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Electron Energy Gays in a One-Dimensional Liquid
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Institute for the Study of Metals, The University of Chicago, Chicago, I/linois
(Received 20 November 1964)

The method of Faulkner and Korringa is applied to a one-dimensional liquid in which the atomic po-
tentials are 8 functions and the distances between neighboring atoms satisfy a Gaussian distribution. It is
shown that an energy gap exists if 0, the standard deviation in the Gaussian distribution, is small enough.
The behavior of the energy gaps as 0. is varied agrees very well with the numerical results of Makinson and
Roberts.

I. INTRODUCTION
' 'T is well known that a periodic crystal has an elec-
t - tronic band structure, which is usually considered to
be associated with the long-range order of the crystalline
Geld. What is the electronic energy level structure in a
liquid in which long-range order is completely lost and
only short-range order exists? Does an energy gap persist
in a liquid? To answer such questions will be one of the
most important tasks of the electronic theory of liquid
metals. '

It seems very dificult to give a precise answer to the
above questions in real three-dimensional liquids. The
corresponding one-dimensional problem is, however,
much more tractable. A rigorous demonstration now
exists that an energy gap will occur in the one-dimen-
sional liquid. ' ' In this paper, special attention will be
paid to the behavior of the energy gap as the amount of
disorder in the one-dimensional liquid is changed. It will
also be shown that an energy gap can exist even if the
condition assumed by Borland and Roberts and Makin-
son is not satisfied.

The one-dimensional liquid has been studied by
several authors. ' "Solving the Schrodinger equation by
perturbation theory, Gubanov4 has concluded that the
band structure persists, but with the following diGer-
ences: All the energy levels are raised as the amount of
disorder is increased; the bottoms of the allowed bands
rise by less than the tops, so that the energy gaps shrink.
Objecting to Gubanov's treatment, Eisenshitz and Dean'
and Sah and Eisenshitz~ have approached the problem
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using entirely different methods but have failed to
obtain any definite answer to the question of the exist-
ence or otherwise of energy gaps. A purely numerical
study of the problem was made first by Landauer and
Helland' and later and more extensively by Makinson
and Roberts. Makinson and Roberts have shown that
energy gaps exist wh, en the amount of disorder is not
too large, and also that they shrink as it is increased.
These facts agree with Gubanov's conclusion. How-
ever, in one important respect there is disagreement.
YVhen the amount of disorder is increased, the tops of
the allowed bands rise but the bottoms fall, contrary
to Gubanov's conclusion. Gubanov" has questioned
Makinson and Roberts' calculations on the grounds that
the calculations refer to a finite system (2000 atoms).
However, the authors have repeated the calculations for
a system of 50 000 atoms and have found no systematic
differences with the older results. ' Edwards" applied the
Green's-function method to the problem and reached
the conclusion that the energy gap is immediately
destroyed upon the slightest disordering of the system.
A rigorous proof of Borland' and Roberts and Makin-
son' shows that Edwards' conclusion is completely
erroneous. Electron wave functions in the one-dimen-
sional liquid have been investigated by Roberts and
Makinson' and by Borland. "

The one-dimensional liquid is frequently treated by
the node-counting method, which was first applied to
disordered alloys and impurity semiconductors by James
and Ginzbarg. "This method appears to be particularly
suitable for purely numerical calculations' ' or for the
discussion of the general properties of the system. ' ' The
Green s function method is the most promising analyti-
cal tool since it may be applied to real three-dimensional
liquids as well as to one-dimensional liquids. As seen in
the case of the work of Edwards, " however, mathe-
matical approximations inevitably introduced in de-
veloping the method are apt to lead to completely wrong
conclusions. Beeby and Edwards' have recently pro-
posed an improved approximation which leads to the
existence of an energy gap in the one-dimensional case.
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Matsuda" has introduced a new method for finding the
one-dimensional Green function. He has concluded that
long-range order in the system is not essential in pro-
ducing the energy gaps, contrary to Edwards' conclu-
sion. The method to be used in this paper is entirely
different from those mentioned above. This method was
originally put forward by Faulkner and Korringa" to
treat one-dimensional random allows. The method gives
an asymptotic expression for the density of states in the
limit as the length of the system approaches infinity,
and does not rely on any perturbation theory. Recently
Faulkner'~ has applied the method to a one-dimensional
crystal with random atomic positions. Although the
method has not been fully justified at the present time,
we hope that the nature of the method will be clarified
in the near future.

where
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(2.5)

Qg =Sg+g—Xg. (2.6)

(2.7)detT(N, )= 1.

Relation (2.4) leads to

It should be noted that the matrix T(N, ) is unimodular,
namely,

2. MODEL AND ASSUMPTION where
(B i EB&

(2.8)

The one-electron model and the adiabatic approxima-
tion will always be adopted herein. I,et us consider a
chain of identical atoms whose positons are xo& x~&
&xN. The atomic potential is chosen to be —()Ih,'/m(i)

Xg; i)(x—x,), where x denotes the position of an elec-
tron. This model reduces to the Kronig-Penney model
if the atoms have equal spacing a. In our case, a will
denote the mean value of the spacing.

We shall investigate the solutions of the one-electron
Schrodinger equation

2X ~
iP"(x)+ k'+—Q 5(x—x;) P(x)=0,

g j'=0

g, ,(x) Aeik(x xj)+B, ,e—i—k(x'—xg) (2 2)

The connection conditions on It and f' are expressed,
in terms of f;, as

4i(Xi+I) =Pi+I(Xi+I),

6'(x+I) =It)+I'(xj+I)+(»/~)~I +I(x+I),
(2 3)

where the electron energy E= k'k'/2m. Periodic bound-
ary conditions will be chosen; Let f,(x) be the solution
in the interval x;&x&x,~I. The form of It; is in general
written as

TN= T(NN I)T(NN 0) ' ' T(piI)T(gp) . (2.9)

On the other hand, the periodic boundary conditions
require that AN+BN Ap+Bp ——and AN BN Ap B—p.

—— —
It is easy to see that these requirements lead to non-
trivial solutions if and only if the matrix T& satisfies
the following condition:

tr TN=2. (2.10)

This equation determines the eigenvalues of the
Schrodinger equation with the periodic boundary con-
ditions. It should be noted that (2.10) is a rigorous
statement of the periodic boundary conditions as long
as the positions of the atoms are fixed.

The positions of the atoms have been fixed in all our
preceding argument. As a model of the liquid we shall
adopt that proposed by Gubanov4: Each spacing I, is a
random variable with mean value u and standard devia-
tion 0. Gubanov has shown that, in such a model,
regularity in the arrangement of the atoms is destroyed
in a distance of the order of u'/O'. In other words, long-
range order is lost. A slight modification of Gubanov's
model is necessary for our case. The positions of two
atoms at both ends must be kept fixed, because the
boundary conditions play an essential role in our
analysis. In summary, our model of the liquid is as
follows: I;—=x;+I—x;, (j=0, 1, 2, , X—1) are random
variables which are independent of each other but
always satisfy the relation

and, in turn, from (2.3) the following matrix relation
between (A;,B;) and (A;+I,B;+I) is derived: 00+fii+ ' ' +IIN I=XN X0—(2.11)

All n, s obey the same probability distribution, which
will be denoted by s(N;), and the mean value of I; is u.

(2 4) Let Z(k) be the characteristic function defined by the
relation

"H. Matsuda, Progr. Theoret. Phys. (Kyoto) 27, 811 (1962)."J.S. Faulkner and J. Korringa, Phys. Rev. 122, 390 (1961)."J.S. Faulkner, Phys. Rev. 139, A124 (1964).
du s(u) e*k" (2.12)
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Then the ensemble average of the matrix T~ is written as

(Tir) —=
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dip' ' '
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dgp O ~ ~ du& i exp{ir(uo+ ' ' '+uu i—Xa) }s(go) ' ' ' s(uir i)

dr due" "~'(sg)-T(g)
2mEN

(2.13)

where

dry '"Z(r) ]—"
Expression (2.13) is now written, with the aid of

(2.14
(2.5), (2.14), (2.16), and (2.17), as

Our fundamental assumption is that the energy levels
of the liquid model under consideration are determined

by the condition

(T~)= I

E 2»

Eo'
dr exp — (r'+k')

2

&
—ika+a& rk

ika
(trTN) = tr(Tir) =2. (2.15)

Xo justification of this assumption will be attempted in
this paper. An equivalent assumption has been made by
Faulkner and Korringa'6 and Faulkner'~ in determining
the energy levels of one-dimensional crystals. It is
easily shown that trace T& is equal to the trace of the
"transmission" matrix upon which the method of
Faulkner and Korringa is based.

The probability distribution will be chosen to be a
Gaussian distribution

so that the characteristic function is of the form

laika-o& rk

ika
)e

~ks+ao rk

ikai

and
tanP=X/ka, ~P) (s/2 (2.18)

(2.19)

Without loss of generality, k is assumed to be positive.
Changing the integration variable from 7- to s=o-'k7. ,
we get the following expression for trace (Tir):

tr(Tir) =LX/(2». o)ji~'e

The expression for trace (T&) is formally simplified by
introducing two eigenvalues, pj and pg, of the matrix
appearing in the above expression. For convenience we
shall define the parameters P and o by

Z(k) =exp{ika —-'o'k'} . (2.17)

Strictly speaking, the probability distribution s(u)
should vanish when I&0. However, if the value of 0 is
suKciently small —and we are interested in such cases-
it is to be expected that the use of (2.16) will not cause
appreciable error. From a diferent point of view, (2.17)
may be considered to be an approximation to the charac-
teristic function of some probability distribution that
vanishes when I&0.

X d» e *' '{ui (s)+pP(s)}, (2.20)

where the eigenvalues, p~ and p,2, are two roots of the
equation

yo 2u cos(ka+P+is)/c—osP+1 =0. (2.21)

Equation (2.21) de6nes a two-valued function g(s) so

that p~ and p2 are considered to be two branches of
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p(s). Therefore, (2.20) is rewritten in the form

tr(Ta )=LX/(2m e)]'" de+ ds

yexp ~ ————+in'(z) (2.22) Flo. I. GraPhieal
representation of Eq.
(3.14).

where Je, ds and Je, ds denote the integrals along two
real axes of the Riemann plane, respectively. The func-
tion 11(s) is a two-valued function defined by

p(s) = fcos(ku+p+is)
+Lsin'P —sin'(ku+P+ is)]'"}/cosP. (2.23)

nm. —2p(ka &na. , (3.1)

where e is a positive integer. It is easily verified that the
range (3.1) corresponds to a forbidden band or an energy
gap for the Kronig-Penney model with spacing a and
with positive X. I et us define ~ by the relation

Then (3.1) gives
(3 2)

(3.3)

Ke shall assume that

e(sinp. (3.4)

As will be shown later, (3.4) is a necessary condition
for the existence of the energy gap.

Expression (2.22) for trace (T~) is now rewritten, by
changing the integration variable from s to t =s jg, as—

tr(TN) =
l 1V/(2s e)]'"

where Je, dl' and Je, df denote the integrals whose
paths are parallel with the real axes and belong to the
diferent Riemann sheets, respectively. The function

3. ASYMPTOTIC EVALUATION OF tr(T@)

An asymptotic expression for tr(T~) in the limit as
37 ~oo can be found by using the saddle-point method
of integration. Since we are interested in the energy
gaps, the values of ku will be limited within a range

1I+a = ef(rj), — (3.10)
whel e

f(1I)=Sln77/Lsln(p —1I) Sln(p+1I)]1~2. (3.11)

The square root in (3.11)is (as usual) positive. Equation
(3.10) has one and only one solution in the range that
—P&1I&P. The solution will be denoted by gl. The
integration path will be chosen in such a way that it
passes through t =i'll It is e.asy to show that
RcF($+iql) is always smaller than RCF(i') unless
(=0. Therefore, the integral can be asymptotically
replaced by an integral near the saddle point f=ili&
Then we have"

F(f) ls defined by

F(t) =ke—(1'—+i~)'/(2e)
+ L(—)"( o ( l)+(—)"L (f)]'"}/ o P], ( . )

where
w(l') = sin(P+il ) sin(P —il ) . (3.'7)

Tlm saddle polllts of F(t ) al'e folllld from tile equation

dF/d f= (f+—i—a)/e i( —)"si—n(it )/t w(t )]'~'=0. (3.8)

%e shall put
(3.9)

where t and 1I are real variables. When —P(g&P, the
values of Lw(i')]'" are real so that Eq. (3.8) has solu-
tions on the imaginary axes. %e shall seek such solu-
tions. Two Riemann sheets will be distinguished by the
sign of (—)"Ret w(|.)

%'e shall first consider the Riemann sheet where the
sign of (—)"RCLw(t )]'"is negative. On the imaginary
axis Eq. (3.8) takes the form

exp
LelF"(i~1)I]'"

(lil+a)' 2 coslil —(sin'P —sin'F1)'~' (1—(—)"}q——ln +its
cosp 2

(3.12)

"See, for example, N. G. De3ruijn, Asyygptogc Mgrhods ig Awglysig (North-Holland Publishing Company, Amsterdam, 1958),
Chap. 5.
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It can be proved that the real part of F(igi) is negative. Therefore,

lim [1V/(2n. e)]'~' dfe ~iri=0
N ~oa

(3.13)

Thus, there is no contribution from the integral in the Riemann sheet under consideration,
We next consider the Riemann sheet where the sign of (—) Re[a(i)]' ' is positive. Saddle points on the

imaginary axis are found from the equation

il+~= ef(g) . (3.14)

A graphical representation of (3.14) is shown in Fig. 1. As is seen from the figure, there are three solutions when
1~1&~ . The value of x is defined by the relation

i~„=g - sf(g ), (3.15)

where the positive quantity g is determined by the equation

ef'(g~) —= e sin'P cosit~/(sin'P —sin'il )' '= 1. (3.16)

It is to be noted that condition (3.4) allows the existence of z and g . The three solutions will be referred to as
g2', g~, and g2" in order of their magnitude. The points, ig2' and ig2", cannot be chosen as a saddle point for the
present purpose, because they give the minima of ReFO) along the paths parallel with the real axis. The point ip&
is the saddle point that we seek. It can be verified that ReF($+iqm) is always smaller than ReF(ig2) unless )=0.
Therefore, we have

pT/(2s p)]i~2 dt's»ir& 1/[&IF"(z&2)1]»2s»ii»i

— exp
C~ I

F"(~n2) 17'" cosP

(g2+ii)' 2 cosg2+(sin'P —sin'g2)'" (1—(—)"}-
—1+ +- ln +iJVm.

2
(3.17)

The real part of F(i'm) is easily proved to be positive so that the above expression leads to the result

lim [1V/(2m')]'~' die~~ir& = ~ for 1~1&a„.
C2

(3.18)

When i~ &1~1&P, Eq. (3.14) still has one real solution. It cannot, however, be chosen as a saddle point for the
reasons cited when discussing g2' and g2". We should seek complex solutions by coming back to Eq. (3.8) ~ We can
prove the following: Eq. (3.8) has two complex solutions, f2 and —t 2*, the absolute value of Imf2 is larger than
g„;when it &

I
1m| 21&P, the real part of F(f) has a maximum value at f2 and. 12* alon—g the path parallel with

the real axis. Finally, we obtain

[1V/(2'~)]'~' df'e &r& —exp[—-,'i arg( —F"($2)}+SF(f2)]
c, [~IF"o 2) I

]'"

+ exp[ 2ii arg( ——F"(—|'q*)}+EF(—t 2*)]
C IF"(—t *)I]'"

exp
C IF"O. ) I]'"

1 2 cos(if2)+ (—)"Lri~(h)]' '
—1——Re($2+6)'+—ln

cosP

X2 cos[VO
——,' arg( —F"(g2)}] (3.19)
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where

8= argL( —)"{cos(iIo)+ (—)"Ltt'(I o)]' ')/cosP j
—(2/o) Im(I a+i')o. (3.20)

We have not yet proved that (3.19) is valid when

I
Imi o I

)P. When iI &
I
Imi o

I &P, the following in-

equality can be verified:

Fro. 3. Behavior of
the ends of the energy
gap for ) =0.125 and I
=1 as 0. is varied. The
bars show the results of
Makinson and Roberts
(Ref. 8).
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0,00 0.02 004
cr/a

006

«»(@'o)+ (—)"Ltt'(I o)]'"
—ln (3.21)

cosp

It is now necessary to consider the condition that
trace (TN)=2. When

I aI &~„, it is evident from (3.13)
and (3.18) that this condition cannot be satisfmd. In
other words, there exist no energy levels when

I
a

I
&~ .

When a & I aI &P and tI„&
I
Imi oI &P, the contribu-

tion to trace (T~) is given by (3.19). When the energy
and hence the value of ~ is varied, the value of (3.19)
fluctuates violently between + oo and —oo in virtue of
(3.21) and coslV8. Since 8 will be a smooth function of a,
the condition that tr(TN) = 2 is satisfied by many values,
being closely distributed in a range of ~, and so of the
energy. The number of allowed states between two
energies Ei and E2 can be found from

~i(~t ~o) =&I8(&i)—8(~o) I/~. (3.22)

Fzo. 2. Graphical
representation of de-
termination of the
energy gap. The en-
ergy gap is deter-
mined by the condi-
tion that

I
~ I &N .

k k k n~/g
lower o upper

4. BEHAVIOR OF THE ENERGY GAP

In the preceding section it has been shown that an
energy is forbidden if its value satis6es the following
inequalities:

a& sinp (4 1)
and

(4.2)

The quantities o, P, ~, and ~„,which are functions of the
energy k, are delined by (2.19), (2.18), (3.2), and (3.15),
respectively. Let k& be the bottom of the energy gap for
the Kronig-Penney model. The corresponding top of the
energy gap is given by m./u.

The following can be verified: P is a decreasing
function of k; ~ is an increasing function of k when
ko&k&n7r/a; ~ is a decreasing function of k when

ko&k& nor/a; the value of ~ decreases as the value of o.

is increased while k is kept constant. A representation of
the determination of the ends of the energy gap, ki. ..
and k„»„,is shown in Fig. 2. In the 6gure, the param-
eter ko is defined by the equation

~(ko) =0. (4.3)

In the case of 'A= 0.125 and e= 1, the values of ki,„„and
k„»„have been calculated for s/a=0. 01, 0.02, 0.03,
0.04, 0.05, 0.06. In the case of X= 2 and e=2, they have
been calculated for ~/@=0.01, 0.02, 0.03, 0.05, 0.07,
0.09. The results are shown in Figs. 3 and 4. The corre-
sponding results of Makinson and Roberts' are also
shown in the 6gures. As is seen from the figures, our
results are in good agreement with the results of
Makinson and Roberts. The slight difference observed
in Fig. 4 may arise from the difference in the probability
distribution of atomic spacings. Makinson and Roberts
adopted a cutoff parabolic distribution whereas we have
used a Gaussian distribution. In a later publication'
Roberts and Makinson have stated that an energy gap
does not exist when X=0.125, m= 1 and 0/a=0. 02. We
believe, however. that an energy gap does exist in such
a case (see the following section).

When the value of 0 is increased, the curve of rc in
Fig. 2 goes down until k~,„„and k„»„meet ko. There-
fore, the maximum value of a- which still allows the
existence of an energy gap is determined from the con-
dition that a (ko,' o „)=0. It is easy to show that this
condition leads to the expression

o,„=Lsinp(ko)]'"/ko. (4 4)

The behavior of ki,„„and k„pp as the value of o. is
varied is completely compatible with the conclusion of
Makinson and Roberts' that ki,„„increases and k pp„
decreases as o. is increased.

In order to make a quantitative comparison with the
results of Makinson and Roberts, we have calculated the
values of 0. , ki,„„,and k„»„ for two cases where
) =0.125 and v=1, and X=2 and n=2. The values of
cr, have been found to be

0,„=0.065@ for X=0.125 and m= 1
(4.5)

0-, =0.095a for 'A= 2 and n= 2.
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Frt . 4. Behavior of
the ends of the energy
gap for ) =2 and @=2as
0. is varied. The circles
show the results of
Makinson and Roberts
(Ref. 8).

5. DISCUSSION

As was shown in the preceding section, our theory
predicts the behavior of the energy gaps in very good
agreement with the numerical results of Makinson and
Roberts. ' This fact suggests that our fundamental
assumption, which says that the energy levels are deter-
mined by the condition (tr T&)=2, is a reasonable con-
dition. In other words, the method put forward by
Faulkner and Korringa" can be successfully applied to
the one-dimensional liquid.

Our model conAicts with the condition on which the
proof of the existence of energy gaps by Borland' and
Roberts and Makinson' is based. They have assumed
that the distances u; between neighboring atoms are
limited within a range

u&u, &u+b. (5.1)

Ke have assumed a Gaussian distribution of u, , which,
of course, does not satisfy (5.1). Nevertheless, we have
been able to show that energy gaps exist if 0 is small
enough. Therefore, condition (5.1) must be a sufficient
condition for the existence of energy gaps and not a
necessary condition.

Borland' has shown, subject to condition (5.1), that
energy gaps exist for all integers e for which the follow-
ing inequalities hold over a range of k

nx 2P&ku&n—s kb— (5.2)

This inequality has a simple meaning. I.et us consider
two Kronig-Penney models in which the atomic po-
tentials are same but the atomic spacings are different;
the one being u, the other u+b. The energy gaps in
these models Lsee (3.1)] are determined, respectively,
by the inequalities

A common range of these inequalities is given by (5.2).
It is evident that the range given by (5.2) shrinks in a
monotonic way as b is increased. Therefore, Borland's
conclusion can be stated in the following way: If an
energy is forbidden in all the Kronig-Penney models in
which the atomic potentials are the same and the atomic
spacings u are limited within a range u& u& u+b, then
the energy is forbidden also in any system in which the
atomic potential is same as in the Kronig-Penney models
and the atomic spacings are limited within a range
u&u; &u+b.

The inequality (5.2) determining the energy gap is a
sufhcient condition that a given energy is forbidden. It
will not be a necessary condition, though we have no
proof of this assertion. It is for this reason that we
believe that energy gaps exist when X=0.j.25, e= 1, and
a/u=0. 02 (see the preceding section), notwithstanding
the fact that (5.2) cannot be satisfied in such a case if
the model of Makinson and Roberts, ' being compatible
with (5.1), is adopted.

It is an interesting problem to investigate how the
density of states is changed as the amount of disorder
0- is increased. In our formulation the density of states
can be determined from Eq. (3.22). Recently, Faulkner"
has carried out some node-counting calculations on
one-dimensional random alloys and compared them
with the theory of Faulkner and Korringa. ' He has
found clear oscillatory deviations in the low-energy part
of the density of states, although the agreement has
been found to be very good in the widths of the energy
gaps. Agacy and Borland" have also calculated the
density of states for one-dimensional random alloys
and obtained results convicting with the theory of
Faulkner and Korringa. It is certain that the method
of Faulkner and Korringa cannot be exact. However,
we do not believe that the agreement which Faulkner
has found in the widths of the energy gaps is accidental.
It is urgently hoped that the nature of the method will
be clarified.

ACKNOWLEDGMENTS

The author wishes to thank Professor Stuart A. Rice
for a critical reading of the manuscript and Dr. J. S.
Faulkner for helpful comments on the manuscript and
for informing him of the results of the calculations.
Thanks are also due to Directorate of Chemical
Sciences, AFOSR, for financial support.

and
nor 2P &ku &ni-

ner 2/ &k(u+b) &n~. —
"J. S. Faulkner (private communication}.
~ R. L, Agacy and R. E. Borland, Proc. Phys. Soc. (London)

A84, 1017 (1964).


