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Vortices in an Imperfect Bose Gas. I. The Condensate*
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A theoretical study of rectilinear vortices in an imperfect Bose gas shows a close correspondence with
classical hydrodynamics. The energy and momentum of a vortex pair in an unbounded fIuid are calculated.
The similarity between a vortex pair and a vortex ring leads to an estimate of the critical velocity v, of
liquid He II in a tube of radius R that includes the egect of the walls v, = CA/2mR, where {"is a constant of
order unity. A variational treatment of a system of many identical vortices in a container shows that the
energy is lowest for a uniform distribution, and that the number of vortices per unit area v agrees with Fey-
man's result 7 =2nuo/h. In the classical limit (h ~ 0), the angular momentum and energy approach the
values for solid-body rotation.

INTRODUCTION

'HE suggested existence of vortices with quantized
circulation' ' in liquid He II has stimulated both

experimentalists and theorists. Measurements of the
circulation have con6rmed the predicted values of
h/m. s 4 The initial theory of quantized circulation was
based on general arguments' and for this reason it was
unable to predict the detailed structure of the vortices.
The investigation of such structure in liquid He II is
dificult because the comparatively high density makes
perturbation theory unsuitable. A dilute Bose gas with
short-range r pulsive interactions provides a convenient
model, one that is known to have states with most of the
properties of a single classical vortex."

This paper investigates systems of rectilinear vortices,
using an imperfect Bose gas as a model for liquid He II.
In Sec. I, a brief review is given of a single vortex in an
unbounded Quid. The properties of two configurations
are studied in detail: the vortex pair' (Sec. II), and a
system of identical rectilinear vortices' (Sec. IH).

I. SINGLE VORTEX IN AN UNBOUNDED FLUID

The condensate of an imperfect Bose gas can be
characterized by a wave function P, whose normaliza-
tion yields the total number of condensed particles. ' "
In the low-density limit, P obeys a nonlinear field
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equation"

L(2m) 'AW'+lslg(r)= d'r' (sr —r')lt(r) ~P(r') ~', (1)

where e is the interparticle potential, p, is the chemical
potential, and m is the mass of one particle. Several
derivations of Eq. (1) have been given, leading to
essentially equivalent forms. ""The particular choice
here is appropriate in the context of many-particle
Green's functions" for a Bose system. "

The nonlinearity of (1) leads to many difliculties, and

exact solutions" are possible only for a short-range
repulsive potential (or pseudopotential)

s(r—r') = Vs3(r —r') .

With this simplifying assumption, the wave function is
constant for a uniform system and is expressible in
terms of elliptic functions for a one-dimensional 6nite
channel. '4" More general situations cannot be inte-

grated in terms of known functions.
It is possible, however, to show that for a large system

with a 6xed number of particles, the state of lowest

energy is a uniform distribution. In this calculation, the
effect of the boundaries may be neglected, for the follow-

ing reason. The wave function vanishes at the walls of
the container and reaches a Gnite value within a thin
boundary layer, whose structure is independent of the
remaining Quid. Hence the boundary layer contributes
equally to the energy in all configurations and cancels
when computing the difference between the energy of
two states. The expectation value of the energy is

E=(2m) 'h' d r~Vs'lt(r)~'+ —s, Us d'r~P(r)[ & (3)
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the Fourier transform is rso'~'(2n)'b(k), all the particles
are in the zero-momentum state.

" D(RECTlOW OF MOTION

FIG. 2. The geometry of the vortex pair, showing the direction of
motion and the sense of rotation.

vortices is situated on the x axis at a distance ~d from
the origin, the wave function will be taken as a product
of the wave functions for the separate vortices

g =n eo'"f(ri) f(r2), (21)

where the geometry is shown in Fig. 2, and the functions

f are those given in (14).The wave function (21) should
be a good approximation when the distance between the
vortices is large compared to the core size a, and the
interaction between the cores is negligible.

The velocity of the Quid can be calculated from the
definition

(22)

and for the wave function (21), this yields

v= —(A/m)Vs .
The solution of the differential equation

dx/s, =dy/e„

(23)

(24)

gives the stream lines, but it is simpler to observe that

II. THE VORTEX PAIR

In6nite Fluid

The simplest configuration of two rectilinear vortices
is a vortex pair, for which the circulation about each
one is equal in magnitude and opposite in sign. Although
bipolar coordinates are the natural choice for the vortex
pair, the equation for ilr cannot be separated in this
coordinate system. An exact solution requires dificult
numerical methods. Instead, we choose an approximate
wave function that leads to analytic expressions.

The classical theory of vortices is a linear one, and the
e8ects due to diRerent vortices can be found with the
superposition principle. The nonlinearity of the field
equation (9) is only apparent near the positions of the
vortices, where ls —Volibl' fails to vanish. Thus it is
reasonable to approximate the exact solution by the
solution for two independent vortices. If the pair of

FxG. 3.The stream
lines of the vortex
pair.

The stream lines are then the curves of constant O'. The
complex potential (25) is identical with that for a classi-
cal vortex pair situated at the points ~d with circula-
tion Wh/rrs. 's The stream lines (Fig. 3) form a system of
coaxal circles

(x—d cothli)'+y'= d' csch9. , (26)

where 'A is a constant. In particular, the x component of
velocity vanishes along the line @=0.

There is a close analogy between rectilinear vortices
and current filaments. " The velocity field (23) and
stream lines (26) correspond exactly to the lines of mag-
netic Geld between a pair of long parallel conductors
carrying opposite currents. The magnetostatic energy of
a single current filament diverges, as in (13).For a pair
of oppositely directed current filaments, however, the
total energy is finite" because of cancellation of the
magnetic Geld at large distances. The same result will
be found for a vortex pair, since the velocity Gelds
cancel at infinity

The analogy between vortices and current filaments
is not perfect, however, because the forces are quite
diferent in the two cases. Oppositely directed current
Glaments repel each other and move apart. In contrast,
the energy of a vortex pair decreases when the vortices
move toward each other, so that there is an attractive
force. Furthermore, a vortex behaves gyroscopically, in
that it moves perpendicular to an applied force. It is not
dificult to show that the vortex pair moves with con-
stant separation along the perpendicular bisector of the
line joining the centers. Thus for the system in Fig. 2,
the pair moves in the positive y direction.

There is a simpler explanation of the motion of a
system of vortices. A classical rectilinear vortex does
not contribute to its own motion; it moves with a
velocity due to the superposition of all the other vortices.
For example, each member of a vortex pair moves in the
same direction as the Quid midway between them, and

~7 A. Sommerfeld, j/Iechurlics of Deformable Bodies (Academic
Press Inc. , New York, 1950), p. 142.

"A. Sommerfeld, Mechanics of Deformable Bodies (Academic
Press Inc. , New York, 1950), p. 153, and E/ectrodynum~cs (Aca-
demic Press Inc., New York, 1952), pp. 178 and 198.

ky/ne is the classical velocity potential C. A short
calculation shows that C is the real part of the complex
potential

F(s)=@+i@=him —' inL(s+d)(s —d)
—']. (25)
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the configuration shows no tendency to collapse. "More
generally, a system of rectilinear vortices behaves in
many respects like a system of point masses, in which
the circulation corresponds to the mass (but can take
either sign). The "center of mass" and the "angular
momentum" of the system of vortices are constants of
the motion. ' In particular, the "center of mass" of the
vortex pair is at infinity, so that any tendency to de-
crease the separation is incompatible with the constants
of the motion.

An extension of the above discussion to quantum
vortices is extremely difficult. The center of the vortex
cannot be localized with arbitrary precision, and the
translational velocity ~& must be defined in terms of the
wave function. It is plausible to identify v& with the
group velocity, v&

——BE/BP. The velocity so calculated
from classical values of E and P agrees with the classical
translational velocity of a vortex pair and (with a small
logarithmic discrepancy) a vortex ring. We shall show
below that there is a close correspondence between the
quantum and classical values of momentum and energy,
and it is a plausible assumption that the quantum
vortices obey essentially the same dynamics as the
classical ones (at least if the vortices are widely sepa-
rated compared to the dimensions of the core).

Momentum is not a well-defined quantity in classical
hydrodynamics and is commonly replaced by the im-
pulse necessary to generate the actual motion from
rest."The impluse per unit length of a classical vortex
pair with circulation +~ is"

Pp ——2p~d. (27)

Here p is the density of the Quid, and 2d is the separation
of the two vortices. It is not difficult to compute the
momentum per unit length of the quantum vortex pair.
Using

P=
~ Ai d'r(Q*Vf (VP*)P—], (28)

we find from (21) that P, vanishes and that

P =2m —'hpd{1 —-'B '(1+8') '"
)(lnD1+B')' '+B]}, (29)

where B=d/u and p=nom. The quantity in curly
brackets is the ratio of the quantum and classical values;
it differs from unity only for 8&1.

In a similar way, the total number of particles X, the
kinetic energy T, and the potential energy V& (all per
unit length) can be calculated. The results are

1V=noA —2n.e u'lug+a'~n, B '(1+B2) '~' in)(1+6')'~'+B] (30)

h'ep~ & —4~' 1+68'+ 884

Vr 2iep'VpA———2~no'—Vpu'1n +~np'Vga'

1nL(1+IV)'~2+8]+14-48(1+8') i 1nt (1+v)'~2+8]
2m 168~(1+h') 2 1653(1+B2) '~2

(31)

where

2 1—128'—168'
1+ l L(1+8')'"+B]—L328'(1+B')'] 'L1 —188'—488'—328'], (32)

$(1+$2)1/2 64)2(1+$2)2

== PyB+L(~+6)2+ 1]i~2)P.—ByL(~—B)2+1]'~2) (33)

Here A is the area of the container, and the x integration is cutoff where necessary at ~Au. The kinetic energy of
a vortex pair is independent of the dimensions of the container as previously noted.

The potential energy V associated with the vortex pair is the difference between the total potential energy
and the energy of S particles uniformly distributed. The calculation is similar to that for a single vortex, and we find

V= Up ——,'VpE'3 '

=~a'np' Vp
B(1+9)'~'

lnL(1+P)'~'+B] 1—128'—168'
14

32B2(1+P)'
—P2h'(1+ P)'] '$1—188'—485'—328'] (34)

The total energy per unit length of the quantum vortex of the size of the container as the area A of the system
pair is T+ V, the sum of (31)and (34). It is independent becomes inhnite.

The energy of a classical vortex pair is wholly kinetic
"See H. Lamb, FIydrodynamics (Dover Publications, Inc. ,

New York, 1945}, 6th ed. , p. 222 for a discussion of certain
paradoxical aspects of the motion of a vortex pair and vortex
ring.

~ A. Sommerfeld, 3fechanics of Deformable Bodies (Academic
Press Inc. , New York, 1950), pp. 157—160.

"C. C. Lin, Proceedings of the International School of Physics
"Enrico Fermi, " edited by G. Careri (Academic Press Inc. ,
New York, 1963), Course XXI, Liquid Helium, p. 93.

~H. Lamb, FJydrodynamics (Dover Publications, Inc. , New
York, 1945), 6th ed. , p. 229.
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and diverges logarithmically unless special assumptions
are made about the core. If each vortex has a hollow
core of radius a, the total energy is"

Ts—(2s)—'ps' ln(2&+1) . (35)

In the limit of large 8, the quantum kinetic energy (31)
simplifies greatly:

2'~( x) '(h/~)'pD ( &)+H ( )

For circulation lr=h/m, (35) and (36) are very similar.
In this limit, the quantum potential energy (34) reduces
to a constant

V —+ rra'e 'V = (8s.) '(7r/rid)'p. (37)

The equality of (37) and the constant term in (36) is
suggestive of a zero-point energy, in analogy with the
harmonic oscillator.

Figure 4 shows the quantum kinetic energy (31), the
quantum potential energy (34), and the classical kinetic
energy (35) as functions of the separation 8 of the
vortices. The potential energy U is small, and the kinetic
energy T is close to the classical value To for all b. One
important di6erence is that both T and V are finite for
for small 8, in contrast to To. This reflects the quantum
e6ect of the core: The curvature of the wave function
leads to additional kinetic energy, and the decrease in

density requires work against the repulsive interaction
potential.

Finite Channels

In classical hydrodynamics, the image of a single
vortex in a plane is a second vortex with opposite
circulation. The image guarantees the correct boundary
condition of vanishing normal component of velocity.
A single vortex parallel to a wall is therefore equivalent
to a vortex pair. An alternative point of view is that an
infinite plane may be inserted along the perpendicular
bisector of the line joining the centers of the pair with
no change in the flow pattern.

The method of images fails in the quantum fluid for
two reasons: (1) The equation is nonlinear so that the
,superposition principle fails. (2) The boundary condition
requires that the wave function vanish at a rigid wall. "
In principle, for a vortex near a wall, the field equation

(9) must be solved for x~0, subject to the condition
that p vanish at x=0 and that II behave like Eq. (10)
near the position of the vortex. In the absence of a
vortex, the solution of (9) for an infinite half-space is'4 "

P(x) =ms' ' tanh(x/a&2) . (38)

The effect of a plane boundary vanishes exponentially
in the interior of the fluid, in contrast to the effect of a
vortex, where ass —~II ~' vanishes only quadratically far
from the axis.

"J.C. Fineman and C. E. Chase, Phys. Rev. 129, 1 (1963).
'4 The importance of the boundary condition has been empha-

sized by Gross, Ref. 13.
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FIG. 4. The energy of the vortex pair, measured in units of
(pg'/2m), as a function of the separation of the vortices. T and V
are the quantum kinetic and potential energies, and T0 is the
classical kinetic energy.

An obvious approximation to the exact wave function

for a vortex near a wall is a product of (21) and (38).
For this wave function, however, the energy cannot be
found in terms of tabulated functions. (If a computer
were used at all, an exact solution would be preferable
to an evaluation with approximate wave functions. )
Hence the results for a vortex pair (31) and (34) will be
used in a qualitative description of a vortex near a
plane boundary.

The more interesting problem is a large vortex ring of
radius ro, which is essentially equivalent to a rectilinear

vortex of length 2xro. When the ring is enclosed in a
coaxial cylinder of radius R (R) r&), the corresponding
two-dimensional configuration is a vortex at a distance
R—ro from the wall. In several theories, ""such a
vortex ring accounts for the critical velocity of liquid

He II. According to Landau's criterion for superfluid

low, "the critical velocity v, is the minimum value of
the ratio E/P for all the elementary excitations in the
fluid. If only phonons and rotons are included, the pre-
dicted value of v, is far too large, but with the inclusion

of large vortex rings, it has been possible to get rather

good agreement with experiment. ""
This approach has been criticized for failing to include

the effect of the boundary. "A proper classical treat-
ment of the images shows that v. is sensitive to the
assumed core structure. For a hollow core, the theoreti-
cal v. vanishes, "and for a core with uniform vorticity,
the theoretical v. is an order of magnitude smaller than
the experimental values. "The dependence on the core is
an unsatisfactory feature of the classical calculation. A

"B.T. Geilikman, Zh. Eksperim. i Teor. Fiz. 37, 891 (1959)
)Enghsh transl. : Soviet Phys. —JKTP 10, 635 (1960)), and W.
F. Vinen, I'rogress iN Low Temperature Physics, edited by C. J.
Gorter (North-Holland Publishing Company, Amsterdam, 1961),
Vol. III, p. 38."E.S. Raja Gopal, Ann. Phys. (N. Y.) 25, 196 (1963).

» L. I.andau, J. Phys. (USSR) 5, 71 (1941).
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quantum vortex has a de6nite structure, and no special
Rssunlptlons Rlc needed.

The critical velocity will now be estimated with the
wave function for the vortex pair. Such a calculation is
rather crude, but it does predict a qualitatively correct
dependence on the radius of the tube. The energy per
unit length of a single vortex near a mall is given by
one-half the sum of (31) and (34), the kinetic and po-
tential energy of the vortex pair. When the vortex
approaches the wall (rs —+ R), the energy becomes

-', (&+V) —+ -', C(h'ns7r/m), (39)

where C is a constant of order unity. The detailed ex-
pressions (31) and (34) for 2' and V yield the result
C= 11/12. The circumference of the ring is 2rrR, so that
the total energy Eg of the ring is

Eg Ch' sly—'—R/m.

In the classical treatment, the impulse of a vortex ring
is unchanged by the presence of the containter. "This
ls RssuIQcd to lcIQRln tlUc foI' thc quantum voI'tcx ling,
so that

apart from quantum corrections of order (a/R). The
ratio of (40) to (41), which is in fact the minimum value
of E/I yields

s,=C(h/2mR) . (42)

For a tube of radius 8=10 ' cm, the critical velocity
calculated from (42) (for C=1) is =0.08 cm/sec,
roughly an order of magnitude smaller than the experi-
mental value of =1 cm/sec. " The observed critical
velocity is approximately proportional to R ', in agree-
ment with (42).

Thc calculation of the critical velocity assumes that
the vortices act independently. Although this is valid
when the vortices are far apart, it certainly fails for a
vortex near a wall, particularly since iP must vanish at
the boundary. A numerical solution of the 6eld equation
should be possible with relaxation methods, "which are
especially useful in two-dimensional problems. The non-
linearity poses no essential difhculty, but the complex
nature of f requires the solution of coupled equations
for the real and imaginary parts. Two con6gurations
are particularly interesting: a rectilinear vortex near a
plane boundary, and a vortex ring of small radius. Both
thcsc stI'Uctul cs RI'c two-dimensional Rnd lnvolvc thc
quRntuIQ coI'lcctlons to thc slIQplc pI'oduct wRvc fUQC-

tion. The rectilinear vortex near a plane is important in
a calculation of s, ; the boundary condition on P is
expected to keep the vortex a finite distance from the
wall. The energy of a vortex ring almost certainly has a
minimum at a 6nite radius. Such a small vortex ring
forms a model of a roton. The ring diHers from the
vortex pair because of the curvature of the axis of the

"R. V. Southvrell, AelaxaIioe 31ethods im Theoretica/ Physics
(Oxford University Press, New York, 1946l.

vortex. A good initial trial function can shorten the
relaxation procedure considerably. For both of the above
cases, an approximate product wave function would be
a suitable choice.

In the calculation of v„ it should be remembered that,
out of necessity, all but the 6rst term in the low-density
expansion for f has been neglected. Any attempt to
equate this model with liquid He II underestimates the
interaction energy, and therefore the critical velocity. A
more realistic calculation, taking into account the 6nite
compressibility of the Quid, should yield the correct
order of magnitude for e,.

4(r)=«'"ll g, (44)

a =exp(ss )f( )—=exp(se )p,(u'+o') '" (45)
'9H. K. Hall and W. F. Vinen, Proc. Roy. Soc. (London)

A238, 204 and 215 (1956), and G. Careri, Q'. D. Mccormick and
F. Scaramuzzi, Phys. Letters I, 61 (1962).

~ $qq I.in, Ref. 21, for an opposing vt'cw,

III. SYSTEM OF MANY VORTICES

Rotating liquid He II is generally assumed to form
an array of rectilinear vortices. ' ""With an imperfect
Bose gas as a model Quid, we calculate the energy of a
system of vortices as a function of their positions. The
actual distribution is that which minimizes the energy,
subject to the constraint of fixed angular momentum.
The force between vortices of like circulation is repul-
sive, so that the distribution is uniform, but random,
in contrast to the lattice structure of Qux vortices in
type-II superconductors.

In the limit of many vortices, the Quid becomes a
continuum with uniformly distributed vorticity, and
thc lQtcI'Rctlon cncI'gy of thc voI'tlccs ls cqUlvRlcnt to thc
rotational energy of the Quid. In this calculation it is
necessary to include the CGccts of the image vortices
due to the presence of the boundaries. Without the
images, the energy of a circular cluster of vortices is
proportional to E' lnR, where E is the radius of the
cluster. At large distances from the cluster, this con-
6guration is indistinguishable from a single vortex, and
the factor lnR is the same as that in the energy of a
single vortex, Eq. (13). The images cancel the R' lnR
term, leaving an energy proportional to E.', which is, of
course, the correct dependence of the moment of inertia
of a circular cylinder about its axis.

The system considered here consists of K vortices
with circulation x=h/m at the positions r;=(r;,8~).
Figure 5 illustrates the geometry, where

(43)

and p; is the angle measured about the point r;. It is
consistent to assume that the vortices are far apart,
because the energy increases whenever two vortices
approach within a distance u (12) of each other. Hence
the quantum corrections are negligible and R simple
product wave function is a reasonable choice for it



BOSE GAS. I. CON DENSATE

Pro. 5. The geometry of a
vortex situated at r;.

The Product in (44) is taken over all vortices from 1 to
m. Far from~any vortex lp I

=npiyp and. near the jth
vortex, P(r) =np'" exP(iy, )f(lp, ).

It is straightforward to calculate the observables of
the system with the wave function (44). The total
number of particles g per unit length is the simplest

&=np II lg I'=no II f'

1V=npprR' —Q npg' (p'+u') —'+ (4g)

The integral in (48) is not diKcult; the result is

(p'+a') '=Ã1n{(2a') '[Xy( X'+a4'r')'"]) (49)

(50)

The second term of (48) is a correction of order (e/R)',
and it is permissible to set a=0 in (49) whenever
possible. Kith this simpli6cation, the total number of
particles is

X=R'—rP+a'.

X=npprR'{1 (a/R)' P; in[—(R'—rP)/a']+ ) . (51)

In the step from (49) to (51), we have assumed that
E'—r &)u', which is equivalent to neglecting edge
effects. The terms omitted in (51) are at least of order
(a/R) 4 in(R/a).

The kinetic and potential energy per unit length are
given by

T= —(4m) 'n, h' [g;g;*V'g, g;

+(~ n;g;*)n, g,], (52)

Vr=p«'Vp II~Ig~l'

~here the integral is evaluated over a large circle of
radius R. The integrand can be expanded as follows:

rr;f, =rr; [1-"(;+")-]
=1 Zo( p+—~') '+ " (4&)

and the total number becomes

The summation is over i and j separately, omitting the
terms i= j. In (54), the limit a —+ 0 has been taken in

the argument of the logarithm. The energy increa, ses

whenever Ir;—r;I becomes small; the energy is lowest

when the vortices are relatively far apart.
The Hamiltonian remains a constant of the motion in

a rotating system. Its value is E—col., where I. is the
total angular momentum and cv is the angular velocity.
Hence the quantity (E coI.) m—ust be varied with re-

spect to the positions of the separate vortices. An

equivalent point of view is that Ii must be varied, sub-

ject to the constraint of 6xed angular momentum. Then
E—)L is minimized, where the Lagrange multiplier ) is

identified with co in the course of the calculation. In
either approach, the total angular momentum must be
found from

npk 8
n, g;*—rr;g;-I —rr'g'* Irr g ' (55)

2i 88 (88

the dominant term is

I =~nph P.(R'—rP),

where corrections of order (u/R)' are neglected.
It 1s not strictly correct to compute the varlatlon of

E—(ol-, which does not 6x the number of particles;
instead the normalized quantity S '(E—ppL) should be
considered. The total number (51) contains the factor
1+0(a'X/R'), while the energy (54) contains the factor
1+8(a'R'/R'). The number of vortices K is large, even
for slow rotations, so that E—coL and X '(E—Ml) differ

only by a correction of order X '. (For a rotation of
1 rpm, there are approximately 200 vortices per cm'. )
The neglect of this correction omits self-energy eftects
that vanish in the limit of a classical continuum. This
is discussed in detail below, after the distribution of
vortices has been found.

The quantity 7=8—~I. is stationary with respect to
the position of the vortices if

8J/88;= 87/8r;=0 (57)

for every i= j. ~ X.The derivative with respect to 0; is

xmoA,

88; m

R'r;r; sin(8; —8,)
R' —2R'r;r; cos(8,—8;)+rg'rP

2r r; sin(8; —8;)
(58)

rP 2r,r, cos(8; 8)+r'——

where the prime means omit the term j=i. The total
number of vortices is large, a,nd it is convenient to

A calculation similar to that for S (but longer) yields

E=T+Vr
=-',np'VpmR'+-', np'Vpma' Q;,' in{ Ir;—r;I '

X[R —2R r,r;cos(8;—8;)+r," ]). (54)
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replace the summation in (58) by an integration over
a vortex density v(r, 8), which is the number of vortices
per unit area centered at r. Equation (58) can be re-
written as

8J mepk'

5$ p

r'dr' d8'v(r', 8')

)&sin(8 —8') YLr,r', cos(8—8')]. (59)

2(r r' cos8')—
d8'

The function F' is an even function of (8—8'), and (59)
can vanish only if v(8') is also an even function of
(8—8'). But 8 is arbitrary, so that v(8') must be inde-
pendent of 0'.

The problem is thus reduced to 6nding the radial
distribution of vortices that minimizes J. When BJ/Br;
is calculated, and the sum replaced by an integral,
we 6nd

arises because the vortices are uniformly distributed
instead of concentrated at the center of the vessel.

A consideration of the interaction energy of this
system of vortices will clarify the relation between the
above quantum calculation and a classical one. The
energy E, associated with the system of vortices is the
ditference between the total energy (54) and the energy
of X particles uniformly distributed with no angular
momentum. The steps are identical with those for a
single vortex, and the result is

E„=(2m)-'e ~h'{—Q; ' ln~r; —r;~'
+—,

' P,,' inLR' —2R'r,~; cos(8 8)+—rgb]
+Pg 1nL(R' —rP)/a']} (66)

where the relation c,'= h'/2mNOVO has been used. Lin"
has treated a system of classical rectilinear vortices in
the presence of arbitrary boundaries and reduces the
problem to that of ending a certain Green's function. In
the interior of a simply connected region, the Green's
function must vanish at the outer boundary, and for a
circular cylinder of radius R, the required solution is

2+G(r,r') = ln ) r—r'
~

—ln
~

(rr'/R) —(r'R/r')
~

. (67)
r' 2rr' cos8'+—r"

r'(rr' R' cos8')—
R4 2R'rr' c—os8'+r'r"

Both angular integrals are of the same form,

d8(b ccos8)(b' —2—bc cos8+c') '

(60)

This is symmetric in r and r, and vanishes for r =R. It
is easy to find the energy of the system of vortices from
G;" if the vortices are placed at positions r; with circula-
tion ~ about each one, the interaction energy is

E = (p~'/8x) {—Q; ' ln
~
r;—r,

~

'
+P ' in'' —2r w; cos(8; 8;)+r—Pr R ']

+2 P; in'(R' —r')/R]}. (68)

(62)

whose solution is found by differentiating each side with
respect to r. It follows immediately that

v =2nuu/h(= const); (63)

this is Feynman's original value. '
With the constant vortex density (63), the total

angular momentum per unit length can be found
from (56),

L= ~~REpm' =—,'MR'(o (64)

where M=~R'npm is the total mass per unit length.
This is just the value associated with the rigid rotation
of the fluid. The angular momentum per particle is

=27rb 'r)(b c), (6—1)—
where g is the step-function, 2g(x) =1+~x~/x. The last
term of (60) is zero because R' is always greater than rr'.
The vanishing of (60) yields an integral equation for v(r').

The 6rst term represents the energy of the vortices in
the absence of the boundaries, ""while the second and
third terms represent the effect of the images. In
particular, the last term is a self-energy that is present
even for a single vortex in a cylinder.

When the quantized circulation ~ =b/m is substituted
in (68), we see that the energies of the system of
quantum and classical vortices differ only in the last
two terms. Although no direct provision was made for
the images in the wave function (44), the energy (66)
includes at least part of this eftect automatically.

The limit (x=h/m —& 0) of a classical continuum is
particularly interesting. The number of vortices per
unit area v becomes infinite, in such a way that ~v= f
remains constant. Stokes's theorem shows that f' is the
vorticity, defined by f=

~
V & v~. For a system in uni-

form rotation, the vorticity is f =2~. If the sums in
(66) and (68) are replaced by integrals, the self-energy
terms vanish linearly with ~. The angular integral can
be evaluated by integrating (61) from 0 to b; the radial
integrals are then simple. For both (66) and (68), the
first term yields an energy proportional to R4 lnR. This

L/1V= -', Xh, (65)

apart from corrections of order (a/R)'. The factor —',

"C. C. Lin, Proc. Natl. Acad. Sci. U. S. 27, 570 and 575 (1941)."L.Onsager, Nuovo Cimento 6, Suppl. 2, 279 (1949).
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E = -'Or'pXE4= -'ICO', (69)

where I is the moment of inertia of a cylinder about its
axis, I=~3fE

In general, vortices in an imperfect Bose gas exhibit
properties similar to those of classical vortices. Here we

have investigated the relation in detail for a vortex pair

behavior is exactly cancelled by the second term, which

represents the image vortices. The final result for the
interaction energy is

and for a system of many identical vortices. Experi-
mental studies' 4 "of liquid He II have been analyzed
in terms of classical hydrodynamics; the present work
justifies such treatment as long as the distance between
vortices is large compared to the dimension of the core.
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We have measured the surface tension of liquid He down to 0.35', using the capillary-rise method. The
results are consistent with the theory that this temperature variation is mainly due to the excitation of sur-
face modes similar to capillary waves. However, the results do not exclude an alternative theory, due to
Singh, which considers the e6ect of the surface on the wave functions of an ideal degenerate Bose-Einstein
gas. At the ), point, we observed a discontinuity (or at least a very rapid variation) of the erst derivative
with respect to temperature.

1. INTRODUCTION

'HE surface tension of a liquid is a measure of the
free energy associated with unit area of its sur-

face. One of us has suggested' that, in the particular
case of liquid helium, an important contribution to this

surface free energy comes from surface modes of vibra-
tion. An exact quantum-mechanical treatment of these
surface modes would be dificult, but a simple approach
is to assume that they are similar to macroscopic
capillary waves which have a frequency-dependent
velocity given by the equation

c= (2s.o v/p)'"

where 0. is the surface tension, p the density of the liquid,
and v the frequency of the wave. The assumption that
Eq. (1) describes surface modes of all frequencies with

a constant value of a is analogous to the assumption in

the Debye theory of the specihc heats of solids that the
modes of vibration of a solid lattice are sound waves and
that there is no dispersion. As in the Debye theory, it is
reasonable to assume that the highest frequency mode

has a wavelength comparable with the average distance
between neighboring atoms. This gives a cutoff fre-

f Supported by grants from the National Science Foundation
and the Research Corporation. This report is based on a thesis
submitted to the University of Pennsylvania in partial fulfillment
of the requirements for the degree of Doctor of Philosophy."Present address: Institute for the Study of Metals, University
of Chicago, Chicago, Illinois.

' K. R. Atkins, Can. J. Phys. 31, 1165 (1953).

quency v.=&.5X1.0" sec ' and a characteristic tem-
perature 8,=hv, /k= 7'K.

The zero-point energy of the surface modes is then
found to represent about 60% of the total measured
surface tension, emphasizing the importance of these
modes. At temperatures small compared with the
characteristic temperature (T«8,), the extra energy
per unit area excited in the surface modes is

U = 2.07 (p/o )s"h (k/h) 'I'T'I'.

The corresponding free energy is

U—TS= —4U (3)
= —1.55(p/o) ~ h(k/h) ~ T'I'. (4)

Assuming that this is the only factor influencing the
variation of surface tension with temperature, the
surface tension o at a temperature T(«g, ) is related to
the surface tension 0-0 at O'K by

o.=os—1.55(p/o, )' h(k/h) T I

Equation (5) is in approximate agreement with
previous measurements of the surface tension. '~ How-
ever, all these measurements were made above 1'K and
cannot be unambiguously extrapolated to O'K to obtain

'A. T. van Urk, W. H. Keesom, and H. Kamerlingh Onnes,
Proc. Roy, Akad. (Amsterdam) 28, 58 (1925).' J. F. Allen and A. D. Misener, Proc. Cambridge Phil. Soc. 34,
299 (1938).

4 K. N. Zinoveva, Zh. Eksperim. i Teor. Fiz. 29, 899 (1955)
LEnglish trsnsl. : Soviet Phys. —JETP 2, 774 (1956)j.


