2.9)

Neglecting the nonlinear terms in q.s in E . (2.8) and
assuming

E,(t)=exp(~ „(f)df
0

(2.1O)

where cok satisfies (1/cok') (d~k/dh)&&1, Eq. 2.8 reduces

~=0 '
the usual quasilinear dispersionwhere e(k,(ok) = is e

use of the assumption that the
dfi dbmodes, whose frequencies are e

emain well de ne, e su

rated into two regions. The resonant region
defined by
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r-wave term obtained by lettingEk ",only through the four-wave erm
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To conveniently account ormodes may exist. To or
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where cok(t) is defined by (2.11) and

(1/Bg,a)k) (88,/Bt) «1, (2.15)

E . (2.13) can be done. Typica y,
'

allthe time integrals in q.
the time integrals are of the form

Ek(t) = Bk(t) exP i (ok(t')dt' (2.14) I= f(t„r)dry(t —r).
0

(2.1(a)
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this may be(Bg„/Bt) z—p)) ~)'
h the time integra
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U n the left-hand side of q,'ntee - ' E. 2.13)U this simplification t e eUsing
becomes

(2.17)

's function appropriate to ythe s stemUsing the Green's unc io
coordinates, v= eiI,e&,y

and 0 is the cyclotron frequency
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The coefficient, Lk k., in Eq. (2.18) can also be reduced to velocity integral form, but except in the cases of
zero4 or "inGnite"' magnetic Geld is extremely complicated. For example, it is evident from Eq. (2.13) that Lk, k

involves velocity integrals of a product of six Bessel functions and as such makes even zero-temperature approxi-
mations extremely tedious. If one is interested in the energy being scattered into a particular mode which has a
low amplitude so that the mode of interest, Ek satisGes IEkl'« IEk k. I' IEk I', for k' in E'(k,k'), then only

M~, g has to be calculated.
The main quantities of interest for characterizing the turbulent state of the plasma system are the squares of

the amplitudes of the excited modes, IEk(t) I
. A closed equation for the amplitudes can be obtained from Eq.

(2.18) if use is made of our lack of knowledge of initial conditions. In particular, it is assumed that the initial
conditions are just those encountered by the excitation of the modes by thermal noise, that is, the modes have
phases which are initially completely random. One then generates an in6nite chain of coupled equations by multi-

plying Eq. (2.18) by all powers of E(t) and averaging the equations over the initial phases. For example,

and

8IEk(t) I'
=2&klEkl'+{+ Mk, k (Ek*Ek Ek k)+g Lk, k IEk I'IEkl'+complex conjugate) (2.22 a)

8
(Ek Ek'Ek k')=2(»'+» k' » )(Ek Ek'Ek k')+Q Mk, kr (Eki Ek ky Ek'Ek k')

Bt

+Q Mk&, ks(Ek Ek&—krEkrEk —k&)+Q Mk k&,kg(Ek Ek&EkgEk k&—kg)+O(Ek'), (2.22b)

where in Eq. (2.22) the brackets ( ) denote an average over initial phases and have been dropped from
I Ek I'

for convenience. The chain of equations continues of course, but if use is made of the assumption that the linearized

modes remain well-defined Eqs. (2.22a) and (2.22b) actually close to the approximation considered.

In the absence of nonlinearities Eq. (2.18) shows that the phase of Ek remains constant in time. This equation
of course neglects the small effects due to details of the initial particle distribution function. Hence, without non-

linearities and with random initial phases the phase average of all odd products of E(t) vanish, and only those

terms in the phase average of even products remain which have identically cancelling phases. In the presence of
the nonlinearities the phase of the wave changes, but slowly compared to cvk. The Eqs. (2.22) are complete when

the average four product is expressed in terms of the I Ekl'. For example,

«k,*Ek k.E'Ek ')= (S',k,+S',k k.) IE'I'IE. 'I'+o(E ). (2.23)

This decomposition is suggested by the linearized theory and in the presence of nonlinearities can be shown to
be correct self-consistently. The self-consistencyof (2.23) isfoundby deriving the equationfor (Ek, Ek k,EkEk k)
which is coupled to (Ek,*Ek, k,*Ek k,Ek Ek k ). The average Gve product is then expressed in terms of products
of two and three products, as would be the case in the linearized theory, and Eq. (2.23) is shown to be correct.
Using Eq. (2.23), Eq. (2.22b) becomes

—(Ek*Ek Ek+k )=t(»+»—k —»')(Ek'Ek Ek k )+2&k,k *IEk I'IEk-k I'
Bt

&k,k = (Mk, k+Mk, k—k)j2 ~

(2.24)

Equation (2.24) can now be integrated using the fact that

ufo))
E 2 Bt

and asymptotically one 6nds

(E"E'Ek-')=2~S(»'+»-k' —»') f&k,k *IEk I'IEk-k I'—&".k IEkl'IEk-k I'—&k-'.k IEkl'IEk I
s) (2»)

where 8 (x) is the Dirac delta function, and Eq. (2.25) is valid in the limit of inGnite volume. The equation for the

4 W. E. Drummond and D. Pines, Ann. Phys. (N. V.) (to be published).
IR. E Aamodt an.d W. E. Drummond, Phys. Fluids S, 171 (1965).
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energy in the kth mode is then

0—IE~I'=»~IE~I'+4~ ~ I&"I'~(~) IE'I'IE~-~ I'—2~ & L&~,'&'.~+&~.'*&'.~*j~(~)IE~-'I'IE. I'
gl

—2~ 2 C~f. .'&~-', ~+&~,'*&~-',.*1~(~)IE' I'IE.I'+2 I:L~,~+L~,'*jIE' I' IE~ I'

GO = (dg —COg~ —Mg

Equation (2.26) is the basic equation for the energy
in the kth mode for micro-instabilities in homogeneous
plasma systems. If the quasilinear equations' ' for the
particles and fields are used to describe the initial
buildup of the amplitudes it is evident that when
IEql' becomes of order y~ that the nonlinear terms are
as important as the linear term in Eq. (2.26). For the
mild bump velocity space instabilities in a homo-
geneous plasma, with' and without" a magnetic Geld,
and the ion cyclotron instability' the quasilinear theory
does predict equilibrium amplitudes of the order of yI, .

III. DISCUSSION

A particularly interesting set of modes for study in a
finite magnetic field are the modes which can exist at
integral multiples of the electron cyclotron frequency.
In a homogeneous plasma many of the harmonics can
be unstable if the electron-velocity distribution function
is sufficiently anisotropic, ' or if groups of electrons have
drift velocities along the Geld relative to one another.
The latter type of instability is brought about by the
usual particle-wave resonance phenomena where the
phase velocity of the wave along the magnetic Geld is
such as to pick up energy from particles.

For these modes, {k} conveniently denotes (k,N)

where cuq, „——eQ,+oi(k, rs), v=&1, &2, ~, 0,= I(e/
mc)Bel, and ~o(k, m) are wavelength-dependent factors
accounting for slight shifts of the modes from exact
cyclotron resonance. To illustrate the effect of wave-
wave scattering it is assumed that the plasma parame-
ters are such that only the n=1 mode is linearly
unstable.

The quasilinear theory of the m=1 mode predicts
that the mode grows exponentially in time causing a
concomitant di6usion of particles in velocity space. ' '
For the case of the instability induced by the wave
resonanting with a drifting gentle beam of electrons,
the mode becomes "quasilinearly-stationary" when the
beam velocity distribution function has Qattened in the
direction of the external magnetic Geld, at which time

' E. G. Harris (to be published).

IEj,, „=i&'&I is of order y~, „=i(t=0). As IEj,&'&I' ap-
proaches the quasilinear amplitude, the nonlinear terms
in Eq. (2.26) become of order (p&)' which is the same
order as the linear term. If the three wave resonance
condition can be satisfied for {k'}= (k', m= 1), {k—k'}
= (k—k', is=1) and {k}=(k, ii=2), that is

0,+co(k', 1)+0,+(o(k—k', I=1)
= 20.+co(k, I=2), (3.1)

the e=i modes start supplying energy to the m=2
modes. As the e= 2 mode was assumed purely oscillating
or damped, IE~,„=sI' is much less than order ys and
for small times IE&,„=el' satisfies the equation

8—IE~,-=s I'= 4~ & I &~,' I'~(~) IE'..=il'
Bt gl

&& IE.-', -= I'. (3.2)

Hence, I Ek,„—sl grows linearly in time until it reaches
an amplitude of order (7) when the scattering out of
(k, v=2) becomes important and the terms propor-
tional to IEq, „sls in Eq. (2.26) are as large as those
kept in Eq. (3.2). If the n=2 mode is damped, the
quasilinear term transfers energy from the m= 2 mode
back into the particles. Also, the m=2 mode can
resonantly scatter with the m=1 mode and the m=2
mode to supply energy to the m=3 and v=4 modes. If
the transfer of energy to the particles is small, it is
evident that all of the cyclotron modes which directly
or indirectly couple resonantly through three wave
scatterings to the unstable modes will reach an ampli-
tude of the order of ys(t=0) Of course,. details of the
spectrum depend on the structure of B~,~, L~,~, and
7go

In any event, if the three wave resonance condition
is satisGed, nonlinear wave-wave scattering is an im-
portant mechanism for supplying energy to the higher
cyclotron harmonics. These nonlinear processes may
furnish a partial explanation of the radiation experi-
mentally observed in various plasma devices at high
cyclotron harmonics.


