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The effect of wave-wave scattering of longitudinal oscillations in a homogeneous collisionless plasma with
an external magnetic field is derived. The nonlinear dynamics of the modes existing near multiples of the
electron cyclotron frequency are discussed, and it is shown that resonant wave-wave scattering of unstable
low harmonic modes is an important mechanism for transferring energy to the higher harmonics.

I. INTRODUCTION

N the linearized theory of collisionless plasma

dynamics, a large number of collective oscillations
are known to exist which have the property that
initially small disturbances grow exponentially in time.
However, as these unstable excitations increase in
amplitude, the nonlinear terms in the equations of
motion become important in determining the dynamics
and ultimate state of the system. A large class of these
linearly unstable excitations, called micro-instabilities,
have the property that nonlinear effects limit the
amplitudes so that the total perturbed energy remains
small compared to the unperturbed energy, and the
state of the excitation remains well defined. In homo-
geneous field free systems, for example, these charac-
teristics for high-frequency oscillations are equivalent
to the requirements that
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and w;>>7, where E and B are the perturbed electro-
magnetic fields, #KT the total kinetic energy of the
system, and wx and i are the characteristic frequency
and growth rate of the excitations with wave vector k.
Because of the small amount of energy available to such
modes, their excitation cannot produce a gross dis-
tortion of the plasma. But, phenomena such as turbu-
lence, enhanced resistivity, and anomalous diffusion of
particles across magnetic field lines are to be anticipated.

The determination of the turbulent state of the
system brought about by the excitation of linearly
unstable modes requires analysis of the nonlinear terms
in the equations of motion. For modes in the micro-
instability class the dominant nonlinear effects can be
analyzed into the “elementary processes” of wave-
induced particle diffusion in phase space and wave-wave
scattering.

In this paper the effect of wave-wave scattering of
longitudinal oscillations in a homogeneous collisionless
plasma with an external magnetic field is analyzed.
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Many of these modes have instabilities of the “velocity-
space” type which have linearized growth rates that
depend on detail characteristic of the electron and ion
distribution functions. The amplitudes of these modes
are then limited by wave-induced particle diffusion in
velocity space, but do attain amplitudes so that three
and four wave-wave scattering processes are as im-
portant in the dynamics as the linear processes. Par-
ticular emphasis is placed on describing the wave-wave
scattering of modes which exist at multiples of the
electron cyclotron frequency. It will be shown that
because these modes satisfy the three-wave resonance
condition

Wi wr, =Wk, ,

ki+ke=ks, (L

wave-wave scattering is an important mechanism for
transferring energy between the various harmonics.

II. THE NONLINEAR EQUATIONS

The time evolution of the system’s dynamics is
governed by the Maxwell-Vlasov equations,
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In Eq. (2.1) all quantities have been expanded in
Fourier series, e.g., E(x,f)=>y e~ ®*Ey(f), and trans-
verse wave effects have been neglected. fy is either the
ion or the electron distribution function and superscripts
denoting species have been dropped, but are implicit.
The function, g(v,f)= fuo(v,8), is the usual background
velocity distribution function which is assumed to be
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slowly varying in time and determines the usual quasi-
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Eq. (2.1) can be written

linear dispersion relation.'—3 . e kog e (k—k")
For the high-frequency modes to be considered, the [Gyx|'fy=——FEx+——— ke
linear coupling of transverse to longitudinal waves is mk OV m [k—K'|
proportional to A fw
—. (2.3)
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and hence is negligible. However, the transverse waves

which if nicely behaved phase-mix away for long times
in the equation for Ex(f) and g(v,#), Eq. (2.3) is simply
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can couple to longitudinal waves nonlinearly, and if the fulv,t)= _in E}{E_%_i Y GFw (k—k"
three wave resonance condition (1.1) is satisfied, provide ’ m E OV m k0 |k—K|
an important source or sink of energy for the longi- 3
tudinal modes. For simplicity these effects will be — (24)
av

ignored, but the generalization necessary to include
them is obvious.

Introducing the Green’s function Gy, defined for
t—1'>0, and which satisfies the equation
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G« is now the operator
Gif }=/ dt’/dv’Gk(v,v’;t,t’){ Y (25)
0
and operates on all terms to the right of it. Iterating

the Eq. (2.4) for fx in powers of Ex, up to order Ey,
one finds
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Using Poisson’s equation, the equation for Ex(¥) is
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The last term on the right-hand side of Eq. (2.7) is simplified when use is made of the condition that initially, the
phases of the waves are random. To the order that is being considered here, then only the terms k”’=k, and

k"”=k’'—k contribute to the dynamics. Therefore, Eq. (2.7) becomes
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NONLINEAR DYNAMICS OF LONGITUDINAL OSCILLATIONS

where the operator e(k) is defined as

e(k)=1—— / Gk— —{ }. (2.9)

Neglecting the nonlinear terms in Eq. (2.8) and

assuming
t
Ek(t)zexp(i/ wk(t')dt'> ,
0

where w;, satisfies (1/wi?)(dwy/dt)<<1, Eq. (2.8) reduces
to

(2.10)

where e(kwir)=0 is the usual quasilinear dispersion
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relation. Making use of the assumption that the
linearized modes, whose frequencies are defined by
e(kwi)=0, remain well defined, the sum on k’ in the
first term on the right-hand side of Eq. (2.8) is sepa-
rated into two regions. The resonant region R!(k,k’) is
defined by

Wit w100 wi®= Rewy

and R2(kk’) the remainder of k’ space. Using the
assumption (2.10), the fast time dependence of the
first nonlinear term on the right-hand side of Eq. (2.8)
is seen to be ~eit for k' in R'(k,k’) and all possible
beat frequencies of wy for k' in R2 Fields of the latter
type are nonsecular and denoted by Ex®, the former
by Ex™. To the order of relevance,
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Ex® then enters the dynamics for the main part of Ex, Ex®, only through the four-wave term obtained by letting
Ew=Ewx®, and Ex w=Ex @ in the first nonlinear term in Eq. (2.8). In terms of Ex™ only [dropping the
superscript (1), all fields now have the fast time dependence of e¢?**] the equation for the modes becomes
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For any particular wavelength in this system, many
modes may exist. To conveniently account for this
degeneracy, the notation is generalized so that “k”
now refers to both the wave vector and a particular
mode at that wave vector. Again, using the assumption
that the linearized modes remain well defined, or
explicitly,

Ex(t)=6:(0) exp[i / twk(t’)dt'] ) (2.14)

where wi(2) is defined by (2.11) and
1/ 8ror) (9 81/08)K1 (2.15)

the time integrals in Eq. (2.13) can be done. Typically,
the time integrals are of the form

=/ l]‘"(h,r)dTEk(l-—7'). (2.16a)
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With the assumption (2.15)
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and hence
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Using this simplification the left-hand side of Eq. (2.13)
becomes

(2.17)
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As (3E;/dt)—iwxEx is of order Ei?, this may be neg-
lected in all terms but the first when the time integrals
are completed on the right-hand side of (2.13). In the
first term this expression occurs and is evaluated in
lowest approximation. This gives a term of O(E®) to
be included. One finally arrives at the nonlinear equa-
tion, correct up to order Ex*

OBn
_é7=1wkEk+ Y. MywEw (t)Exx(f)

K'€R:
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Using the Green’s function appropriate to the system
in cylindrical coordinates, v= (vi1,v.,60), k= (ki1,k1,0),
and @ is the cyclotron frequency for the species

r=1—>0, (2.19)

the velocity integrals may be completed and explicit expressions found for e(k,wx), My, and Ly w. For e(kwy),

one obtains the longitudinal dielectric function
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In the absence of waves, g is just the equilibrium distribution function which must be of the form, g= g(vi,.).
Neglecting the small anisotropy generated by the fluctuations, the usual dielectric function
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The coefficient, Lg s, in Eq. (2.18) can also be reduced to velocity integral form, but except in the cases of
zero? or “infinite’”® magnetic field is extremely complicated. For example, it is evident from Eq. (2.13) that Ly x
involves velocity integrals of a product of six Bessel functions and as such makes even zero-temperature approxi-
mations extremely tedious. If one is interested in the energy being scattered into a particular mode which has a
low amplitude so that the mode of interest, Ex satisfies | Ex|?K | Ex_w |2>2| Ey |2, for k' in R'(kk’), then only
M x has to be calculated.

The main quantities of interest for characterizing the turbulent state of the plasma system are the squares of
the amplitudes of the excited modes, | Ex(f)|2 A closed equation for the amplitudes can be obtained from Eq.
(2.18) if use is made of our lack of knowledge of initial conditions. In particular, it is assumed that the initial
conditions are just those encountered by the excitation of the modes by thermal noise, that is, the modes have
phases which are initially completely random. One then generates an infinite chain of coupled equations by multi-
plying Eq. (2.18) by all powers of E(f) and averaging the equations over the initial phases. For example,

d|Ex (1)
=27 | Ex|*+{X M, w(Ex*EwExw)+> L | Ex |?| Ex|?>4complex conjugate} (2.22a)
k, kl

and

d
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ka k3

where in Eq. (2.22) the brackets ( ) denote an average over initial phases and have been dropped from |E|?
for convenience. The chain of equations continues of course, but if use is made of the assumption that the linearized
modes remain well-defined Eqs. (2.22a) and (2.22b) actually close to the approximation considered.

In the absence of nonlinearities Eq. (2.18) shows that the phase of Ex remains constant in time. This equation
of course neglects the small effects due to details of the initial particle distribution function. Hence, without non-
linearities and with random initial phases the phase average of all odd products of E(¢) vanish, and only those
terms in the phase average of even products remain which have identically cancelling phases. In the presence of
the nonlinearities the phase of the wave changes, but slowly compared to wx. The Eqgs. (2.22) are complete when
the average four product is expressed in terms of the | Ex|2 For example,

(Ex*Ex sy Ex Ex—r )= (0 1y 0xr k1) | Eir || By | 24O (ES). (2.23)

This decomposition is suggested by the linearized theory and in the presence of nonlinearities can be shown to
be correct self-consistently. The self-consistency of (2.23) is found by deriving the equation for (Ew,*Ex i Ex Ex_w)
which is coupled to {Ex,*Eix*Ex - EwExw). The average five product is then expressed in terms of products
of two and three products, as would be the case in the linearized theory, and Eq. (2.23) is shown to be correct.
Using Eq. (2.23), Eq. (2.22b) becomes

i)
E(Ek*Ek’Ek+k' Y=1 (0wt ok —w*)(Ex* B Ex_o )+ 2Hy w* | Ex || Exxe |2
¢
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—2H 0 x| Ex|?| Exi | *— 2H i x| Bxc|®| Exr |2,
Hy o= My w+Mixw)/2.

Equation (2.24) can now be integrated using the fact that
1 9|Ex|?
|Ex|?2 o¢

>

?

and asymptotically one finds
(Ex*Er By )= 218 (o1 wiie®— w0i®) { Hx 10 *| Exc |?| B |*— Hy x| B |?| Exo | 2— Hywo x| Ex|*| B |*},  (2.25)

where 8(x) is the Dirac delta function, and Eq. (2.25) is valid in the limit of infinite volume. The equation for the

4W. E. Drummond and D. Pines, Ann. Phys. (N. Y.) (to be published).
5R. E. Aamodt and W. E. Drummond, Phys. Fluids 8, 171 (1965).
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energy in the kth mode is then

R. E. AAMODT
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Equation (2.26) is the basic equation for the energy
in the kth mode for micro-instabilities in homogeneous
plasma systems. If the quasilinear equations!? for the
particles and fields are used to describe the initial
buildup of the amplitudes it is evident that when
| Ex |2 becomes of order v that the nonlinear terms are
as important as the linear term in Eq. (2.26). For the
mild bump velocity space instabilities in a homo-
geneous plasma, with® and without!? a magnetic field,
and the ion cyclotron instability® the quasilinear theory
does predict equilibrium amplitudes of the order of ;.

III. DISCUSSION

A particularly interesting set of modes for study in a
finite magnetic field are the modes which can exist at
integral multiples of the electron cyclotron frequency.
In a homogeneous plasma many of the harmonics can
be unstable if the electron-velocity distribution function
is sufficiently anisotropic,® or if groups of electrons have
drift velocities along the field relative to one another.
The latter type of instability is brought about by the
usual particle-wave resonance phenomena where the
phase velocity of the wave along the magnetic field is
such as to pick up energy from particles.

For these modes, {k} conveniently denotes (k,n)
where wi,d=nQ.+ak,n), n==21, &2, ---, Q.=|(¢/
mc)Bo|, and &(k,n) are wavelength-dependent factors
accounting for slight shifts of the modes from exact
cyclotron resonance. To illustrate the effect of wave-
wave scattering it is assumed that the plasma parame-
ters are such that only the z=1 mode is linearly
unstable.

The quasilinear theory of the =1 mode predicts
that the mode grows exponentially in time causing a
concomitant diffusion of particles in velocity space.}3
For the case of the instability induced by the wave
resonanting with a drifting gentle beam of electrons,
the mode becomes “quasilinearly-stationary’’ when the
beam velocity distribution function has flattened in the
direction of the external magnetic field, at which time

¢ E. G. Harris (to be published).

| Ex,ne1®| is of order 7i,n—1(t=0). As |E®|% ap-
proaches the quasilinear amplitude, the nonlinear terms
in Eq. (2.26) become of order (vi)? which is the same
order as the linear term. If the three wave resonance
condition can be satisfied for {k'}= (k’, z=1), {k—k'}
= (k—k’, n=1) and {k}= (k, »=2), that is

Qto®,1)+2+ok—k', n=1)

=20+ak, n=2), (3.1)

the z=1 modes start supplying energy to the n=2
modes. As the #=2 mode was assumed purely oscillating
or damped, |Ex,n.—2|? is much less than order v, and
for small times | Ex, ,—2|? satisfies the equation

0
B =t 2 | i |5(@)| B
kl

X | Exxr m=1]?. (3.2)
Hence, | Ex,n—2|? grows linearly in time until it reaches
an amplitude of order (y) when the scattering out of
(k, n=2) becomes important and the terms propor-
tional to | Ex,.2|? in Eq. (2.26) are as large as those
kept in Eq. (3.2). If the »=2 mode is damped, the
quasilinear term transfers energy from the #=2 mode
back into the particles. Also, the =2 mode can
resonantly scatter with the »=1 mode and the n=2
mode to supply energy to the =23 and n=4 modes. If
the transfer of energy to the particles is small, it is
evident that all of the cyclotron modes which directly
or indirectly couple resonantly through three wave
scatterings to the unstable modes will reach an ampli-
tude of the order of v;(¢=0). Of course, details of the
spectrum depend on the structure of Hy x, Lx x, and
V.

In any event, if the three wave resonance condition
is satisfied, nonlinear wave-wave scattering is an im-
portant mechanism for supplying energy to the higher
cyclotron harmonics. These nonlinear processes may
furnish a partial explanation of the radiation experi-
mentally observed in various plasma devices at high
cyclotron harmonics.



