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Ground State of Liquid He'f
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The properties of the ground state of liquid He' are studied using a variational wave function of the form
II;&,f(r;;). The Lennard-Jones 12-6 potential is used with parameters determined from the gas data by
deBoer and Michiels. The configuration space integrals are performed by a Monte Carlo technique for 32
and 108 atoms in a cube with periodic boundary conditions. With f(r) =exp[—(2.6A/r)sg, the ground-
state energy is found to be —0.78&10 "ergs/atom, which is 20% above the experimental value. The liquid
structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray
and neutron scattering experiments.

INTRODUCTION

'HE interacting Bose gas' —' has been the subject of
intensive theoretical investigation as a micro-

scopic model for the behavior of liquid He'. Successful
calculations have been performed for the Bose gas with
weak repulsive interactions' and for the low-density
Bose gas with short-range repulsive interactions. ' This
work provides a beautiful model of the superQuid
behavior of the interacting Bose gas and of the existence
of phonons and quantized vortices, but it does not
permit one to perform quantitative calculations for
liquid He4.

A variational method' ' in which the trial wave func-
tion is expressed as a product of pair functions )see
Eq. (3)] has been used extensively to describe the
ground state of the interacting Bose system. This
method can be applied directly to the intermediate
density hard-sphere gas or to a realistic Hamiltonian for
liquid He'. In this paper we report the quantitative
calculation of the properties of the ground state of
liquid He4 using this variational method.

THEORY

We will consider A helium atoms of mass m in a cubic
box of volume 0 interacting through the two-body
potential V(r).

Q2 N N
H= Q V", + Q V(r;;). (1)

2m i=1 i&2=1
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A

Estimates of the potential have been made theoretically
from the atomic structure of helium and empirically
from the gas kinetic data. Theoretically, it consists of
two parts: the attractive Van der Waals interaction
at' " large r and the repulsive Coulomb and exchange
interactions" for small r, where the wave functions
of the two atoms overlap appreciably. deBoer and
Michiels" have obtained an empirical interaction by
fitting the parameters of the Lennard-Jones 12-6 po-
tential to the experimental values of the second virial
coeKcient above 60'K. They found

V(r) =«L(~lr)"—(~lr)'],
e = 10.22'K,

o = 2.556 A.
(2)

Using this potential, Kilpatrick et ul." calculated the
second virial coeKcient from 2 to 60'K and found a
good fit to the experimental data in that temperature
range. This form for the potential is convenient and
it is used, in the present calculation. More recent
measurements at low temperatures by Keller" indi-
cate that the potential should be somewhat more
attractive.

The trial wave function may be formulated in the
following way. In order to obtain a reasonable value for
(V) in the many-body system, the wave function must
be small whenever the potential is large, that is, when-
ever any two particles are less than 2.6 A apart. This
can be accomplished by choosing the trial wave func-
tion to be a product of pair functions, the product being
taken over all pairs.

0= II f(r') (3)

The pair function can then be made small for r(2.6 A
and should approach a constant for large r.
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Since we are dealing with bosons, the wave function
should be totally symmetric under exchange of any
two-particle coordinates; the trial function has the
proper symmetry.

Although this form for the wave function is simple,
it has two very interesting properties. First of all,
Bogoliubov and Zubarev" have shown that in the weak
coupling limit the exact ground-state wave function can
be written in this form. Hiroike'~ has shown that this
trial wave function will reproduce the first two terms in
the low-density expansion of the ground-state energy of
the hard-sphere gas. Secondly, we expect the probability
distribution function

IIf' (4)

to exhibit at least two phases: a disordered (gas or
liquid) phase at low densities, and an ordered, solid
phase at high densities (since the classical system with

exp[—V(re)/kT]= f'(r;;) is expected to have this be-
havior). Thus, the trial wave function (3) should give
good results for the ground state of the low-density gas
and may provide a useful variational wave function
for the intermediate-density gas (or liquid) and for the
solid.

We must now choose a reasonable form for the pair
function which contains variable parameters. This
function should be small for small r where the potential
is large and should approach a constant for large r.
At small distances where the two particles interact
strongly the pair function is not expected to be very
diferent from the solution of the two-body problem.
The numerical technique which we will use to evaluate
the integrals places a severe restriction on the range of
the pair function, namely, that the pair function be
sensibly constant for r greater than =6 A. The asymp-
totic (for small r) solution of the two-body problem,
f(r) =exp[—(2.S1/r)'], satisfies these requirements and
provides a reasonable starting point for the calculation.
We choose

(S)

cube. Each particle in the original cubic box [say with
coordinates (x,y,s)] will have an image at the same rela-
tive position in every other cube [for example at
(x+1-, y, s)].If we define the distance between particles
i and j, r;;, to be the distance from particle i to the near-
est image of particle j, the trial wave function is periodic
and satisfies the boundary conditions. This choice of
boundary conditions is important since we do not wish
to take the usual limit E, 0~~ with p=X/0 fixed. We
can perform the integrations only for a few particles in
a small box so that it is important to eliminate surface
eGects insofar as this is possible. Since we hope to study
the solid as well as the liquid phase, we will choose the
particle number E to permit condensation into the
cubic-close-packed configuration in the periodic cube;
we will use Ã= 32 and 108.

We have written down the Hamiltonian (1) for the
system and a trial wave function (3), (S) containing
variational parameters and will be able to perform the
calculation for a small number of particles in a periodic
box. Our next task is to evaluate the expectation value
of the Hamiltonian and to minimize it with respect to
the two parameters in the trial wave function. We begin
with the V' term in the Hamiltonian"

QVPPdr= f' P VP lnf(r;;)dr

(jwi)

+ It p V;1nf(r;;) V;pdr. (6).

After integration by parts the second integral is equal
to minus one-half of the first. We find easily

IPEIfdr= Q VP lnf(r;;)+ V(r )+dr (7)".
i&j 251

This integral can be written in terms of the two-particle
correlation function, de6ned as

as the trial pair function with variable parameters
a~ and a2. This function has been used by Wu and
Feenberg. "The parameter a~ determines the radius at
which the pair function "cuts o6" and a2 determines the
sharpness of the cutoG.

We have not yet specified the boundary conditions
on the wave function. Since we want to obtain the bulk
properties of the liquid, we will eliminate surface e6ects
by imposing periodic boundary conditions on the sur-
face of the cube. This is equivalent to extending the
system periodically in space with the periodicity of the

~6 N. Bogoliubov and D. N. Zubarev, Zh. Eksperim. i Teor. Fiz.
28, 129 (1955) )English transl. : Soviet Phys. —JETP I, 83
(1955)g.

'7 K. Hiroike, Progr. Theoret. Phys. (Kyoto) 27, 342 (1962).' F. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

g(Rt —Rs) =p-' g 5(Rt—r~)

X8(Rs r;)+dr —Pdr (g)

Since the system is translationally invariant, g is a
function of Ri—Rs only, and in the liquid state g is
spherically symmetric. The correlation function is nor-
malized so that g(r) = 1 for large r and

[g(r) —1]d'r = —1.

' J'd'r indicates integration of each coordinate rs, i=1 ~ g
over the cubic box.
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The liquid structure factor S(k) is related to the cor-
relation function by

Within this approximation one can easily derive the
relation

mg'= ng(ng+1) . (17)

The expectation value of H can be written

(10) It is of interest to see how well this relation is satis6ed
for Equid He4. Ke begin with the r-space pairing
function

m(rx re+—~)=N—A x(ri rn g)

=Xp/2 P—(h'/2m) 7' ln f(r)+ U(r)]g(r)d'r. (11)

%'e are also interested in the one-particle density
matrix de6ned as

pl(rl rl')=+ f{r1)r2)' ' 'yrx)

pip(rr, r2, ' ' 'rN)d f2' ' 'd r~ f'dr . (12)

For smail r, »(r) approaches the density of particles&
Penrose and Onsager" have shown that, for large r,
pq(r) approaches the density of particles in the zero-
momentum state.

p~(r) ~ po

According to Penrose and Onsager it is characteristic
of the superQuid phase of the boson system that po is
some 6nite fraction of p, and these authors estimate that
p0=0.08p (8% of the particles are condensed into the
zero-momentum state). By Fourier transforming pq(r)
we obtain the momentum distribution function

n, = pp, (r) —p,]e"d'r, l WO. (14)

nq is the average number of particles with momentum k
and is usually written n&=(1V

~
an't—a&~ X) where a&t and

a~ create and destroy particles with momentum k.
In the weak-coupling theory one calculates gk and the

quantity m~ —=(S—1
~
aka ~

~
X+1). We make the

Bogoliubov transformation from particle creation and
annihilation operators uk~, ck to quasiparticle creation
and annihilation operators O,k~,o.k

ag=s~L+vgK g ~

Nk —Vk = 1 ~ Nk=Qk =I k

Vk=Vk =V k )

and assume that the ground state ~0) is the state of no
quaslpRI t1cles

nycto)=0. («)
&' 0. Penrose and I.. Onsager, Phys. Rev. 104, 576 (1956).

X4~+,(r,, )rp, g,r~, r~+x)d'r~ d'r~ ~ (.18)

With the wave function (3) one can show that

m(r) = f(r)p, (r), (19)

so that m(0) =0 and m(r) approaches po for large r. We
obtain m~ by Fourier transforming m(r)

{2o)

We now need a numerical technique for determining
g(r) and p, (r) from the wave function. g(r) is calculated
directly from the probability distribution function I'~
LEq. (4)]. Since the form of I'& is the same as that
occurring in the statistical mechanics of the classical
gas I replace f'(r;;) by exp) U(r;—;)/kT]},we can use the
same integration techniques that are used in th, e classi-
cal problem. Aviles' has obtained results for the hard-
sphere gas at low densities by summing chain diagrams
in the Ursell-Mayer cluster development of the integral
in powers of the particle density. The cluster expansion
limits the validity of the results to very low densities
and does not appear to be useful at helium densities.

Metropolis et al." have developed a Monte Carlo
method for performing the con6guration space integrals
of the classical gas when the number of particles is not
lRI'ge. This method consists of peI'folIQlng R b1Rsed 1Rn-
dom walk through con6guration space in such a way
that this random walk sweeps out the distribution func-
tion I'~. One can then estimate the integrals over I'~
by averages over the con6gurations occurring in the
random walk. The equation of state of the classical
hard-sphere system in the gas and solid phases has been
calculated by Wood and Jacobson" using this Monte
Carlo technique for systems of 32 and 108 particles. The
results are in good agreement with the calculations of
Alder and %ainwright" based on an integration of the
classical equations of motion for systems of the same
size. We have chosen a short-range pair function so that
we can use this Monte Carlo method to evaluate the
integrals for a small number of particles.

"N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).~%. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207
(1957),

233. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208
(1957).
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MONTE CARLO METHOD

We wish to perform integrations of the form

(F)= P(ri r&)()PN(ri rid)dr, (21)

P~d7= 1 . (22)

In this application, Pii(ri .ry) is the wave function
squared and is just the probability of 6nding particles 1
through E at positions rj r~.

We will call a set of positions for each of the Ã par-
ticles a configuration, R('&=—(ri&'& rtv")). In order to
obtain an estimate of the integral (21) we will sample I
configurations, R('), with the probability distribution
Pti(R(')) and average F over the n samples

(23)

(P„) approaches (P) for large tt.
Metropolis et u/. "have found a method of sampling

from P~ which is convenient for a machine computa-
tion. These authors set up a biased random walk through
con6guration space beginning with R(» which is chosen
arbitrarily. A procedure is given for generating R(i+»
from R(') such that, for a long walk, R recurs with fre-
quency P&&t(R), independently of the choice of R&'&.

R(i+» is generated from R(') by moving one particle,
say particle j (the particles may be chosen in order or
randomly). A trial position r, & & is chosen from a uni-
form distribution in a cube of volume (2d)' centered
on r;(".That is

x'"=x "'+$ d,
y, (t) y.(t)+bd

z &'& =z, &'&+ $,d,

(24)

where $i, f2, and $t are random numbers sampled from a
uniform distribution on —1&)&1.We now compute
P'~ for the old configuration R"' and for the trial con6g-
uration R«) where

R(t)—(r (i). . .r, (i) r, (t) r,+ (t) . . . r&)((i)) (2$)

R(i+» is taken to be either R«) or R(') depending on the
values of P&)((R(") and P&t(R(t)).

R('+» =R«).
)

—R«).
7

P (R(t)) & P (R&t))

P&)t(R(t)) &P&)((R(t))

and P&)((R('))/Ptt (R('))) t&

P (R&'&)&P (R"&)
and P&)((R(t))/P&&((R(") &». (26)

where Ii is symmetric and P& is a weight function or
probability distribution function which is non-negative
and normalized to 1 on the 3X-dimensional cube.

P~&0,

Here g is a random number chosen from a uniform dis-

tribution on 0&&&&1. When PN(R(')))PN(R")) the
system is moving into a region of higher probability and
R&" is accepted as the next con6guration. When
Pti(R(')) &P&)t(R(')) the system is moving into a region
of lower probability and R&" is accepted only with
probability P&)t(R(t))/PN(R(t)). The step to R&') is not
made with probability 1—P&& (R(t))/P&&t(R(')). This
procedure allows free motion of the system into regions
of higher probability and inhibits motion into regions of
lower probability, forcing the system to spend more
time in regions of high probability.

We now demonstrate that this step procedure does
choose configurations R with probability P&(R). Since
a particle is allowed to move to any point inside the
cube of length 2d with finite probability, it is clear that
a finite number of moves will allow it to reach any point
in the box with finite probability. Since this is true for
each particle, any point in con6guration space may be
reached from any other point with finite probability by
a 6nite number of jumps. Thus the method is ergodic
and the random walk will cover all of configuration
space.

Next consider a large ensemble of systems and sup-
pose for simplicity that there are a 6nite number of
con6gurations R"' with vi systems in the ith configura-
tion. We wish to show that after many steps t, ~ P(R('&).
Consider a con6guration i and a configuration j which
can be reached from i in one step and suppose that
P(R&'&)) P(R&t&). Let p;; be the probability of choosing
R(" as the trial con6guration starting from configura-
tion R('). The step procedure has been set up so that
p;t ——p;;. Then the number of systems in the ensemble
moving from i to j in one step is equal to v,P,,P(R"))/
P(R('&),whereas the number of systems moving from j
to i is t,p, ;. At equilibrium these numbers must be
equal so that

tt;/P; =P~(R &'&)/PN(R"') (27)

whenever j can be reached from i in one step. Since any
configuration can be reached from any other in a 6nite
number of steps, this relation must hold for all i and j.
Thus v, ~ P&)((R(t)) and this step procedure does generate
an equilibrium probability distribution which is equal
to Pz. The ergodic property allows us to average over
one long walk instead of taking an ensemble average.

In order to use this random walk as a computational
device, we must deal with walks with a 6nite number of
steps e. The above demonstration that the average of
Ii over the random walk is equal to the average over
P&i (and independent of R"' which is chosen arbitrarily)
holds only as e goes to infinity. In the calculations on
the classical hard-sphere gas some difficulty was ex-
perienced in achieving equilibrium when the system
was very near the gas-solid phase transition. The ran-
dom walk appeared to remain in one phase for a long
t'ime and to jump from one phase to the other only
rarely. Wood and Jacobson" took advantage of this to
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calculate the properties of both the gas and solid phases
at the same density. We are not able to see this effect
in the present calculation and must be satisfied with the
equilibrium average over the two phases near the phase
transition. In order to assure that the random walks are
long enough to provide a good equilibrium average,
several of the calculations are performed twice starting
from diferent initial configurations R' '. The two start-
ing configurations are a random con6guration with the
particles in random positions in the box and an ordered
con6guration with the particles on the lattice sites of a
cubic-close-packed lattice. In all cases the results are
independent of the starting con6guration within the
accuracy of the calculation which indicates that the
random walks are long enough to give reliable results.
Since the average over the first few steps is obviously
dependent on the starting point, these 6rst few con-
6gurations are not included in the averaging. We let
the system approach equilibrium for e/2 steps and take
the averages over the next e steps.

The resulting averages are independent of the param-
eter d provided that the walks are long enough. d is ad-
justed periodically during the walk to keep the proba-
bility of accepting the trial configuration near one-half.
This procedure is thought to maximize the rate of mo-
tion through configuration space and to aid in the ap-
proach to equilibrium.

We now have a procedure for sampling points from
configuration space with probability PN and we want to
calculate g(r) and pi(r) from this sample. Computing

g(r) for a single configuration is simple. We compute
the distance between each pair of particles and count
the number of distances which lie between r and r+dr.
Averaging this number over e configurations gives us an
estimate of (N/2)p4rr'drg(r). Since only one particle,
say particle j, is moved in going from R(') to E.('+'), the
only new information in R('+') is the distances r;&,
k/ j.Only these distances are used to compute an esti-
mate of 4&rpr'drg(r) Atypical . Monte Carlo estimate for

g(r) is shown in Fig. 4 for N= 108, @=2.2X10+"
atoms/cc, ai= 2.6 A, up= 5. The parameters are
those for liquid He4 at its equilibrium density.

Since the distance r;; is taken to be the distance be-
tween particle i and the nearest image of particle j,
we obtain an estimate of g(r) only for r &L/2. This dis-
tance L/2 is 5.6 A for the 32-particle system and 8.4 A

for the 108-particle system. In computing

to 108particles. This change appears to be due primarily
to the small maximum in g(r) near r = 7 A which is left
out of the Fourier transform integral for the 32-particle
calculation. For the 108-particle system the values of
S(k) are meaningful only for k) 2m/8. 4 A=0.75 A '.

With the wave function (3) the integral for pi(r)
Eq. (12) can be written

We want to compute

XPg(ri rg)d'rp d'r&p. (28)

f(ri )
P

~» f(rii)
(29)

(31)

In a large system pi(r) approaches a constant, pp for
large r. We can obtain an estimate of po by noting that
the atom positions areuncorrelated over distances greater
than /. =6 A so that g;&if(ri;) and g;&if(ri, ) are in-

dependent for r11 &2l, . Since the average of the product
of two independent quantities is the product of the
averages, we have

for the con6guration 8(') and average this expression
over the configurations in our sample. It is convenient
to do the averaging in the following way: We choose X
random positions r; in the cubic box and compute the
distances r;;. We now compute the function

f(r; p)
P&'&(r)=P g —,r& ~r;;~ &r+dr, (30)

e~ p~~ f(r;(,)

where the sum is taken over all i' and j such that r;;
lies between r and r+dr. Averaging this function over
configurations gives us an estimate of pi(r)Nor'dr.
The values F&'&(r) and F&'+i&(r) are not independent
since only one atom position was changed in going from
8&'& to 2&'+'&. However, Fi"(r) and. P &'+~&(r) are roughly
independent and we obtain an scient estimate of
pi(r) by averaging over every Nth configuration.

and S(k) from integrals over g(r), we set g(r) equal to
one (the asymptotic value for large r) for r) L/2. This
introduces a negligible error in (r ") even for the
32-particle system, but it does introduce a truncation
error in the Fourier transform integral for S(k). For the
parameters mentioned above, the values of S(k) for
k) 0.75 A ' change by less than 0.02 in going from 32

o

X P„(ri rg)dr (32).
II f(rv)
p+1

Penrose and Onsager' used this expression together
with the pair function

f„p(r) = 1 r) 2.6 A

0 r&26A
33
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to estimate that ps/p —0.08. A typical estimate of
pi(r) and ps is shown in Fig. 7.

0.30

NUMERICAL RESULTS

Preliminary calculations were performed with 32 par-
ticles in the box for 41 sets of values for the variational
parameters (at, as). The averaging to obtain g(r) was
performed. over 4800 con6gurations. The ground-state
energy as a function of a& and a& for the equilibrium
density of liquid He'(p=2. 20X10 "atoms/cc) is shown
in Fig. 1. The minimum occurs for at=2.6 A and as=5.
The energy at the minimum is —0.77a0.09X10 "
ergs/atom compared with the experimental ground-
state energy of —0.988&&10 "ergs/atom. The accuracy
of the results for these short runs is not great; in par-
ticular, we were not able to see any manifestation of the
liquid-solid phase transition.

The next calculations were performed for 32 atoms
with averages taken over 32 000 con6gurations with
as ——5 and at varied from 2.1 to 3.3 A in steps of 0.1 A,
again with p= 2.20)&10"atoms/cc. These 13 runs were
made starting with the cubic-close-packed configuration
and four of these were repeated starting from the ran-
dom configuration to make certain that equilibrium
had been achieved. No significant differences in (r )
were detected indicating that the Monte Carlo method
provided a valid sample of the distribution function.

The "best" values of a~ for the range of densities
occurring in liquid He' fell between 2.6 and 2.8 A. In
order to determine the dependence of the results on the
particle number, four runs were made for 108 atoms in
the box with at ——2.6 and 2.8 A and starting from the

O,S-

0.25—

0.20—

0.$ 5
OI

Q

0.40—

0.05—

I

40
I

55 20 25
a', (Xs)

I

30
I

35

cubic-close-packed and the random configurations.
Again there was no dependence on the initial configura-
tion. It is more striking that no significant differences in
(r ~) were found between the 32- and 108-particle
runs. A difference of 3.3'Po in (r ") and of 0.9/o in
(r-') would have been detected by the statistical test
used. '4 This means that the properties of the 32-particle
system approximate the properties of the bulk liquid
within a few percent. Values of (r '), (r-'), and (r ")
(necessary to ca,lculate (IZ)) and their standard devia-
tions are listed in Table I.

PzG. 2. The function G»(e18) versus a13 from Kq. (34). The
points are computed from the values of (r») from Table I and
the error bars indicate the estimated standard deviations. The
solid lines show a least-squares fit of a straight line to the numerical
data in the two regions.

a2=5 TAsLz I. Numerical values of (r ) in units of A, as a func-
tion of a1 for c2 ——5 and p= 2.2)&10~ atoms/cc.

Vl

0I-
0

tl)
Q
K
LLJ

IA

I
O

N

CQ

LI -0.S-

2.0
I

2.5
a, (A)

I

3.0

2.1 fcc
2.2 fcc
2 3 fcc
2.3 random
2.4 fcc
25 fcc
26 fcc
2.6 random
2.6 fcc
2.6 random
2.7 fcc
2.7 random
2 8 fcc
2.8 random
28 fcc
2.8 random
2.9 fcc
30 fcc
3.1 fcc
3.2 fcc
3.3 fcc

10'(r 'l/& &0'&r ')/&

32 4.581~0.033 1.617~0.022
32 4.253 0.030 1.456 0.014
32 3.876 0.028 1.278 0.013
32 3.869 0.026 1.275 0.012
32 3.678 0.022 1.184 0.010
32 3.424 0.016 1.072 0.007
32 3.234 0.014 0.987 0.006
32 3.234 0.015 0.988 0.007

108 3.240 0.015 0.991 0.007
108 3.220 0.016 0.981 0.007
32 3.068 0.020 0.916 0.008
32 3.067 0.013 0.916 0.006
32 2.920 0.014 0.853 0.006
32 2.938 0.013 0.860 0.005

108 2.942 0.010 0.861 0.005
108 2.946 0.012 0.861 0.005
32 2.795 0.009 0.801 0.004
32 2.703 0.013 0.763 0.005
32 2.611 0.011 0.726 0.005
32 2.543 0.011 0.699 0.004
32 2.475 0.011 0.672 0.004

105(r-»)/X

2.019~0.061
1.528 0.036
1.081 0.029
1.075 0.026
0.871 0.022
0.676 0.016
0.531 0.009
0.542 0.010
0.542 0.010
0.525 0.008
0.439 0.011
0.438 0.009
0.354 0.007
0.363 0.007
0.369 0.005
0.365 0.006
0.299 0.004
0.256 0.005
0.224 0.004
0.200 0.004
0.177 0.004

FIG. 1. The ground-state energy versus the two variational
parameters, a& and uz, for the density @=2.2X10~' atoms/cc as
found from the preliminary calculations. "The student t test for significance at the 5'P0 level.
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TABLE II. The two parameters of a least-squares Gt of G =33( )+34( )a1' to the data
for (r ) in the liquid and solid regions.

6
7

12

(m)

(5.99~0.09)10 2

(7.04~0.14)10-2
(7.89w0.54) 10~

Liquid
J4(m)

(9.2~4.9)10 ~

(6.2~0.8)10~
(5.0~0.3)10 '

g (m)

(5.83+0.04) 1O

(6.85wo.06)10~
(2.52&0.53)10~

Solid
g (m)

(1.28+0.13)10 4

(6.47~0.21)10 4

(7.06~0.19)10 '

We can now calculate (H) as a function of ai for a
given density and minimize (H) with respect to ai.
Since the values of (r ~) contain statistical errors it is
convenient to fit these values with an analytic function
so that (H) can be minimized analytically. The follow-

ing function is used:

2s' fTrs —3 l(r-")=—plVai'-"2 &'-"»sr
~

5 ksj
X/1+ 'G ( ')7. (34)

This form for the function is identical to that obtained
from the cluster expansion if 6 is expanded in a power
series in ats. The plot of Gts(ats) given in Fig. 2 shows a
change of slope near ai ——2.85 A and can be fitted by
straight line segments on either side of this point. Since
other properties of the system show a break in this re-
gion, this point is tentatively identified as the liquid-

0

solid phase transition. The properties which we obtain
very near the phase transition represent an averaging of
the liquid and solid properties appropriate to the small
size of the system. Thus, very near the phase transition,
we do not obtain results valid for a large system.

Two terms in the expansion of G provided a good fit
in the liquid and solid regions separately. The coefFi-

cients in this expansion are given in Table II. This
analytic form for (r ~) can be used to compute the
energy and the best value for the parameter u~ as a
function of density in the liquid and solid regions;
the results are shown in Fig. 3 and compared with the
experimental values. "The pressure can then be com-
puted from I'= BE/BV —(or by using the virial
theorem) and the velocity of sound from s'=BI'/rriBp.
The theoretical and experimental quantities are com-
pared in Table III for particle densities corresponding
to the liquid at zero pressure and the liquid at 25 atm;
For the liquid at zero pressure (p=2.20X 1022 atoms/cc)
and as ——S we find ai ——2.60&0.01 A. Figures 4 through 9

-0 5—

-0.2—

OI-
& -0.3—
El)
C
~ -o.4-
n
O

&. -o5-
Q
Cf.
laI
Z
Llj

~ -O.e-
I-
0)

d -07-
0
lK0 -0.8—

(a

$.4

i.2—

$.0

0.8—

0.e—

0.4—

0.2—

~ ~
op', ls

' (b)

-0.0— -0.2—

-&.0 I I I I

2.0 2.2 2.4 2.8 2.8 3.0 3.2
PARTICLE DENSITY (I022 ATOMS/CMS)

FIG. 3. The experimental and theoretical ground-state energy
as a function of particle density for liquid and solid He4: (a)
solid, theory; (b) solid, experiment; (c) liquid, theory; (d) liquid,
experiment. The arrow indicates the minimum of the theoretical
curve.

FIG. 4. (a) The two-body potential V(r) in units of SX10 '2

ergs. (b) The Monte Carlo estimate of the two-body correlation
function g(r) for the equilibrium density of liquid He4. (c) The
pair function squared f'(r) for u&

——2.6 A, u2 ——5.

"K.R. Atkins, Liquid Helium (Cambridge University Press,
Cambridge, 1959).
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FIG. 6. Conlpal'1son of thc liquid structure factor with cxpc1'1-
ment. The solid linc is the theoretical curve, the solid circles are
from the x-ray data of Gordon gE gl. (Ref. 26), and the open circles
are from the neutron data of Henshaw (Ref. 27). The dashed line
is computed by the Feynman (Ref. 28) theory from the experi-
mental velocity of sound.

Fxo. 5. Comparison of the two-body correlation function with
experiment. The solid line is the theoretical curve, the solid
circles are computed from the x-ray data of Gordon ef ai. (Ref. 26)
and the open circles are computed from the neutron data of
H-.h: (R.f. 27).

TABLE III. Comparison of theory with experiment for the densities
of llquld Hc at zero prcssure and 25 atm.

Partlclc
density

atoms/cc Theory
Expcrl-
ment

Minimum energy
(10 "erg/atom)

Equilibrium density
(10~ atoms/cc)

Energy (10 "erg/atom)
Energy (10 "erg/atom)
Pressure (atm)
Pressure (atm)
Velocity of sound

(m/sec)
Velocity of sound

(m/sec)
(V) (10-"erg/atom)
(KE) (10 "erg/atom)

—0.810~0.015 —0.988

1.95+0.02

2.20
1.59
2.20
2,59
2.20

—0.781~0.015—0.616~0.025
13 &2
40 ~6

267 ~40

—0.988—0.911
0

25
238

2.20 —2.736
2.20 1.955

26 W. Gordon, C. Sham, and J. Daunt, J. Phys. Chem, Solids
5, 117 (1958)."D.G. Henshaw, Phys. Rev. 119, 9 (1960).

give the theoretical results for these values of the param-
ctcl's. IQ Flg. 4 wc show tlM pail fUQctloIl sqURlcd Rnd
the Monte Carlo estimate of g(r) for the 108-particle
system along with the potential V(r). A smooth curve
drawn through these Monte Carlo points for g(r) is
shovrn in Fig. 5 and is compared with the correlation
function computed from the x-ray data of Gordon
e$ cl.26 taken at 1,4'K and the neutron data of Henshaw'~
taken at 1.06'K. The liquid structure factor calculated
from the Monte Carlo estimate of g(r) using Kq. (10) is
showQ 1Q Flg. 6 Rlong with thc x-1Ry Rnd QcutI'oil data.
The Monte Carlo estimate of pt(r) for the 32-particle

system is shown in Fig. 7; the dashed line gives ps ——0.11p
computed from Eq. (32). res and ms, obtained by Fourier
transforming pt(r) and f(r)pt(r), are given in Fig. 8.

As scen from Table III and Figs. 3, 5, and 6, the agree-
ment with experiment is reasonably good. The minimum

energy is 18% above the experimental value (and is an
upper bound. on the ground-state energy) and the
equilibrium density is 12% less than the experimental
dcnslty RQd ls ln thc llquKI, I'cgloQ. ThUS this calcula-
tion indicates that the liquid is the stable phase at zero
temperature and pressure. However, the location of the
liquid-solid phase transition is only tentative and vrc

are not able to calculate the properties of the system
very close to the phase transition.

The theoretical correlation function (Fig. 5) agrees
well with the experimental one in the position and
sharpness of the cutoff near 2.6 A; the two variational
parameters in the pair function adjust the position and
shaxpncss of the cutoQ in the pair function. The experi-
mental curves have a higher peak at 3.5 A and. larger
oscillations at large r; this seems to indicate that the
pair function should peak up somewhat in the region of
glcRtcst Rttractloni Rnd there was Qo fx'ccdoDl to do this
in the two parameter function which we used.

The structure factor curves of Fig. 6 agree well except
in the region of the diffraction maximum at 2 A ' where

the experimental function is sharply peaked. Neither
theory nor experiment provide any lnformatlon on

S(k) for k&0.8A '. The experimental measurements

were made above 1'K where S(k) is still strongly
temperature-dependent for k(0.8 A '. The theoretical
curve was obtained by Fourier transforming Lg(r) —11
and truncation errors limit the validity of the S(k)
curve to k&0.75 A '. For small k the structure factor
is expected to approach the Fcynman" value

S(k) kk/2ms, k -+ 0,
2& R. P. Feynman, Phys. Rev. 94, 262 (1954).
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L

in Fig. 9) smoothly onto the computed ml, curve. The
area between the dashed and solid curves of Fig. 9 con-
tains about 3% of the atoms and this introduces a
possible error of 3% into po but does not affect the
kinetic energy.

The pair function, m~ (Fig. 8), approaches —0.066
for small k, passes through zero at 2 A ', and is roughly
equal to ej, for large k. ml, should also be proportional
to k ' for small k and this form is given by the dashed
curve of Fig. 9. For k =0 we have eo= mo= 0.11Ã&&1 so
that the relation m~' ——n~(e~+1) holds. For kWO, m~ is
about a factor of 10 too small for this relation to hold.

0
0

I

3
r(A)

Fro. 7. The single-particle density matrix as a function of
separation. The dashed curve indicates the asymptotic limit for
large r, p1(r) p0=0.11p.

where s is the velocity of sound. This limit is given by
the dashed line in Fig. 6. There is no reason to expect
that the theoretical S(k), calculated from the short-
range pair function of Eq. (5), will go to zero linearly
with k. If one extrapolates the present results to large
iV, it appears that S(k) approaches a constant =0.05
to 0.1 as k goes to zero. In the low-density theory the
pair function varies as (1—a/r') for large r and one ob-
tains the Feynman form for S(k). By restricting our-
selves to a short-range pair function, we obtain qualita-
tively incorrect results for small k.

The one-particle density matrix (Fig. 7) approaches
an asymptotic value, po/p= 0.11+0.01, at a rather small
distance =4 A. The fact that the density matrix ap-
proaches a nonzero limit for large r indicates, accord-
ing to the criterion of Penrose and Onsager, that the
system is in the condensed or superQuid phase. The mo-
mentum distribution (eI, in Fig. 8) approaches a con-
stant, =0.75 atoms/momentum state, for small k, is
approximately Gaussian for k(2 A ', but has a roughly
constant shoulder extending from 2 to 3A '. This
shoulder is emphasized by plotting k'e~ (Fig. 9) which
is proportional to the number of atoms with momentum
of magnitude k. This function exhibits two peaks with a
minimum near 2 A '. Fifteen percent of the atoms are in
the peak at k = 2.5 A ' and these atoms carry 45% of the
kinetic energy. In the low-density model eI, is propor-
tional to k ' for small k, and Onsager" has suggested
that this form is model-independent. In the present cal-
culation we find that ej, approaches a constant for small
k and we again obtain qualitatively incorrect results
for small k. We can estimate the errors involved here by
6tting the k ' dependence for small k (the dashed curve

29L. Onsager (private communication).

DISCUSSION

Two qualitative conclusions have emerged from the
calculation: (1) that He' is a liquid at zero temperature
and pressure, and (2) that liquid He4 is a condensed
phase corresponding to a generalized Bose-Einstein
condensation with about 10% of the atoms in a single-
quantum state. We have found reasonably good agree-
ment with the experimental information on the ground-
state energy as a function of density and the two-
particle correlation function. We would like to examine
the various approximations which have been made dur-
ing the course of the calculation which aGect its range
of validity. We have written down a Hamiltonian (1) for
spinless bosons interacting through a two-body poten-
tial; this is probably a good approximation for the ex-
perimental range of densities of liquid and solid helium.
One might hope to improve upon the particular two-
body potential that we have chosen and, in fact, the
ground-state calculation may prove to be a sensitive
testing ground for helium potentials. The ansatz (3) for
the ground-state wave function is correct for the weakly
interacting or low-density gas and provides quantitative

1.0

0,5

-Q.2
0

FIG. 8. The momentum distribution function eI, and the pairing
function my as a function of wave number.
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O.i

I"ro. 9. The momentum distribution function and the pairing
function multiplied by k' to emphasize the behavior at large k.
The dashed lines show the expected asymptotic form for small k.

results for liquid helium; it may also prove to be useful
for solid helium which is difficult to treat by the usual
techniques. By choosing a form for the pair function
which will allow it to take better advantage of the
attractive part of the potential, we should be able to
get signi6cantly better agreement with the ground-
state energy. The restriction that the pair function be
short ranged probably does not affect the energy very
much but does affect the smaH k behavior of S(k) and
eI,. It would be interesting to find a technique for
handling a weak, long-ranged part of the pair function in

addition to the strongly correlated part at short dis-
tances where the potential is strong.

The restriction to a small number of particles seriously
limits the range of validity of the calculation. It is
reasonable to expect good results provided that the
length L of the periodic cube is much larger than a cor-
relation length t'„ the distance over which the motions of
two particles are appreciably correlated. Since the im-
portant correlations in liquid He' occur over distances
of the order of the interparticle spacing, /, is much less
than I for the particle numbers we have considered.
However, there may be errors near the liquid-solid
phase transition and we have not attempted to estimate
the errors involved in the solid region. In the low-density
Bose gas the correlation length is much larger than the
interparticle spacing and we would not get good results
with a few particles. The statistical accuracy of the
Monte Carlo method is limited but it is sufficient for
the present purpose; the standard deviation of the
ground-state energy is 2%.
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