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In this paper, a classical theory of inelastic atomic collisions is evolved on the basis of the relations for
binary collisions as well as for the Coulomb collisions derived in the laboratory system of coordinates. Built
up as an approximation based on the binary collisions, i.e., the independent pair interactions of the in-
dividual elements of the colliding systems, the theory, with its immense simplicity, not only permits a clear
qualitative interpretation of the atomic collisions, but also describes well their quantitive aspect. In terms
of that theory, a majority of basic inelastic processes accompanying the atomic collisions are analyzed. In
particular, calculations are made for the following: (i) ionization of atoms and molecules by light particles
(electrons), as well as by heavy particles (protons, deuterons), including inner-shell ionization and double
ionization; (ii) excitation of single and triplet lines (excitation with exchange and without exchange);
(iii) capture of electrons in orbit; (iv) slowing down of heavy charged particles (with consideration of the
capture process as well as of the interaction with the Coulomb field of the nucleus); (v) inelastic scattering
of electrons on atoms and molecules. According to the theory developed, the “diffraction’ of elementary
particles on atomic systems is explained on the basis of corpuscular mechanics; it is shown that the discrete
energy states of the scatterer electrons—and the anisotropy in the space orientation of their velocities in the
case of crystals—are responsible for the main features of the diffraction pattern. Having at our disposal
a simple theory without any arbitrary parameters except those describing the target system, we find it a
useful tool for the investigation of atomic structures.
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I. INTRODUCTION

HE postulation in the twenties of the wave

nature of elementary particles, and the imposition
of limitations arising from the formalism of wave
mechanics upon the scope of applicability of classical
mechanics for atomic phenomena, have almost com-
pletely checked development of the classical theory of
atomic collisions; whereas the sporadic attempts in the
direction made in the first period (Bohr!), which
yielded correct results only in the range of high energies,
have been taken to prove the legitimacy of these
limitations and the uselessness of further investigations
in that direction, the possibility of removing those
limitations in the framework of classical mechanics
itself being rather uncritically discarded. As has been
only recently shown,?3 a number of disagreements were
the result of mechanical application of the Thompson
or Rutherford formula, describing the Coulomb scat-
tering on particles at rest, to atomic collisions, where,
after all, we have a dynamic system of charges.
From certain previous work,>? as well as from the
detailed theory of binary and Coulomb collisions,*5
it follows that the effect of interaction between the
charged particles depends, first and foremost, on their
relative velocity; hence, a description of collision proc-
esses based on the Thompson and Rutherford formulas
is bound to yield erroneous results if the velocity of
the particle scattered on the atom becomes comparable
to, or less than, the mean velocity of electrons in the
atom.

I N. Bohr, Phil. Mag. 25, 10 (1913); 30, 581 (1915).

2 M. Gryzifiski, Phys. Rev. 107, 1471 (1957).

3 M. Gryzifiski, Phys. Rev. 115, 374 (1959).

¢ M. Gryzifiski, first preceding paper, Phys. Rev. 138, A305
(1965), hereafter cited as I.

§ M. Gryzifiski, preceding paper, Phys. Rev. 138, A322 (1965),
hereafter cited as II.

Another fact disadvantageous for the development of
the classical method consisted in overlooking the
relationship between the discrete states of electrons in
the atomic systems and the “diffraction” phenomenon
of scattered particles. That phenomenon rather ob-
viously results from the laws of conservation of energy
and momentum (see Papers I and II), which imply,
for instance, the observed inverse dependence of the
scattering angle on the momentum of the particle
scattered. The present paper, as far as the point of the
problem is concerned, does not differ from the theory of
inelastic atomic and ionic collisions® previously pub-
lished by the author; it only encompasses a considerably
larger class of phenomena such as it might again seem
could not be interpreted in terms of classical mechanics
(exchange collisions, capture of electrons, “diffraction”
of inelastically scattered particles). The calculations
are made on the basis of extremely simple approximate
formulas, owing to which it has been possible to discuss
not only qualitatively but also quantitatively almost
all basic inelastic processes accompanying the atomic
collisions. Application of the methods of classical
mechanics, which has the advantage of being an object
theory, is of great significance for the proper under-
standing of atomic collision processes. Having proved
that the theory yields good results for atomic structures
of known electronic configurations, it will be possible
to reverse the problem, and thus from the experimental
data for various processes, e.g., from the cross section
for ionization, or from the stopping power, to determine
the configurations of electrons in complex structures
(molecules). The angular measurements in the scatter-
ing problem enable one to proceed further than that,
and to deduce the form and space orientation of
electron orbits in crystal structures.
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II. INELASTIC ATOMIC COLLISIONS IN THE
TWO-BODY APPROXIMATION
If we consider the Coulomb interaction of the
elementary particle with a complex system of charges
in a state of dynamic equilibrium, which the atom
presents, then we can divide that interaction into two
parts:

(a) interaction with the unperturbed field of the
whole system, which does not lead to change of its
internal energy (elastic collision);

(b) interaction with the individual elements of the
system (electrons), which may lead to change of its
internal energy (inelastic collision).

According to this division, two different methods of
treatment can be applied to describe approximately the
complex phenomenon of atomic collision. Process (b)
may be analyzed in terms of binary Coulomb collisions,
whereas to describe process (a) an appropriate approx-
imation should be found (the expansion in multipole
moments seems to be most hopeful).

Since the type of inelastic collision is specified by the
change of energy and momentum of the electrons of the
scattering system, the problem, in view of Papers I and
11, will consist in calculating the cross section for definite
collisions between the incident particle and the respec-
tive electrons of this system.

In the case of scattering on unoriented atoms and of
the inelastic collisions defined by a change of state of
only one of the electrons of the atom, the calculating
procedure will be comparatively simple.

Denoting by px(v.,7) the probability that at a distance
7 from the nucleus an electron of a velocity v, belonging
to the shell £ can be found, and by ¢ the cross section
for a given change of dynamic variables of that electron,
we can determine the cross section relating to the
whole atom:

gatom=3%" ne’“/ / i (ve,7)0[0e,0, () JAmr2drdv,, (1)
0o Jo

where #/ is the number of electrons in the shell Z,
while the summation is extended over all shells of the
atom, and v,(7) is the velocity of the incident particle,
which, in general, depends on the averaged potential of
the whole system, and hence, is a function of the
distance from the nucleus:

2(r) ={(2/mJ[E,— o(r)g]}'?, )

while E, is the kinetic energy of an incident particle
with a charge ¢ and a mass m, outside the atom, and
¢(r) describes the averaged potential of the atom.
Expression (1) together with expression (2) would
describe the collision process exactly only if the interac-
tion forces between the particle bombarding a given
atomic system and its electrons were not Coulomb
forces, but had the form of a §(r—7¢) function with
the radius of interaction 7, approaching zero; neverthe-
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less, we can assume such a model to be a first approxima-
tion of the real collision process, which in fact is an
insoluble many-body problem. Errors resulting from
the approximation will depend on the structure of the
colliding systems and their velocities. (In general,
the errors will decrease with increasing velocity and
will vary with the type of processes under considera-
tion.) Their influence upon the final results will be
discussed when considering definite problems. Assuming
that between the kinetic energy of the electron and its
distance from the nucleus there exists a unique relation-
ship, which is to be expected from the laws of classical
physics, the expression (1) may be rewritten as follows:

owon= i [ peTos el Hrrdr (30
%
or in the alternative form:

gatom=3" ne’ﬂ/-fk(ve)ﬁ[ve,vq('l)e)]dve: (3b)
k

where f3(v,) is the momentum distribution of electrons
in the orbit k. Expressions (3a) and (3b) are equivalent
if collisions of large energy exchange between the
impinging particle and atomic electrons are considered;
they are not equivalent for collisions of very small
energy exchange, and then expression (3a) must be
used. Since in inelastic atomic collision processes the
amount of energy transferred to an atomic electron is
usually greater than its mean kinetic energy, we are
entitled to use the more convenient relation (3b) in
calculations. Neglecting the influence of the averaged
field of the atom on the motion of the bombarding
particle, while putting ¢() =0 into (3b), we obtain

o.atom_:Ek: ”ek/fk (ve)a(ve)dve; (45)

or proceeding still further and operating with the mean
velocity of the electron in the orbit, we have

gatom — % nlo (ﬁck) . (5)

Therefore, the nature and the quantitative aspect of
the collision process are determined, first and foremost,
by occupation of the atomic levels with electrons, the
mean velocities of electrons on these levels and ob-
viously the spectrum of energy levels which otherwise
defines the kind of inelastic process.

If we assume 3m.(3.%)? to be approximately equal to
the binding energy of the electron in the orbit %, the
atomic cross section becomes in first approximation a
function of occupation of levels and of the binding
energies of electrons only. The formulas quoted above
relate to an isotropic distribution of electron velocities,
and so to a system of unoriented atoms; for a system of
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Fi1c. 1. Plot of the function gg which determines the cross
section for collision with loss of energy greater than the fixed
value U, in the case of equal masses of the colliding particles
(electron-electron collisions).

oriented atoms, e.g., in the crystal, the cross sections
will have another form depending on the angular
relations. In such cases the procedure of introducing
corrections with respect to the averaged field of the
atom will be rather complicated, and it will depend
strongly on the particular problem solved.

III. ADAPTATION OF COULOMB-COLLISION
FORMULAS TO THE THEORY OF
ATOMIC COLLISIONS

Taking into consideration that the elements of the
colliding atomic system interact through a Coulomb
field, our theory will be based on the relations of Paper
II, but, due to the bound motion of electrons in the
atom as well as to the relatively strong mutual interac-
tion between its elements, application of the exact
formulas of that theory is of no avail. Exact formulas
yield exceedingly high values for cross sections because
in those cross sections account has been taken of the
collisions of small relative velocities and thus of long
collision time which, for the above reasons, do not
exist in the real physical process.

Analyzing the experimental data for the inelastic
processes, we arrive at the conclusion that in the atomic
systems we have to do with the continuous velocity
distribution of the electrons; this is, inter alia, evidenced
in the agreement of the results of Papers I and II with
the fact that the cross sections for ionization or excita-
tion by heavy particles lack a threshold. On the other
hand the asymptotic form of these cross sections reveals
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the presence of a logarithmic term, which not only
testifies to a continuous distribution of electron velocity,
but also determines the high-energy part of that
distribution. On the basis of the theory of Coulomb
collisions it is thus possible to deduce that the probabil-
ity of the atomic electron having velocity v, decreases
with increase of that velocity as the inverse third power
of v, This result is roughly confirmed by the energy
dependence of the cross section for inelastic processes
for heavy-charged-particle impacts at very small
velocities.

Consequently, formulas (50)-(58) of Paper II can
be used for the description of inelastic atomic processes,
although we must keep in mind that due to the approx-
imate character of the theory, the high-energy part of
the velocity distribution that is slightly different from
1/v.% cannot be excluded.

We introduce somewhat different symbols for the
quantities appearing in these formulas:

&1 — 8= mi¢ /2 my—> M,
E2 b d Eq
AE relates to the absolute value of the loss of energy
only. Omitting the symbol of averaging over the velocity
distribution of field particles (target-system electrons),

we shall rewrite some expressions of Paper II in a
modified form:

D1 — D,

Vg —> Vg Mg — Myq.

ago 1 8 Eq
=__><g,(——;——> for my=m,
AE? AE AE AE
(6)
a0 1 g Vg
= XG, (—— —) for m>m,,
AE? AE AE b,
ao & E,
¢ szg"<_z} ?) for e -
a9 & v,
=__><GQ(——;——> for mq>>me;
g2 U 770
ago g Eq
S=——><gs(——;“‘) for mo=m,
U U U )
oo & v,
=—><Gs<— __) for m>m,,
U U v,

where the functions g, G have the forms:
(a) Forlight particles (electrons, positrons—m ~m.)

& E, AE 4 AE E,—AE\? AE\8! (6+AE)
EDAELDE W™ o
AE AE & 3 8 8 E,
§ E, U 2 . U w2 Eq_U)1I2 }(1 U)1+sl(£+U) )
o) () 2+ (C5) ] ) ! <
& E, U U\ E, 4 U E,—~U U\ & s+
A A T PV VY 1 R
U U 8 E,/ U 3 E, & E,
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(b) For heavy particles (m,>m1,)

8 " - 92 AE 4 v, 14-vg? 2
ity A o))
| AE! 17, _Wq2+ 1732 5 3 1_)5 AEmax

& v r o2 U 2 U
GQ(E]_;_Q>=f_ ? | /1_
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AE

(12)

7, U U 1+vg2/ Be?
v | )ln(2.7+—>]<1— )[1—( ) ] (13)
L02 452 8 3\ AFmex 7, AE s AEmex

U AFEnax . 4/1_

& v, m D2
Gs(—-; —)=f17 el ln
U Lo 2452 E U

To present a full picture, we also recall that

o\ 2 92 \¥?
O e
v/ \v 40,2
vq 2 1-)0
AEmax= 5X4(—> (1+_)= é’Xa. (16)
Ve Vg

For small velocities of heavy particles 2,7, in
correspondence with the formulas (I1.50), (II.51),
(I1.52), the functions G,, G, Gs will take the form:

S o
2w
B o

The magnitude oo=we!Z;? appearing in the above
formulas, if AE or U is expressed in electron volts, has
the value

co=2Zg 6.56 X107 eV? cm?, (20)

where Z, is the charge of the bombarding particle in
units of elementary charge e. The graphs of the
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F1c. 2. Plot of the function G which determines the cross
section for collision with loss of energy greater than U, in the case
of a heavy test particle.
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functions gq, G, Gs most commonly used in the theory
of atomic collisions are plotted in Figs. 1-3. The rela-
tions quoted above do not take into account the
influence of the Coulomb field of the nucleus, which
field not only modifies the cross sections derived (since
the bombarding particle moving in that field changes
both its energy and the direction of its motion), but
in certain cases plays a decisive role, and is the cause of
a definite physical process. Owing to the positive charge
of the nucleus, the collision process with atomic elec-
trons is influenced differently for the negative and for
the positive impinging particles; whereas in the case of
bombarding by electrons the identity of the colliding
particles is especially significant. Now, starting with the
simplest system, the atom, we shall proceed to make an
analysis of the phenomena in both cases.

(a) Impact of Electrons

Neglecting the influence of the nuclear field upon the
electron-electron collision process, the following will
appear as effects of the first order:

(1) ionization process—when, in a collision, the
atomic electron acquires an energy greater than its
binding energy,

(2) excitation process—when the electron acquires
an energy less than the binding energy, but greater
than the energy of excitation.
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the kinetic energy of a heavy particle for different values of the
kinetic energy of a light field particle.
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In such an approximation, the class of phenomena is
limited to these two cases only. The presence of the
positively charged nucleus immediately leads to the
appearance of the exchange process as well as to the
formation of negative ions. In this case, the collision of
the incident electron should be considered as a collision
inside the potential hole created by the Coulomb
field of the nucleus. Therefore, if the collision has
taken place at a certain distance from the nucleus, to
which there corresponds a definite depth of the potential
hole, while the external electron as a consequence of the
collision has an energy less than the hole depth at the
place of collision, then the electron will not be able to
leave the nuclear field. As a result, a negatively charged
ion may be created if the energy transferred to the
atomic electron has been less than the ionization
potential of the new system, or the exchange process
may occur if it is greater.

The class of phenomena increases in number when we
consider the collisions of electrons with heavy atoms.
For instance, in the case of helium, new phenomena
appear as, e.g., double ionization if the initial electron
collides successively with two electrons, transferring to
them energies exceeding their binding energies. The
process of double ionization may also take a different
course in that the initial electron collides with only one
electron of the atom, and it is only the latter that causes
the other to be ejected. A process similar to the preced-
ing is, furthermore, the cause of excitation of terms with
two excited electrons. The exchange process is also in-
separably connected with the excitation of singlet and
triplet terms. For heavier atoms or molecules, the num-
ber of combinations increases considerably, and the
influence of multiple collisions must be considered sepa-
rately in every particular case.

(b) Impact of Heavy Particles

The processes of excitation and ionization by posi-
tively charged heavy particles, even when neglecting
the nuclear field, are changed by the capture process;
whence, for instance, results the division into pure
ionization with a free electron formed and ionization
with the capture of the electron. This fact influences the
slowing-down process, to which not only energy losses
in the process of excitation and ionization contribute,
but also the losses connected with the capture process,
which, depending on the concrete systems, may either
increase or decrease the resultant stopping power.

The nuclear field plays a principal role in the processes
of inelastic collisions at very low energies of the bom-
barding particles, since, in that case, the value of the
cross section is determined by collisions with electrons
of sufficiently high velocities, and electron velocities
are greatest in vicinity of the nucleus.

The above picture, which is valid for elementary
incident particles, may in certain cases be extended to
include collisions between complex atomic systems,
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| general symbol

data of target system of pracess
A,
initial state /:_
of both systems w4
imp

ik

data of impinging system

final state
of both systems

final /
imp

F1G. 4. Sketch illustrating the nomenclature used
for atomic collisions.

particularly if the mean velocities of electrons of one
of the systems are considerably less than the relative
velocity of the systems, and if we operate with the
cross sections of the theory of Coulomb collisions in
which the dependence on the impact parameter D has
been maintained.

IV. NOMENCLATURE OF THE THEORY
OF ATOMIC COLLISIONS

In proceeding to discuss the various processes of
atomic collisions, we think it fit to make some remarks
on the notation which will be used. Having the basic
symbol of the cross section Q, we shall put down on its
left-hand side the data concerning the initial state of the
colliding particles, and on its right-hand side those
concerning their final state; whereas the superscripts
will relate to the target particle, and the subscripts to
the bombarding particle. Lack of a symbol in the final
state is to be understood to mean a state identical with
the initial state, while insertion of several symbols for
the final state denotes a cross section corresponding to
the sum of those processes. In a number of most typical
instances the notation will be some what simplified.
The principle of the nomenclature is shown in Fig. 4.
Thus, for instance, the full designation of the cross
section for single ionization of the argon atom by
electrons will be:

AeQA“‘ or AeQ-l- or AeQi,

while the cross section for ionization of argon by protons,
both in the pure ionization and in the capture process,
may be written as follows:

APQ?.HA+ or A0, u".

By introducing additional symbols, it is possible to show
the contribution of the respective shells in the process.
So, e.g., the cross section for double ionization of the
K shell of nickel by electrons may be written £N{,QF,
Speaking in general of a certain class of processes, we
shall use the following symbols:



THEORY OF INELASTIC COLLISIONS

oz 117 T T .
%] I e e I
§ Lo with logarithmic term
5 AR A
R T
ﬁ 4 T 111
/4 ] without togarithmic term | |
« /f . -
o -
& ] /
g | SN N
50 vy > L ~
z n =
2 7 my=m, |
z
S a5 HHH
< / T
N
z
S
0 %I 12 4 6 8 10 2 % 16 8 20
“a A";w KINETIC ENERGY OF ELECTRON
_ 1ONIZATION POTENTIAL
Ao

Fi16. 5. The ionization function g; for electrons, with and without
the correction for the velocity distribution of atomic electrons.

(a) All cross sections differential with respect to
energy exchange will be denoted with the symbol o,
inserting, if necessary, additional symbols, as for
example:

osap: cross section for scattering of the impinging
particle at an angle ¢ and with the change in energy AE.
oap*: cross section for a collision with the gain of
energy AE*.

(b) All cross sections constituting the result of
integration of the differential cross sections over a
definite range of variable AE will be symbolized by the
sign Q; thus in the cases of excitation and ionization we
shall write Q°*¢ and Q!; insertion of the indexes as
superscripts means that we are concerned with the
ionization of the target system, while the same done as
subscripts indicates the ionization or excitation of the
bombarding system.

(c) Cross sections determining the slowing-down
process will be marked with the symbol S, the possibility
of additional designations included (the slowing down
due to the ionization process will therefore be written
as S1).

V. SINGLE IONIZATION BY ELECTRON IMPACT

The process of ionization by light particles (electrons)
is described by the formulas (7) and (10), which,
according to our rough assumption that §=U;, will
assume a very simple form:

Q= (00/U:?)gi()

1 /51402
gi(x)=;<;:1“>

x{1+§(1—-21;) In[2.74 (w— )]}, (22)

(21)

where by x we have denoted the ratio of the kinetic
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energy of the bombarding electron to the binding energy
of the orbital electron (x=E,/U,).

The graph of the function g;(x) with a logarithmic
term resulting from the momentum distribution of the
form f(ve) > 1/v.® for v >0, and without that term
(then In[2.7+ (#—1)Y2]— 1) is shown in Fig. 5.

The function g;(«x) being at our disposal, the question
of calculating the absolute cross section for the ioniza-
tion of the whole atom, or of some of its shells, remains
a completely trivial matter. We shall start the numerical
calculations with the simplest case, which is the
ionization of atomic hydrogen. Taking into account
that the potential of atomic hydrogen is 13.6 eV,
relations (21) and (22) immediately yield the absolute
value of the ionization cross section:

6.56X10~1 ( E,
e ()
(13.6)? 13.6

E,
=3.54g,~(—--——> in A2
13.6

E,
=405g2(—-) in 7rd()2
13.5

~

E,
=12.5 @(————) in cm™! (mm Hg)—1.
"\ e ( g)

In the case of molecular hydrogen (U;=15.6 eV), we
have immediately :

6.56 X10~% s E,
HzeQH2+=2><———~gf(““)
(15.6)? 15.6

E,
=35.40X 10‘“‘gi<——-—) cm?,
15.6

where the number two is due to the two electrons in the
hydrogen molecule (we have assumed both electrons to
be in the same energetic state).

Similarly, the ionization cross section of the helium
atom is:
HerHe*': 2%

6.56X10—1 (E.,
—_——
(24.6)? 24.6)

E,
=2.17X 10*15gi(—) cm?.
24.6

Comparison of theoretical and experimental results®—38
is given in Fig. 6.

At very high energies of the incident electrons
(E.Zm.?) the velocity function f»© which determines
the cross section Q' [see Eq. (10)7, has to be calculated

¢ R. L. F. Boyd and G. W. Green, Proc. Phys. Soc. (London)
71, 357 (1958).

?W. L. Fite and R. T. Brackman, Phys. Rev. 112, 1141 (1958),

8 J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932),
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using the relativistic formula for the velocities. Denoting
Jr O/ fyO=¢(U,;/my?; E,/U;), we can write

o ) (Ee (U,« Ee)
'=—pgl— P el B
U2 Ui> moc? Us

where fy©r is given by (I1.59). Clearly, in the
nonrelativistic energy range r=1.

If the ionization potential is not too high (U;<m.c?)
and the velocity of the ionizing electron is much greater
than the mean velocity of the atomic electron, the
ionization cross section given by (23) will take the form

(23)

oo U; (14m,2/E)*/ 1 E,
Qi=—2 —————~(1+—ln—)
Uiz mecz 1—|—2(mec2/Ee) 3 U,
(211} 2 Ui Ee
—_— n— for E,>m.c?

U,‘23'm962 Ui

oo Uz 2 Ee
-—)——(H—— ]n——) for E<&m.c?. (24)
U2 E, U

2

Using the above formulas, the ionization cross section
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of the molecular hydrogen for relativistic electrons has
been calculated as

, E,\ (156 E,
He,0i= 5,40 10*16g4(———)r(—————)< 10-5; ) cm?,
15.6/ \5.11 15.6

and has been compared with the experimental data of
Hareford? and McClure? (see Fig. 7).

The validity of the approximate formula (23) has
also been proved in two other cases in which the target
electrons are of relativistic energies. These are the
inner-shell ionization of Ni and Ag by electrons.
Taking into account that the respective ionization
potentials are U;NiK=8.350 eV and UAsK=25 500 eV
(these ionization potentials have been taken from the
tables given by Cauchois!2), we have

- E, UNK E,
NiK ()1=18.8X10~22 i( )7( ; ) cm?,
U NiK me?  UNK

E, Ussk  E,
AgKeAi=2.02><10—22g,-< )r( ; ) cm?.
Ushek) \ g2 Ak

The theoretical results with and without the rela-
tivistic correction are plotted in Fig. 8; those with the
relativistic correction are in very good agreement with
the experimental data.!3-16

Now, we shall pass on to more complicated cases,
namely, the elements of greater atomic number with
several groups of electrons of different binding energies.
The simplest atom having electrons of different binding
energies is lithium. It has two electrons of binding
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Fic. 8. Inner-shell ionization, with and without relativistic
correction, by electron impact.

-

9 F. L. Hareford, Phys. Rev. 74, 574 (1948).

10 G. W. McClure, Phys. Rev. 90, 796 (1953).

1Y, Cauchois, J. Phys. Radium 13, 113-121 (1952).

12y, Cauchois, J. Phys. Radium 16, 153-262 (1955).

18 A. E. Smick and P. Kirkpatrick, Phys. Rev. 67, 1153 (1945).

4L. T. Pockman, D. L. Webster, P. Kirkpatrick, and K.
Harworth, Phys. Rev. 71, 330 (1947).

5 D. L. Webster, W. W. Hansen, and F. B. Duveneck, Phys.
Rev. 43, 839 (1933).

18 1. C. Clark, Phys. Rev. 48, 30 (1935).
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energy 55 eV (1s electrons), and one electron of binding
energy 5.4 eV (2s electron).

According to our approximate method, the total
ionization cross section is the sum of the ionization
cross sections of the individual shells. Thus, we have:

cross section for ejection of the 2s electron:
bt i q 6.56X10—4 (Ee \
i se 1= X____ 1 — ] cm
5.42 8 5.4)
E,
=22.5X 10“6g¢(—> cm?;
5.4

cross section for ejection of one of the two 1s electrons:
o 6.56X10~4 /E,
LuseQ1= 2X—-——&(—~> cm
552 35
E.
=0.44X 10‘16g¢(—> cm?;
55

and finally the total ionization cross section:
Li i = Li2e, Qi f Lits ()i

In Fig. 9 the theoretical results and relative values
obtained by Brink,'” both normalized at 500 eV, are
given. Similarly, in the case of the argon atoms we have:

Number of Ionization
Group of electrons electrons in potential of
Shell of an atom the shell the shell in eV
K 1s 2 3190
L 2s 2 324
L 2p 6 247
M 3s 2 29
M 3p 6 15.7

The ionization cross section of each shell is, respec-
tively :
Als O+ =1.29X10~%g,;(E./3190)
X7(6.25X1073; E,/3190) cm?,
A2 (t=1.25X10"18g,(E./324)
X7(6.34X1074; E,/324) cm?,
A2 Ot=6.45X 10713¢,(E,/247)
X7(4.84X1074; E,/247) cm?,
Ads Ot=1.56X10"1%g,(E./29)7(5.67X1075; E,/29) cm?,
A3p Ot=16X10"1%,(E./17.5)
X7r(3.08X1075; E,/15.7) cm?,

and the total ionization cross section of an argon atom,
being the sum of the partial ionization cross sections, is:

AeQ+= AlaeQ++ A2seQ++ A2peQ++ A336Q+_+_ A3peQ+ .

The greatest contribution to the total cross section is
that due to the outer shell of the atom, which in the
case of argon is of the order of 99%,. The contribution

17 G. O. Brink, Phys. Rev. 127, 1209 (1962).
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Fic. 9. The ionization cross section of lithium, including the
contribution of the K-shell ionization, by electrons.

of the inner-shell electrons to the total ionization
is negligibly small (Fig. 10, experimental data of
Bleakney'®).

Taking into account that the maximum value of the
function g;, being independent of U, is equal to 0.216,
the greatest value of the ionization cross section of a
given shell is:

Qmax'= (00/ (U%)?) X0.216m.*. (25)

This maximum is attained at energies of incident
electrons
EJ.E’.AU ik.

At very high energies, for velocities of the incident
electrons much greater than the mean velocity of the
K-shell electrons, the atomic cross section can be

10 15, ‘
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Fic. 10. The cross section for the ionization of different shells

and the total ionization cross section of argon for electrons up
to relativistic energies.

18],, Bleakney, Phys. Rev. 34, 157 (1929).
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expressed by the very simple formula

. 1 ago 1 E,
atom, (Yire, > ne"——«(l—l—— In——) ,  (26)
3 Uk

1
§mevez k U'Lk

which shows the contribution of each shell clearly.
The contribution of each shell in the first approximation
is inversely proportional to-the ionization potential of
the shell, and is proportional to the number of electrons
in the shell.

VI. SINGLE IONIZATION BY HEAVY
CHARGED PARTICLES

If the velocity of the ionized particle is much greater
then the velocities of electrons in the ionized atoms, no
difference exists between ionization by heavy charged
particles and by electrons of the same velocity. The
difference occurs at the low velocities of the impact
particle. As we know from Paper II, the minimum en-
ergy of the incident particle at which the amount of
energy AE can be transferred to the target electron of
energy & is

in the case of electrons,
E,=AE,

in the case of heavy particles, 27)

AE é uzo g g \12
me ) ) |
Am/md\AE AE
It is necessary here to draw attention to a very
common error resulting from the assumption =0,
impermissible for the atomic collisions: At §=0 the
threshold energy for ionization by heavy particles,

determined from relation (27), amounts to

qui('mq/me)Uiz Us/K e (28)
as against the value
E,=0.17XU;/K,. (29)

MICHAL GRYZINSKI

obtained for §=U,. Evidently, as a result of the
continuous character of the wvelocity distribution
function of the electrons in the atom, the ionization
process may also take place at still lower energies, while
the threshold for the mean velocity of the electron in
the orbit, which we will call the apparent threshold,
is only accompanied by a change in energy dependence.
According to this the process of ionization by heavy
particles may be described in the following way:

i= (Uo/Ui2)Gi(vq/7)i) ’

where the function G; has the form:
(a) above the apparent threshold (for v,>0.206v;)

72 2 1 g
G,~=f7;[ -|——(1+—) ln(2.7-|——):|
v 2402 3 o V4

] o

(b) below the apparent threshold (for v,<0.206v;)

2 /9,\*
&gﬂ—(ﬁ).
15 Vi

In the above, v; denotes the velocity of an electron,
corresponding to the ionization potential. The plot of
the function Gi(v4/v;) is shown in Fig. 11.

In the region of extremely low energies we cannot
neglect the influence of the averaged field of the target
atom upon the motion of the heavy incident particle.
For positive impacts, the region of radii smaller than
the distance of closest approach, as determined by:

Mt/ (Mt+mq)Eq= 3‘?(7)ZG )

(30)

(32)

where M is the mass of the target atom and the other
symbols are the same as in (2), is excluded from
penetration. Since according to the classical mechanics

we can put
ep(r)=E.(r),

the velocity of the impact in the vicinity of the target
nucleus can be written approximately

[ 2 Mt 1/2
v (£~ Bz )} .
— mq(M,+mq ! !

Using (33) for the calculation of Gt** (see Sec. VI of
Paper II) we have

1/2 x — 2)1/2
Gith,_,_v_z(tnﬁ) /“a =)
3\mqe 21 xt

X[H&Z—%ﬁ][l‘m% (39

(33)
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where

— (35)
UiMAmy Z, 4

E, M, 1 1(m41>1/2

e Ly

and #; and x, are the roots of the equation
1—A4/x(a—a*)'2=0.

The lower limit of integration x; corresponds to the
maximum distance from the nucleus 7max, i.€., to the
minimum velocity of the target electron at which the
ionizing collisions can still take place, while similarly
the upper limit of integration x; corresponds to the
minimum distance and the maximum velocity. As a
result, the process of ionizing collisions occurs in the
layer between the radii #m.x and 7min. As the velocity of
the heavy particle decreases, the thickness of this layer
grows smaller, and at x; =1, vanishes, thus determining
the threshold for the ionization process by positively
charged heavy particles.

Uiym, mq e\'?
)"
2 \M ¢ Me q
Denoting E,/E** by x and performing the integration
in (34), we finally obtain:

2 /o004 19 1
G,ﬂ“=2———(—) {1——x2-——x4
15\ 9; 12 24
5 af 1+ (1—a?)12
— n
16 (1—a2)V2  1— (1—a?)l2

(36)

(A—a2)v2, (37)

The form of the function G; having been derived, per-
forming the numerical calculations presents no diffi-
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culty. Calculations are identical to those for the case of
electrons, provided, obviously, that instead of the
function g, we use the function G. Thus the cross
sections for the ionization of atomic hydrogen, helium,
and argon by protons are

H OH*=3.54X 101G, (v,/2.2 X 108 cm sec™!) cm?,

Ho OHet =2 17X 106G (v,/2.96 X 108 cm sec™) cm?,

APQA+= AsprAsp*'_*_ AsspQA:Sa"’

=16X1071%G;(v,/2.4X 108 cm sec™?)
+1.56X10719G;(v,/3.6X 108 cm sec™).

Experimental datal®? and the theoretical results are
shown in Fig. 12.

Similarly, with the help of (36) and (37), we have
calculated cross sections for the inner-shell ionization

of some elements (Al, Ti, Zn, Ag, Ni) by low-energy
protons and K-shell ionization of Cu by deuterons.

ALK O+=5.4X107%G;(v,/2.35X10° cm sec™?)+Gith* (v,/2.35X 10° cm sec™),
TiE Ot=35.3X1072G;(v,/4.2X10° cm sec™?)+G#7(v,/4.2X10° cm sec™?),
NiK Q+=1.9X1072G;(v,/5.5X10° cm sec™?) 4G, (v,/5.5X 10° cm sec™?),
Cuk O+t=1.6X10"2G;(v,/5.7X10° cm sec™)+G#*(v,/5.7X10° cm sec™) ,
ZnK Ot=1.4X107%G;(v,/5.9X10° cm sec™) 4G (v,/5.9X 10° cm sec™),
Cuk 0+ =1.6X1072G;(v,/5.7X 10° cm sec)+G#*(2,/5.7X 10° cm sec™).

The calculated curves and the experimental data?—28
are in very good agreement; see Figs. 13-16.
According to (36) we have calculated threshold

B E, W. McDaniel, J. W. Hooper, D. W. Martin, and D. S.
Harmer, Proceedings of the Fifth Conference on Ionization in Gases,
Munich, 1961 (North-Holland Publishing Company, Amsterdam,
1962), pp. 60-68.

2 N. V. Fedorenko, V. V. Afrosimov, R. N. Ilin, and E. S.
Solovev, Proceedings of the Fourth Conference on Ionization in
Gases, Uppsala, 1959 (North-Holland Publishing Company,
Amsterdam, 1960), p. 47.

2 W. L. Fite, Proceedings of the Fourth International Conference
on Tonization in Gases, Uppsala, 1959 (North-Holland Publishing
Company, Amsterdam, 1960), Vol. I, p. 23.

2 H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. (London)
A240, 382 (1957).

energies for ionization for various colliding systems
including heavy ions and heavy atoms. The theoretical
and experimental® values are given in Table I.

% 0. Peter, Ann. Physik 27, 299 (1936).

# P, R. Bevington and E. M. Bernstein, Bull. Am. Phys. Soc.
1, 198 (1956).

% M. S. Livingston, F. Genevese, and E. J. Konopifiski, Phys.
Rev. 51, 835 (1937).

% H. W. Lewis, B. E. Simmons, and E. Merzbacher, Phys.
Rev. 91, 343 (1953).

2 B. Singh, Phys. Rev. 107, 711 (1957).

8 E. Merzbacher and H. W. Lewis, Encyclopedia of Physics
(Springer-Verlag, Heidelberg, 1958), Vol. 341, p. 183.

¥ H. S. Massey and B. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, 1952), pp. 455-456.
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It follows from the comparison given that the
experimental value of the threshold energy is several
times higher than the theoretical value, this being rather
unobjectionable in view of the fact that we do not
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In spite of the fact that the masses of the colliding
particles as well as their charges change by several tens
of times, and as a result, the threshold energies also
change by several hundred times, the ratio of the
experimental to the theoretical value changes by only
several times, remaining approximately constant within
a given group determined by the type of the ionizing
particle. From the qualitative agreement obtained be-
tween theory and experiment, an inference can be made
that in the process of ionization by atoms or heavy ions,
at very low energies of the colliding systems, the de-
cisive role is played by the interaction of the electrons of
the ionized system with the nucleus of the bombarding
system, and at the moment of closest approach of
the two.

VII. CHARGE TRANSFER

The capture of an electron, which according to our
nomenclature will be written as follows:

AB+QBA+’

can be easily explained on the basis of the theory of
binary collisions. And thus if we denote by U4 the
binding energy of the electron in system 4, and by U
the ionization energy of the level on which the electron
in the Bt system is captured, then, in order that the
capture should occur, any of the electrons of the 4
system has to gain from the particle Bt an energy
corresponding to its velocity plus the difference
UA—U.® of binding energies in the two systems;
nevertheless, the acquired energy cannot be greater
than that corresponding to the translational motion
plus the ionization energy of the level on which the
electron is captured; or in other words, the energy of
the relative motion after collision cannot be greater
than the ionization potential of the B system. The
capture then occurs if in collsion the electron acquires
energy within the limits

imup?F+UA-UBLAES imaup?+UA+UE. (38)

Having determined the limits for AE, we can estimate
the cross section for the process considered:

oard(AE)

Qi

mevB+2/2 +Uid+UiB
/;mws-ﬂ/z +Ui4—-U;B

or, with the aid of (IL.38) and with use of the assump-
tion B A~UA:

SRy N
o (UiA)Z UA ‘ UiA’ viA),
where
UP vp+ 3(vp*/v:4)
Gc(—;f—)= Jeten . (40)
UA 4] [14 (upt/04) = (UB/UA)?

From the above relation it follows that if U4A> U B, the
cross section for that process will have its maximum at
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velocities such that
%mevgﬁzUiA— U,;B .

For UA=U.® (which corresponds to the resonance
charge transfer), the cross section increases mono-
tonically with decrease of the particle energy. At very
small velocities, since the electron considered is not a
free particle for which the theory of binary collisions
could be appropriate, but is bound in the atom and has
a limited region of motion, the formula (39) is no longer

TasLe I. Experimental and theoretical values of threshold
energies for ionization by atoms, molecules, atomic ions and
molecular ions.

Experi- Ratio of
Tonization mental Theoretical exp. value
potential  values values  to theor.
Ionizing Ionized ineV in keV in keV value
H* He 24.56 2.35 0.66 3.6
Het He 24.56 15.0 3.0 5
He He 24.56 15.0 3.0 5
Be* He 24.56 55.0 10.4 5.3
Bt He 24.56 76.0 14.7 5.15
B+ He 24.56 76.0 14.7 5.15
c* He 24.56 90.0 18.0 5.0
cH He 24.56 90.0 18.0 5.0
Al+ He 24.56 441.0 77.0 5.7
K+ He 24.56 260 155.0 1.7
Fe* He 24.56 1600 303.0 5.3
Fett He 24.56 1600 303.0 5.3
Fettt He 24.56 1600 303.0 5.3
Cu* He 24.56 2000 384.0 5.2
Cutt He 24.56 2000 384.0 5.2
Cu*t*  He 24.56 2000 384.0 5.2
H* Ar 15.75 0.78 0.345 2.25
Lt Ar 15.75 7.1 1.8 4.0
Net Ar 15.75 31.0 8.4 3.7
Mgt Ar 15.75 77.0 10.5 7.3
Ar Ar 15.75 62.1 18.1 3.45
Art Ar 15.75 62.1 18.1 3.45
Artt Ar 15.75 62.1 18.1 3.45
X+ Ar 15.75 62.1 18.1 3.45
Rb* Ar 15.75 186.0 59.5 3.12
Co* Ar 15.75 400.0 125.0 3.2
H,* Ar 15.75 1.6 0.69 2.32
N+ Ar 15.75 37. 9.0 41
Lit Ne 21.56 13.7 2.84 4.83
Ne Ne 21.56 58.0 13.1 443
Ne* Ne 21.56 58.0 13.1 4.43
Ne* Ne 21.56 74.0 15.7 4.70
Mg+t Ne 21.56 71.0 17.3 4.45
Ar Ne 21.56 175.0 37.0 4.73

valid. The maximum impact parameter at which the
electron can still be captured into the orbit is determined
by the condition

82ZB+/Dmax< UiA .

Denoting by 74 the amplitude of oscillation of the
target-atom electron, we can estimate a maximum of the
cross section for the capture:

T4 UiH 2
cheomzﬂ.(rA_l_Dmax)?: Waoz(—+2'z—]‘ZZB+) . (41)

Qo %

The situation will be analogous for UA<U,B, the
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only difference being that the asymptotic value of the
cross section corresponding to the geometrical cross
section (41) will be reached much earlier, already at
energies

gmapr=UF—-U#,

shifting with the increase of U;® more and more into
the region of high energies. The plot of the capture
function G, is shown in Fig. 17, while the qualitative
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form of the cross section for the capture process is

MICHAL GRYZINSKI

shown in Fig. 18. To illustrate the considerations,

calculations have been made for several cases, using the formula (39):

6.56X 10—14213.6 13.6

15.6

1H Hyt
3 ZPQH 3 =

15.6 \13.6

——Gc(———; 1,/2.4X 108 cm sec“1)=5.05>< 107G, (0.87 ; v,,/2.4X 108 cm sec™) cm?,

He OpHet=2.39X 1071¢G, (0.55; v,/2.95X 108 cm sec™) cm?,

ApQHA+-'¥A3 P, Quhs »tp A3s Oy AB st

=3X10"15G,(0.87 ; v,/2.4X 108 cm/sec™)+2X 10716G, (0.5 ; v,/3.1X 108 cm sec™!) cm?,

H Op®"=7.1X10"%G,(1; v,/2.2X 108 cm sec?) cm?.

The process ®,Qu™" represents the resonance charge
transfer; in this case the cross section is deprived of a
maximum, increasing to the value of the order of

simple dynamical theory
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Fic. 18. Sketch illustrating the qualitative form of the capture
cross section, and of the role of the geometric cross sections
determined by the dimensions of the orbit in the target atom and
by the ionization potentials of the atom and the moving ion.
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4

Q™ as v,— 0. As is evident from Figs. 19-21, the
calculated cross sections indicate qualitatively the
nature of the capture process.*—3 At high velocities
the calculated cross section decreases with the sixth
power of the impact velocity which is the same depend-
ence as that experimentally found in the region of
medium energies; at very high energies, the decrease
is too slow.

The cause of this difference lies in too rough a
treatment of the process considered, since the condition
(38) is necessary but not sufficient for the target-atom
electron to be captured into the orbit of the moving
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F1e. 20. Cross section for the formation of helium ions by

protons, which is the sum of the cross sections for pure ionization
and for ionization in the capture process.

140 160 180

particle; moreover, the atomic electron should be
ejected in the direction of the velocity vector of the
incident particle. Both wvelocity vectors must be
contained in an appropriately small angle which, being
a function of energy, rapidly decreases with increase

®W. L. Fite, R. F. Stebbings, D. G. Hummer, and R. T.
Brackman, Phys. Rev. 119, 663 (1960).

#B. B. Afrosimov, R. N. IPin, and H. B. Fedorenko, Zh.
Eksperim. i Teor. Fiz. 34, 1398 (1958) [English transl.: Soviet
Phys.—JETP 7, 969 (1958)]. .

# J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. (London)
A240, 382 (1957).

8 C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958).
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of the latter, conducing to additional decrease of the
cross section.

However, this process may be quite correctly ex-
plained in terms of the theory of binary collisions,
wherein the calculations become considerably compli-
cated, and in the reasoning the essential role is played
by the momentum distribution of the target electrons.

As far as the difference in the region of small energies
is concerned, it will be rather difficult to eliminate it on
the ground of the two-body approximation; for v,— 0
and AE — 0, considering that the electrons are bound
in the atom, this approximation is not valid any more.
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VIII. MULTIPLE IONIZATION

The formation of a multiply ionized atomic system
may occur either in the process of successive collisions
of the ionizing incident particle with some electrons of
the system, or in the process of collision between the
electron being ejected and the remaining electrons.
The cross section for the transfer of energy AE from the
incident particle to some of the #, electrons of the system
(we consider the group of electrons as being in the same
energy state) is (see Fig. 22) #m.0oam(E,), and the
probability that the primary particle will collide once
more with some other electron, transferring to it energy
AFE, is

ne—1 1 1 E
El dr r{"UAE (E—AE).

Therefore the cross section for two successive, collisions

ne(yh— 1) /‘AE"’“=/'(E<1—U€€)

Qscii:
4qrr?

Ui

ABmoxe=y (Eq—AE)
OAE (Eq)d(AE)/ oap (Eq—AE)d(AE').
Uis
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FiG. 22. Two ways of formation of doubly ionized ions
in the double ionization process.

in which impact loses energies AE and AE’ can be
written
Ne—1 1_

1
neoap(Eq) 2 — —oaw(E,—AE),  (42a)
i=1 4qr 7;?

where E, is the initial energy of the particle, E,—AE
represents the energy left with the particle after the
first collision, and 7; is the distance from the electron
which has acquired energy AE to the ith electron.
Assuming that the density of electrons in the shell of
the atom is uniform, and denoting the mean distance
between electrons by 7, (42a) may be rewritten

(1/47)(ne(ne—1)/7)oan(Eg)oan (Eq—AE). (42b)

In order to make the first electron leave the system, it is
necessary to provide it with an energy greater than the
first ionization potential U;, whereas to eject the next
electron, an energy greater than the second ionization
potential Uj; is needed. Finally, the cross section for
double ionization by the primary particle only will be

[Fig. 22(a)]

(43)

Analogous reasoning carried out for the ionization by the recoiled electron gives [Fig. 22(b)]

Qeii

2
4y UitUs;

 ng(ng—1) AEm AE
i / oa5(EQd(AE) / cam (AE)A(AE).

(44)
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If the primary particle is an electron, then AE™*=E,— AE and the above relations may be reduced to the form

. ne(ne— 1) Eq-Usi
Q=" [ aan®)Qou( B ABE), (45)
472 Ui
- ne(n—1) e
Q=" [ can(BEDQoAENAE). (46)
darf? Ui+Uis
Taking into account that cag(E,) is a rapidly decreasing function of AE [oag < 1/(AE)? t #7], (45) can be written
approximately
. P (ne_ 1)
o sc"—ﬁ‘—’-—;_?—[QU.' (EQ)— Qg vis(Eg) 1Quss (Eq—<AEsc>av) ’ 47)
7
where
EUs
(1/AE?)AEd(AE)
Us In((E,— Uiz‘)/Uii)
{AEse)av™ - = . (48)
Bq=Usi 1-Ui/(Eq—Us)
(1/AE?®d(AE)
U;
Similarly, (46) yields to
. P (”s_ 1)
Do i S CUiUi (E)Qui((AEei)av) (49)
T
whereas now
Eq
(1/AE*)AEd(AE)
UitUsi In(Eo/ (Uit Us))
(AEj)av™ =UitUx) . (50)
Eq 1—(U+Usy)/E,
(1/AE?»d(AE)
UitUis

Making use of the previously introduced notation, relations (47) and (49) may be rewritten in the following form:

. ne(n.,—l) oo oo g Eq U.'
erc“=_‘——T—(_—)<__)[gQ(*‘; _')_ (
41r7'2 U¢2 Uz'iz U,‘ Ui E— Uii

Uii

)2 ( 8 Eq ):l < 8 Eq—'<AEua>av) (51)
Q 3 et Sneesnme— Y
NE—Us B0 F U U

(52)

0t ”e(”e"'l)(‘fo )( ) )[( )2 ( 8 E, ) (8 <AEei>rW)]
it =—| — | — ; go\ — .
' 4x7? U2/ \U;2 UAUs; se U+Uis UAUs ¢ Ui Ug

The functional dependence of the cross sections obtained
on the energy of impact is determined by the expressions
within the brackets, while the absolute value of these
relations is given by the expression in front of the
brackets.

Considering that U;,~2U,; and &~U,, the cross
section for double ionization is roughly of the same
shape for the majority of cases and can be written as
follows:

thotii: eerii+ ercii = Qoii egii (Ee/ Uz+ Uu) )

where

(53)

» ﬂ,(ﬂ,—l) gy 09

T UavUs e

0

The plot of the function gt is given in Fig. 23. Thus,
we see that in the region of low energies of incident

electrons the main contribution to the double ionization
is due to the process of double collision of the primary
electron, and the cross section for this process decreases
as E;? (this dependence results from the asymptotic
form of the function gg) whereas the cross section for
ionization by ejected electrons decreases as E;!, being
decisive in the high-energy range. The E,! dependence
of the latter results from the fact that the mean energy
of recoiled electrons depends slightly on the energy of
the primary electron [see Eq. (50)] and the resulting
decrease is due to the decrease of the cross section for
the first collision.

In the process of ionization by scattered electrons
whose energies do not change appreciably in encounter,
the cross sections for both collisions, being each propor-
tional to E; Y, give as a result a 1/E,? dependence.

Since the relations obtained explicitly include, via the
mean distance 7, the dimensions of the atomic system,
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the problem may be reversed, and knowing the experi-
mental value of the cross section for the double ioniza-
tion, it is possible to determine the dimensions of the
system. Having the experimental value Qo'! and taking
into consideration that ,g;;™**=0.058, we find

/n, (ne—1) 0.058)1/2
’
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and the mean radius of doubly ionized system
Re~in i3, (56)

Proceeding similarly we can calculate the cross sections
for ionization that is threefold, fourfold, etc.

If the primary particle is a heavy one, then consider-
ing that the energy of the particle does not change

e - (55) considerably in the ionizing collision process, i.e.,
U Uu\ 4r Q.maxu Eq,=Eq'—AE&’Eq, we obtain
» n,,(ne— 1) A Emax A Emax
oQsel N / 7(AE,E,)d(AE) / o(AE"E,)d(AE"), (57
47!'7'2 Us Uis
. ng(ne— 1) AEmax AE
Qe it———— / o(AE,E )d(AE) / o(AE',AE)d(AE). (58)
4rr? UitUis Uis
The above relations may be rewritten
Quoli= (1e(ne—1)/477)Qu, Qv (59)
Q jli= (ne(nﬂ_ 1)/4WT2)QU1+UHQUM (<AE>9-V) ’ (60)
where now
A Emax
/ AE(1/AE?)d(AE) y
+Uis In(AEkms,x (U +Uu))
(AB)=—" = (U, (61)
max 1 (U +Un)/AEmax
/ (1/AE?»d(AE)
UiHUss
and finally:
Oui ne(ne—l)( D) )( oo )G (vq)G (Ui 7
sct = N | S A= £ S -5 ) 62
42 Uz2/\U;? Vs ¢ Uis '”z‘) ( )
- me(me—1) /00 o0 Ui \? E v E (AE),,
) (racm N (R WY M) ®
4772 U¢2 Uiiz U,'-I— U,'..' U; + Uu Vs Un Uii

In the above G;, as we know, is the ionization function
for heavy particles, given by (31), while Gq is deter-
mined by (13). Since for atomic electrons §~U; and

i
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showmg the contribution of ionization by double scattering of
the primary electron and by the recoiled electrons.

U;>2U;, we can make universal graphs for double
ionization by heavy particles (Fig. 24).
Analysis of experimental data will be started with
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ionization of helium.

the simplest case, which is the double ionization of the
helium atom.

For helium we have U;=24.6 eV, U;=>54.4 eV,
n,=2, and the experimentally found maximum value
of the cross section for double ionization, is 2.4 10-1°
cm? Using (55) and (56), we find the radius of the
helium atom to be R¥e=1.18X 108 cm, while the gas-
kinetic radius of the helium atom is 0.95X 108 cm.

Similarly, having for the argon atom:

UA=15.7eV, UsA=27.6¢V,
4,01=0.308% 101 cm?,

=38,

and neglecting the small contribution of inner shells to
the double ionization, the radius of the argon atom has
been estimated. The calculated value is RA=1.3X10-8
cm as against the gas-kinetic radius 1.5X10-% cm.
Using the derived relations, the cross section for the
double ionization of the helium atom by electrons
has been calculated and compared with the ratio
He Qi/He il found experimentally.? See Figs. 25 and 26.
The formulas of this chapter can automatically be
applied to the problem of excitation of x-ray satellites;
knowing the cross-sections, it is possible with the use of
the theory to estimate the dimensions of inner orbits.

IX. EXCITATION OF ATOMS AND MOLECULES
BY ELECTRONS AND IONS

Denoting by U, and U,y the excitation energy of
the levels # and #--1, respectively, the excitation cross
section of the level # per electron of the excited shell is

3 H. E. Stanton and J. E. Monahan, Phys. Rev. 119, 711 (1960).
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at once seen to be

Un+1
oand(AE)

Un

U; E, U5 E,
=Q(—;—)—Q< ; ), (64)
Un Un Un+1 U'H'l
where the function Q is given by (7), (10), and (13).

(See also Figs. 1 and 2.) For U,/U .1 — 1 we obtain
QEXUEO'AE=U"X (Un+1_ Un) . (65)

Qexc(Un ) Un+1) =

This simple picture of excitation is strongly deformed
in the low-energy range by the capture process in the
case of positively charged particles, and to a lesser
extent by the exchange process in the case of electrons.

The capture of electrons influences the excitation
process in this way: Some of the electrons which have
gained the amount of energy necessary for excitation
are removed from the atom by the positive potential
hole of the moving heavy ion. As a result, the real
excitation cross section decreases by a certain amount:

Qresultant exchexc__ k- Qc ’ (66)

where Q. is the total cross section for capture and % is of
the order of

b~ (Unia— Un)/ Gmod+Ut). (67)

The influence of the capture process on the excitation
cross section is negligibly small at high energies of the
incident particle, because Qe is inversely proportional
to E,, and Q, is inversely proportional to the cube of
Eg; but it is dominant at low energies.

To illustrate the problem, the excitation of helium
by protons has been calculated. Because the excitation
energies of helium levels with n=4 and =35 are 23.70
and 23.95 eV, respectively, the excitation cross section

300
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Fic. 26. The ratio of the cross section for single ionization to
that for double ionization of helium as a function of the energy
of incident electrons.
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Fic. 27. Excitation of helium levels by proton impact.

is simply
o0 0.25 1246 1w,
Ho (Ho(sHpHidHn) '—Go('_; )
23.7223.7 \23.7 v;He
0.25 0He(ay)
i a10(vp) .
2U4.64bmu2/2

Using the experimental data for the capture process,
shown in Fig. 27, the correction due to this process
according to formulas (66) and (67) has been also
estimated. Results of calculations and some experi-
mental data®—37 are given in Fig. 27.
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The exchange process can be quite easily explained on
the basis of the theory of two-particle collisions if
the Coulomb field of the nucleus is taken into account.
As has been mentioned before, the kinetic energy of the
incident electron increases in the potential field of the
nucleus; therefore, a possibility exists of collision with
the loss of energy greater than the initial energy of the
electron. If this happens, the electron will not be able
to escape from the ‘‘potential hole” of the nucleus. On
the other hand, the atomic electron gaining the amount
of energy greater than its binding energy can be
ejected from the atom. In order to estimate the cross
section for this process, we assume the atomic electron
to have zero velocity and to be confined within a
potential hole with a depth equal to the binding energy
of the atomic electron. Therefore, the initial kinetic
energy E, of the incident electron increases inside the
potential to the value E.+ U, The incident electron,
depending on the amount of energy lost in the collision
with the atomic electron, can escape from the potential
hole if |AE|<E,, or be captured if |AE|>E,. If the
energy of the primary electron after the collision is in
the interval U,— U1 then the above is equivalent to
the excitation of the level # of the target atom in the
exchange process. Using formula (II1.10) and substitut-
ing E=E,+U; we obtain at once the excitation cross
section due to the exchange process:

oo et d(AE
Qe:-:ch’z / (‘_2 . (68)

EAUiJpaviv. AE?

The double upper limit

€i= U,,
=EAUi—Unpa

if EAU—Una<U;
if EAUi—Unpa>Us

in the above integral appears because the minimum gain
of energy needed by the atomic electron to be ejected
is equal to its binding energy. Performing a simple
integration, we finally obtain

ao Un-H—Un U,' U«,' E,
Qexch= gexch( ) ; ""‘) ) (69)
Un2 Un Un Un+l Un
Un2 Un Ee_ Un .
Zexch = X— if Ee< Un+1
(E9+U,)(E6+U¢—Un) Uq, Un+1'_Un
Un2 Un
it E,>Unp. (70)

(B U (EAUi—U,)

Assuming U, to equal zero and U,y; to equal the
ionization potential of the atom, (68) represents the

3 ], Van Eck, thesis, University of Amsterdam, 1964 (un-
published).
(136611{)' Hughes, R. Waring, and C. Fan, Phys. Rev. 122, 525
961).
3 R. Dopel, Ann. Physik 16, 1 (1933).

X
EAUi=Unn

total cross section for the exchange process. As can be
easily shown, the exchange cross section decreases very
rapidly with increase of energy:

Qexch o 1/E63 .

Now, we shall again proceed to calculate concrete cases.
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Fi1c. 28. Theoretical cross sections for the excitation of different
levels of atomic hydrogen and experimental values for the excita-
tion of Lyman « radiation by electrons.

(a) Excitation of atomic hydrogen levels. Taking into
account that the excitation energies of the first three
levels of atomic hydrogen are 11.2, 12.1, and 12.7 eV,
the respective cross sections for excitation will be

H,OH22= 635X 10-16g ¢ (1.34; E,/10.2)
—4.48X 107150 (1.12; E,/12.1),

H OHGpH) =4 48X 1015 (1.12; E,/12.1)
—4.08X 10164 (1.07; E,/12.7),

whereas the excitation of the S levels may take place by
the exchange process only (direct excitation is imper-
missible according to the selection rules). Thus using
formula (66), we obtain

13.6 13. 6 E,
H OH2s—1 26X 10~ lsgexch(_— P )
12.1 12. 1 10.2

136 136 E, )

H OM8s=(,223 X 10! gexch(
12.1712.7712.1

and, analogically, we can calculate the cross sections for
the excitation of the higher levels. The results of the
numerical calculations have been shown in Fig. 28,
where the experimentally found cross section for the
excitation of the Lyman « series® is presented, which
cross section, considering the negligibly small probabil-
ity of np-—Is transitions for »>2, is approximately
equal to the cross section for the excitation of all levels
of atomic hydrogen.

Similarly, taking into account the fact that the
majority of transitions from high-energy levels of Na
pass through the levels 2p2Ps and 2p°Py,, we have
calculated the cross section for the excitation of the

3 W. L. Fite, R. F. Stebbings, and R. T. Brackman, Phys. Rev.
116, 356 (1959)
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D lines of sodium,

E,
NaeQNnDz 1_48)( 1014 Q 2.45 y — “O.ZSX 10—
§ 2.10

E, E,
><gQ<1 ; ——)+2.12X10‘14gexch(2.45; 1;——) ,
5.12 21

where the last term represents the contribution of
excitation due to exchange. (See Fig. 29, experimental
data of Christoph® and Haft.4)

Proceeding to the excitation of the energy levels of
helium, we can, in view of a relatively small difference
of energies between the levels, avail ourselves of relation
(63). Thus we obtain successively

E, )
23.1)°

E,
He 8P =) 5 10‘18g.,( 1.04; —) ,
23.1

HeeQ31P= 7.3 X 10—18g0< d;

) E,
He ()8'P = (.47 X 10—18g.,(1.02; ——) ,
23.1

where the function g,(U;/U,; E./U,) is given by (9).

If we take the classical approach to the problem in
assuming that the probability that after the exchange
the spins of the electrons will be parallel is the same as
the probability that their spins will be antiparallel, the
cross sections for the excitation of triplet levels of
helium will be

He 0%8=1.87X 1018g, n (1.05; 1.03; E,/23.5),
He ()2%8=2.45X 10" gecen(1.24; 1.08; E,/19.8) ,
He, 02'8=1.90X 107gexen(1.20; 1.08; £,/20.5).

In Fig. 30 we have drawn theoretically calculated cross
sections for the excitation of various levels, and relative

40 [
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F16. 29. Excitation of the D lines of sodium by electron impact.

3 W. Christoph, Ann. Ph%lsﬂ( 23, 51 (1935).
4 G, Haft, Z. Physik 82, 73 (1933)
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values of the excitation of lines #'P—2.S measured by
Thieme* and Lees* normalized at the maximum of line
215—3'P, as well as the cross section for the excitation
of the triplet level of #=4 and the relative intensity of
the triplet level of #=4 and the relative intensity of the
line 2°P—43S.

Recently, St. John ef al.® measured the excitation
cross section of the 3'P level of helium; their result is
nearly the same as calculated.

Quite good agreement is shown by the calculated
maximum value of the cross sections for the excitation
levels 215 and 23S with the experimental results obtained
by Maier-Leibnitz* by the electron collision method.

theor. expt.
Ho 0 axHe2!S 3.8X10718 cm? 2.7% 10718 cm?
He,)  He2lS 4X 10718 cm? 4.8 10718 cm?2,

X. STOPPING POWER OF MEDIUM FOR
CHARGED PARTICLES
A charged particle moving in the medium loses energy
because of :

(i) interaction with atomic electrons (excitation and
ionization losses),

(i) interaction with the Coulomb field of a nucleus
screened by atomic electrons,

(iii) scattering by nuclear forces (elastic and inelastic
nuclear collisions),

(iv) interaction due to magnetic moments of the
colliding particles,

(v) radiation losses.

In the moderate- and high-energy range, if the energy
of the particle is not extremely high, the most important
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Fic. 30. Excitation of singlet and triplet lines of
helium by electrons.

(excluding, of course, special conditions existing in
high-temperature plasmas® or inside some kinds of
stars*®) are the ionization and excitation losses.

At very low energies of heavy particles the interaction
with the averaged field of the atom cannot be neglected.
For light particles (electrons and positrons) at energies
of a few MeV, the radiation losses must be taken into
account.

The losses related to the interaction with atomic
electrons are determined by the excitation energies of
the lowest levels of all shells of the atom (Uexd).
According to the relations derived in Paper II which
have been adopted for atomic collisions (see relations
at the beginning of the paper), we can write simply

E,

go 8k
Xg.;(

atom §'— Z nek
k Uexck

¥ G( ¥
= Ne XGs
k Uexck

Uexck

UQXB

4 .
;—) for heavy ions,

) for light particles
Uexuk

’ (71)

Te

where gg and Gg are given by (11) and (14). At high energies the losses due to excitation and ionization are well

described by the asymptotic expression:

ao /17ek 2 Uexek Vg gk uz 4 Vq . .
atomG—="%" 5} —> 2 In— ) +-In—  for light particles
T Uad\og/ 8 5 \Uad/ 3 08
1-)ek 2 Uexck ? E \1V2 4 o
=3 nt i /——) 2 In2— ) +- In— for heavy ions. (72)
k Uexck\ Vg 5k 53": Uexck 2_)ek

If we insert in the above relations U instead of Uexd®
we shall obtain the losses Si due to the ionization

4 (. Thieme, Z. Physik 86, 646 (1933).

% J, H. Lees, Proc. Roy. Soc. (London) A137, 173 (1932).

4% R. M. St. John, C. J. Broncs, and R. G. Fowler, J. Opt. Soc.
Am. 50, 28 (1960).

4 H. Maier-Leibnitz, Z. Physik 95, 499 (1935).

process. Subtracting S from S we will have the losses
connected with the excitation process only.
Using (I1.13) we can estimate the stopping power

4 M. Gryzifiski, Phys. Rev. 111, 900 (1958).
4 M. Gryzifiski, Phys. Rev. 115, 1087 (1959).
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due to the Coulomb interaction with the nucleus:
2met meM, v2D 1 \?2
)]
M o4 met+M, & Z,Z,

where we have assumed the target atom to be at rest
and the maximum impact parameter to be of the order
of the radius of the atom. In the above equation Z,
denotes the charge of the target nucleus in units of
elementary charge, and M, its mass.

In the case of the positively charged particles,
especially of large g, the capture process must be taken
into account. As a result of the capture, the Coulomb
field of the moving particle is screened, and the losses
can decrease; on the other hand, the capture process
permits losses of energy to atomic electrons in amounts
smaller than necessary for excitation of the lowest
level, increasing the slowing-down force.

The influence of the capture on the slowing down
can easily be taken into account if the stopping power
is discussed in terms of the function G; in which the
dependence on the maximum impact parameter has
been retained (as in the author’s earlier paper?). The
increase of the stopping power which is predominant
for particles of small charge, as for instance for pro-
tons, can be easily estimated, too.

According to the results of Sec. VII, the mean loss
of energy in one cycle of capture and loss of the electron
by a moving particle is of the order of 3m.,?; therefore
the contribution to the stopping cross section due to
this process is

S= (me/mg) (QQ1/ Q401 E,,

where Q. is the cross section for the capture, and Q; is
the cross section for the loss of the electron.

Using derived formulas, the total stopping cross
section of some gases for protons have been calculated.
The contribution of S¢ in the total stopping cross
section of argon and helium has been estimated, using
for Q. and Q; the experimental data of Federenko and

SD=

222 ln[l—l—(

(74)
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others.!” It has been found that the contribution of S,
is greatest at energies of some tenths of keV, being, in
agreement with the previous estimate by Allison,*” the
order of 15 to 209,. The results of calculations and
experimental data®=% are shown in Figs. 31 and 32.

Having found the stopping cross section, it presents
no difficulty to calculate the ranges of charged particles
in matter, although the analytical formula can be found
(approximately) only in the very special case of one
kind of stopping electrons. Considering only the losses
due to interaction with electrons as given roughly by
(I1.41), we can write

1 (B
R~

Prac
Neo

dE,

(oo/ 8)f5 In{1-4+4(8/Uex L1+ (0,/5:)* T}
(75)

where R, is the range of a heavy particle of initial
kinetic energy E,0 in the medium having N, electrons,
with mean velocity ¥, and excitation energy Uex, per
unit of volume.
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F1e. 32. Stopping cross section of molecular hydrogen, helium,
and argon for protons.

4 S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).
8 L. Reynolds, D. Dunbar, W. A. Wentzel and W. Whaling,
Phys. Rev. 92, 742 (1953).
9 P. K. Weyl, Phys. Rev. 91, 289 (1953).
(13055 J. Cook, E. Jones, and T. Jorgensen, Phys. Rev. 91, 1417
8 J, A. Philips, Phys. Rev. 97, 404 (1955).
@ F. Ribe, Phys. Rev. 85, 1217 (1951).
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The above relation may be written approximately,

18 M,

~N

TN 0o me In{144(8/ U T141 (00/5,) 712}

@dl50)? du
N A —
0 1/x(x/ (1+x)?
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or, after the integration has been performed,

1 &M, & 1)
R SN (55,
N g Me Uexc Ve

an

where by fr(8/Uexc; /D) we have denoted the
function

(78)

b
Uexe Ve

( 8 vqo)_l (v2/D)[ 14 (v%/5e)* T[54+ (v/0e)* 143 arc sin(v’/ D)
® 4 In{14+4(8/Uexe) [1+3 (00/5.)°]) '

At high energies we find that

(v)*

& o
fR( ;—_“>~—"“—_—
Uexe 7o/ In(v/,)

in agreement with the dependence found experimentally.
Making use of formula (77), the range of protons in
molecular hydrogen has been calculated, and the results
compared with the experimental data® (see Fig. 33).

XI. THE SCATTERING PROBLEM IN
ATOMIC COLLISIONS

The scattering problem in the general case of atomic
collisions is a many-body problem, for which the
solution can be only approximate. A method for solution
of elastic scattering will be quite different from that for
inelastic scattering. The latter can be solved in the
binary-encounter approximation; but in the case of
scattering, the dependence on the space orientation of
the averaged fields of colliding atomic systems and on
the velocity distribution of electrons is much greater
than in the case of pure energy exchange processes.
Nevertheless if we use cross sections averaged over
velocity distribution of atomic electrons, a two-body
approximation enables the main features of inelastic
scattering to be obtained correctly.

On the basis of the relations derived in Paper IT we
can proceed at once to numerical examples.

We shall start our calculations with the inelastically
scattered electrons suffering a given loss of energy in
molecular hydrogen. The angular distribution of
electrons of energy E, scattered by electrons of mean
velocity 9, with loss of energy AE is given by (IL1.80)
(we use the formula for isotropically oriented atoms,
which is the case for a gaseous scatterer). In our
particular instance we have §=15.6 eV, E,=200 eV,
and AE=150, 100, 125, and 150 eV. The results of calcula-
tions and the experimental data of Mohr and Nicoll,*
both normalized at the maximum of the curve for
AE=125 eV, are given in Fig. 34. It is seen that, as a

8 C, J. Cook, E. Jones, and T. Jorgensen, Phys. Rev. 91,
1417 (1953).

% C. B. O. Mohr and F. H. Nicoll, Proc. Roy. Soc. (London)
A138, 469 (1932).

result of the assumed velocity distribution of the form
(I1.45) with #=3, good agreement with the experi-
mentally observed angular distribution has been
achieved (cf. the results of the paper® where the velocity
distribution of the form of the & function has been used).

The slight deviation between theory and experiment
is probably due to the influence of the nuclear Coulomb
field which increases the back scattering, as well as
to the contribution of ejected electrons not having been
taken into account. The existence of the maximum in
the angular distribution of the inelastically scattered
particles, as seen in Fig. 34, may be interpreted as a
corpuscular explanation of the diffraction pattern of
inelastically scattered particles.

The angular distribution of particles scattered in
“lonizing collisions,” i.e., scattered inelastically with a
loss of energy greater than the ionization potential, also
has the form of a diffraction ring, although it is not so
distinct, and more diffuse (see Fig. I1.15). In the case
of scattering on atomic systems with electrons of
different binding energies, a corresponding number of
diffraction rings will occur in the diffraction pattern.
The continuous background of inelastically scattered
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particles varies as
1/(1—cosd)?,

which can be easily proved on the basis of Paper II.

It has been observed that fast electrons passing
through solids experience discrete energy losses which
are practically independent of the energy of the
primary particles. Later Watanabe® found that some
of the characteristic energy losses are associated with
the diffraction pattern of the scattered particles, and
the empirical formula for the characteristic energy loss
AE and the scattering angle & can be extimated :

AE/E,=AE/E+a¥?,
where the constants AE, and ¢ depend slightly on the
5 H. Watanabe, Proceedings of the Gatlinburg Conference on

Penetration of Charged Particles in Matter, Tennessee, 1958
(National Academy of Science, Washington, D. C., 1960), p. 152.
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TasLE IL Experimental and rough theoretical values for AEo/E.
and a. (The accelerating voltage is 25 keV.)

AE/E, a(radian™2)

Scatterer expt. theor. expt. theor.
Be 7.6X107 3.8X10™ 0.84 1
Mg 4.2X10™* 3.0X 10 1.24 1
Al 6.0X10™* 2.4X10~ 1.00 1
Ge 6.6X10~* 3.2X10 1.66 1

scatterer used. The above formula is the same as the
approximate formula of Paper II for the diffraction
maximum of inelastically scattered particles, provided
we have

AEO= 8 )

Taking into account that & is of the order of the
ionization potential of the atom of the scatterer, we can
confirm the theoretical formula of Paper II (see
Table II).

The results obtained are in fairly good agreement
with those found experimentally, especially if we take
into consideration that the theoretical values concern
free atoms, and the experimental values concern solids.

Going on to the crystal structures, we may expect a
strong anisotropy in the velocity distribution of their
electrons. It is evident that this anisotropy has to be
related to the orientation of the main crystallographic
axes and planes; therefore, the spatial orientation of
electron velocities is determined by plane or axis
indices which in our formalism relate to the discrete
values of the angles 6 and .

For the polycrystalline structures oriented relative
to the plane, as in the case of thin sheets of metals
evaporated onto films, there exists a set of discrete
values for the angle 6 while the orientation with
respect to the angle ¢ is isotropic. As a result, the
diffraction pattern will have the form of sharp rings.

In the case of monocrystals, there is a set of discrete
values both for the angle 6 and for angle ¢ which
results in a diffraction pattern of spot form.

On the basis of the anisotropic velocity distribution
of electron velocities in the crystals, the spatial distribu-
tion of ejected electrons can be explained, as well as
the classical experiment of Davisson and Germer.

a=1.



