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Bose-Einstein Condensation in Narrow Channels~
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The problem of the transition temperature of liquid helium in narrow channels has been considered by
using the ideal Bose-Einstein gas as a model. It has been found that for a channel of square cross section
(DXD) and length L, the transition temperature T, is given by the expression T,/T, s= (0.84' ')D'/L
under the conditions that D /L«X, where X is the thermal de Broglie wavelength, and T,tt is the transition
temperature in the case of an in6nite volume.

I. INTRODUCTION

'EASUREMENTS'2 on unsaturated liquid-He4
- ~ films have shown that the superQuid transition

temperature T, decreases with decreasing thickness of
the 61m. Similarly, when liquid He is made to Row
through narrow capillaries, ' 4 one finds that T, decreases
with decreasing diameter of the capillary. Based on the
suggestion by London' and Tisza' that the transition
in liquid helium and Bose-Einstein condensatioo are
related phenomena, several calculations have been
made in an e8ort to account for the depression in the
transition temperature. Ziman' and Singh et u/. ' have
made independent calculations for a model of an ideal
Bose-Einstein gas confined to a thin film. Ziman
succeeds in finding results which are in qualitative
agreement with the observed depression, while Singh
et al. do not. Mills, ' on the other hand, considered the
case of an ideal Bose-Einstein gas con6ned to narrow
channels. His calculation, however, is not applicable
to the prediction of the variation of T, because of the
approximations that were made.

In this paper, the problem of the transition tempera-
ture of liquid helium in narrow channels will be con-
sidered in an attempt to find an explicit expression for
the size dependence of T,. As an approximation to the
He4 system, the model of an ideal Bose-Einstein gas
is used.

II. THEORY

Consider a system of S noninteracting Bose-Einstein
particles, each of mass M, confined in a narrow channel
of dimensions D)&D)&L, where L))D. Assume the wave
function of the particles to vanish at the boundaries
along the smaller dimensions D, and to be periodic at
the boundary of the dimension L. The periodic bound-
ary condition is chosen at the ends of the channel
because it corresponds more nearly to Row through a
channel. Under these conditions, the energy eigenvalues
are easily shown to be

Zt~„= (P+trts)5+rts8,

and
l,m=1, 2 3

N=O, +1,+2, ~ ~ ~

(2)

For considerations at very low temperatures, it is
only important to consider the distribution of the
lowest lying energy levels. The energy di6erences
between the first low-lying levels and the ground state

where 5= (hs/SM)(1/D) and 8= (h/2M)(1/I'), and
the quantum numbers l, m, n can take on the values
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Fre. 1. Schematic
of energy levels E& „
for a particle in a box
of size DXDXL,
with L&&D.
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l= t, ~= t, n=O are having degeneracy g& „is

and
+11n ~110 (3)

+leap +»p —Eu p E»p—= (15 1)6. (4)

gran
E) „=

expl n+ (E( „—Epgp)/kT] —1
(5)

The energy-level diagram is indicated schematically in
Fig. 1. For a typical channel with D=50 A, and
L=50000 A, 5=1.3&&10 P ergs, 6=3.3&(10 ' ergs,
and 5/A=3X10 '. Therefore, the 11m level series can
be treated as a continuum of levels above the ground
state. This fact will be used later to replace by integra-
tions all summations over the quantum number e.

For an ideal Bose-Einstein assembly of particles, the
average number of particles in an energy level E&

where 0. is a parameter determined by the total number
of particles. Therefore, the number of particles in the
ground state is

X„,.= 1/(e- —1), (6)

where the permissible values of 0, are those for which
n) 0, because F~~o cannot be negative.

The number of particles in the excited states can be
written as

&~0= E &».+ 2 (&+~+&n.)+ p p p 1V&~.
l=2 m 2 n=—oo

+ 36+I'8
=2+ exp n+ —1 +2 P exp n+— —1

n-S n

00 eo 00

+ P P g exp u+(P+I' —2) +
2 en=2 n kT kT

—1 . (7)

Since n) 0, Eq. (7) can be replaced, following London, ' by an inequality

+~ e28
1V, ,&2 Q exp

kT

—=&i+&2+&p

3Q ~2$ ~ e) c) e)—1 +2 Q exp + —1 +P g P exp (tP+m' —2) + —1
n=~ l=2 m 2 n=oo kT kT

(8)

(9)

11—
I

—+—1.46
I

—+ "~
(96 V2 3 L

The summations over e in Z&, Z2, and Z3 can be replaced obtains

by integrals. In Z&, it is an incomplete Bose-Einstein
integral which is evaluated as a power series in gp I kTI

&exa&21 I 1+ +——= (8/kT)«1 in the Appendix. Similarly, Z2 and Z, are ( g ) yL v3 L
also evaluated in the Appendix. These summations from
the Appendix I Eqs. (A4), (A6), (A10)] in the case
when 6d,/kT«1 reduce to (13)

(kT) - (1 1 So long as the second, third, etc., terms within the
I

1—~l —+—
I

—+- —I+ ) (1 ) square brackets are much less than unity, Eq. (13) can
'E 8 96 APL 2 Ll be written as

1.46m—+
L

kTq -5.22~D'
+si u

pkT~ -2~ D 4D'

v3 L 3L'

X,.&2(kT/8). (14)

When most of the particles are still in the states other
than the ground state, E, ,=X=pD'L, where S is the
total number of particles and p the number density of
particles. Therefore, the limiting temperature down to
which the relation (14) can hold is

where X =k/(2~MkT)'I' is the thermal de Broglie
wavelength. On substituting these into Eq. (9), one

T =—pD2L=
2k

h2pD2

(15)
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On the other hand, the transition temperature for the
bulk case is given by'

h' ( p

2 Mk(2.612)
(16)

Hence, the reduced critical temperature t, is given by

t,=2',/T, s ——
—2,2r (2.612)'I'p'" (D'/I. ) . (17)

Substituting the value p = 2.25 X10" particles/cm',
which is typical of liquid He4, one gets

t,=0.84(D'/I ), (18)

where D and I are expressed in angstroms. Equation
(18) suggests that in the case of a channel having
arbitrary cross-sectional shape, one would get

where A =cross-sectional area of the channel and f is
a form factor characteristic of the shape of the channel.

(i) D2/L«6X 10 9, when D»X

D2 expL (32r/2) y 2/D2) j
(ii) when D&&X.

I. Ã

Condition (i) is valid at high temperatures (i.e.,
kT&&66) and is obtained from the neglect of terms
other than the first in Eq. (13). Condition (ii) is valid
at low temperatures (i.e., kT«66). These conditions
assume that T, is always less than T,z. In addition, it is
noted that the conditions are easier to satisfy at the
lower temperatures.

The somewhat surprising result that the transition
temperature varies inversely with length can be
understood by examining Eq. (15) which shows a direct

III. DISCUSSION

The main purpose of the present calculation is not
to predict the precise transition temperature of a
Bose-Einstein gas, but rather to find out its size
dependence when con6ned in narrow channels. It is
remarked in passing that even when vanishing boundary
conditions at the ends of the channel are assumed, a
similar dependence on geometry is obtained, namely

t,= (0.84/ln3) (D2/L).
The limits under which Eq. (18) is valid are

dependence on the product of the volume (D2J) and
the energy separation (8) of the first excited state.
Because the energy separation in the limit considered
in this paper varies as I.—', the product with the volume

yields an I. ' dependence for T,.
The previous attempt' at the solution of ideal Bose-

Einstein gas in a narrow channel was condned to
computing the occupation of the ground state as a
function of temperature. No objective criterion for
determining a transition temperature from such

curves is possible because the ground state is partially
occupied at all temperatures. The correct approach
is that given by London. One computes the nuInber of
particles in the excited states which must be less than
the total number. At a particular temperature, (T,)
this inequality can only be satisfied by putting addi-

tional particles in the ground state over those already
present.

Experiments on the Row of liquid He4 through Vycor
glass indicate that the transition temperature for super-
flow increases with the diameter of the pores. A quanti-
tative comparison with Eq. (18) cannot be made
because the geometry of the pores in the Vycor glass is

extremely complex and only a rough estimate of the
average pore diameter is reported. In addition, there is

no possibility of making an estimate of the length I
of the pores in Vycor.

Edwards et u/. "have recently studied the superflow

of liquid He4 through closely packed Saran charcoal,
another porous material having average pore diameter
of 10-15 A. They observe superflow through it to
within 10 mdeg of the bulk transition temperature.
This result is not inconsistent with the results of this

paper because the effects of D and I on t, in Eq. (18)
tend to oppose each other and the expected depression

in the transition temperature due to the area could be
nulli6ed by a short length.

In order to verify the size dependence predicted by
Eq. (18), it is imperative to obtain materials with

uniform channels, whose diameters and lengths can be
estimated and controlled accurately.

Calculations based on ideal Bose-Einstein gas model

have been attempted by Ziman~ and Singh et ul. ' to
account for the depression in transition temperature of

liquid He' when it is confined to thin films. Ziman
obtains a transcendental equation between t„D, and

L, and uses an adjustable parameter to fit the solutions

of this equation with the observed depression. On the
other hand, Singh et al. get a result which is strongly
dependent on the nature of boundary conditions they

M. H. Edwards, A. S. MCKirdy, and W. C. %V'oodbury,
Proceedings of the Ninth International Conference on Low
Temperature Physics, 1964, Columbus, Ohio (to be published).
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choose. It is to be noted that if the methods used in
the present calculation are applied for the case of a
thin 6lm of dimensions D&&L)&L, where J'&&D, it is
found that the transition temperature is given by
t,= (T,/T, Js) =0.9X10 pD(A). This result is in qualita-
tive agreement with the experimental results far below
the bulk transition temperature.

Using

g f(sn)=
m=a

5+1/2

f(sn) dnt —f'(sn)/24
I .',

if f(n+sp) —f(n ——,') —f'(n)&&f(rt), where a(n(b, (A2)
reduces to

~kT~ "
p 1

2I
I ( ''I p'e p/' —pe—g Id[ (A3)ksi „
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)kTq- )1 1y/ b y'/'
I

1—v'~l —+—
II

k 8 i (96 %2)EkTi

Expanding the incomplete gamma integrals as a power
series" in $p, and rearranging the terms, (A3) reduces to

Pote added in roo. In a private communication,
P. R. Zilsel has pointed out that the inequality (14) is
exhausted by the erst term of Zl, viz. ,

2 2 kr

ego —1 $p il

Indeed, for small $p,

1/r b~
~ ~ ~

2&kT)
(A4)

and

1 2 00 1
Xi=2 P

a=i e"'pp —1 $p n inp=
(kT) '/'

Esi
gl/pdg

(A5)
exp($+3A/kT) —1 esa/P —1

Again, the replacement in Z2 of the summation over n
by an integral gives,

while

00

—ds= 1.
Q

Using the power series expansion" of the Bose-Einstein
integral when 3A/kT«1, one obtains

——146v'~l
l S i vSEAi 3A EkTi

So in converting the sum Zl into an integral, a certain
factor has been lost, and the factor of 2 in (14) should
be somewhat larger. However, this does not affect the
dependence of t, on D and J.

+0.208X3g
I I I

— I+" (A6)
l kTi &kTi

Similarly, Za can be written as

APPENDIX (kT) 1/2 ~ ~ ao Pl/Pdg

Replacement of the summation over n in Zi by an
integral gives

p, e&—1

(kT) 1/P ao Pl/pdg

&bi
(A1)

00 00

(A7)
l=2 Nb=2 exp/ —1

where Pp=5/kT,

~kT~ '/'

&b)
gris P e ojd(—

where r/= (P+sn' —2)(A/kT). To estimate Zs, replace

» Jahke and Emde, Tables of Higher Fgrtotso/ss (McGraw-Hill
Book Company, Inc. , New York, 1960), p. 14.(A2)» F.London, Sgperitstids (John Wiley 8t Sons, Inc., New York,
1954), Vol. II, p. 203.
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kT (kT)"'
& "'s

a I h )
where

exp (—p66/k T)
5=

ps/2

Jf 6a/kT«1,
S=l P, ) =2.61.

On the other hand, when (3A/kT}))2, appropriate series expansions" yieJd

(kT) '/' exp( —p36/kT) r kT'l
=2l lv'&I

l
expl-

p/ & 3) l kTi E kTi
and

rkT) mrs/'( 6 )"'AT (expl-k3) 2 kkT] S l kT]

the double summation by an integral to get

kT kT)"' " " gr/'dP srkT "
dr/

Zs= sr dg
3 ) eA/j'gr Q exp ($+r/) —1 0, sA/Ar exp (r/)

—1

kTr kT l'/' " " dx srkT —
r 6A~-

+ Jn 1—expl—
~ E 3 I o o expEx+P+6A/kT5 1— 6 E kT]
kT)kT~'/' " -

r
- 6A q- srkT -

r 6hq-
1—exp —f— l

d$+ Jn 1-expl-
Ak8/l o E kT ) 6 k kT)

kT(kT) "' " ~ exp/ —p(P+6h/kT)5 rrkT exp( —P6A/kT)
V"'dkZ Zhi bl v o& pp

kT(kT)'/' m expL —p66/kT5 srkT ~ exp( P6—/)/kT)

5 k 3) v=r P"' p
(AS)

(A9)

(A10)

(A11)

(A12)
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Microwave-propagation and microwave-interaction techniques have been used to determine the electron
collision frequency for momentum transfer in helium for electron energies in the vicinity of 0.001 eV.
Measurements of the complex microwave conductivity and electron-energy relaxation rates have been per-
formed in the afterglow of a pulsed discharge in helium in the pressure range 0.1 to 5 Torr submerged in a
bath of liquid helium at 4.2'K. Electron-radiation temperature measurements during plasma decay have
demonstrated monotonically decreasing electron temperatures as a function of time. For times when an
extrapolation of the electron temperature decay indicated near thermal equilibrium with the parent gas, a
momentum-transfer cross section in the range 10&10 "to 19)&10 "cm' was determined. Measurements
of electron-energy relaxation rates for atomic densities exceeding 2.3)&10"cm ', where the electron de Broglie
wavelength is becoming long in comparison to the average inter-scatterer spacing, indicate the limit of
validity of binary-collision concepts.

I. INTRODUCTION

HE elastic scattering of low-energy electrons by
helium atoms in the ground state has received

considerable attention in the past with a number of

*This work has been partly supported by U. S. Air Force
Cambridge Research Laboratories under Contract Number
AF 19(628)-3302.
Ss t Present address: National Bureau of Standards, Boulder,
Colorado.

authors attempting to predict the behavior of the scat-
tering cross section in the limit of zero electron energy.
The calculations of Morse and Allis, ' using an exchange
approximation, have been shown to be in good agree-
ment with the experimentally determined cross section
over the energy range 1 to 40 eV. Their calculations
indicate a cross section rising with decreasing electron

s P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).


