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Two-Particle Collisions. II. Coulomb Collisions in the Laboratory
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This paper presents a classical theory of Coulomb collisions, as a particular case of the previously pub-
lished general theory of two-particle collisions. There are derived and presented explicitly, in the laboratory
system of coordinates, both the energy and angular relations for two-particle collisions and the cross sections
related to them. Apart from the exact formulas, approximations are obtained, which should prove to be
both suKciently exact for the majority of calculations and at the same time fairly simple, while emphasizing
the main features of the Coulomb interaction.

I. INTRODUCTION

IW~F all the interactions occurring in nature, a special
role is played by those whose forces decrease with

the square of the distance, i.e., by the Coulomb and
gravitational forces.

Clear understanding of the interaction (collision)
processes of many-particle systems invariably requires a
profound knowledge of the two-particle collision process.
As in other cases, so too for the Coulomb forces, full
analysis has not been made of the collision process in the
laboratory system of coordinates, the significance of
which has been emph, asized for the 6rst time by
Chandrasekhar. ' The analysis of this problem up to
now has been highly fragmentary and incomplete, and it
has concerned rather particular cases only. It is enough
to mention here the well-known Rutherford formula
concerning the scattering of charged particles, which
has played a decisive role in the knowledge of the struc-
ture of the atom, or the Bohr interpretation of some
atomic-collision phenomena. These problems, like a
number of others (Thompson's theory of ionization, for
example), concern the scattering on particles at rest;
the approximation resulting therefrom is sufBciently
correct only within a certain range of the phenomena
under consideration, and the failure to realize this has
in many instances led to completely erroneous con-
clusions.

A close study of the problem of two-particle collision,
already partly carried out by the author, "yielded an
extremely simple explanation for a number of phenomena
in the 6eld of atomic collisions. The aim of the present
paper has been to analyze the Coulomb interactions
more completely on the basis of the general theory of
collisions given by the author previously. '

II. BASIC CROSS SECTIONS FOR
COULOMB FORCES

The relations derived in Paper I as a result of general
considerations, arising only from the laws of conserva-

tion of energy and momentum, are easily applied to
forces decreasing with the square of the distance, i.e.,
to the gravitational and Coulomb forces. As we have
already shown, the characteristic features of the inter-
actions are expressed by the scattering angle in the
center-of-mass system. In our formalism, therefore, the
dependence on the interaction law enters the basic cross

sections as well as the derivative quantities through the
function F'(4'„0) defined by the Eq. (I.64), which in

this case takes the very simple form P(k/ttV')'. The
constant k in the above expression determines the

coupling force between the interacting bodies. For the
gravitational 6eld, the constant k is m1es2G, where m1

and m2 are the masses of the colliding particles, and G is
the gravitational constant (G= 6.7&& 10 '

g
' cm' sec ');

in the case of the Coulomb field we have: k = q1g2, where

q1 and q2 are the charges of the particles under considera-

tion. Since the function F' enters directly as a factor in

all the cross sections describing the interaction of
particles, the form of all relations is independent of
the constant k.

Taking this into consideration, we shall subsequently

speak only of the Coulomb interaction, while bearing
in mind that by substituting G=6.7)&10 '

g
' cm'

sec ' we obtain relations for gravitating particles.
The above being considered, the fundamental cross

sections as given by (1.68), (I.72), and (I.79) will take
the form

Op 1 1
Og@=

+1~2 +12~

d(1/cos'4'o)
fv f(())ve, (1)

(Wso(1/cos'4 hE 0))'ts

o.o (1+F8/Es)'" 1 1

' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).' M. Gryzinski, Phys. Rev. 107, 1471 (1957).' M. Gryzinski, Phys. Rev. 115, 347 (1959).
e M. Gryzinski, preceding paper, Phys. Rev. 138, A305 (1965),

hereafter cited as I.
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oo (1+~E/E2)'"
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X 7
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' S. Chandrasekhar, Astrophys. z.s. „.93 323 (i94i).
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For v2 —& vj, there appears a strong resonance between
the test particle and the field particles, which, ie/er alia,
is directly connected with the appearance of oscillations
in the plasma. Another characteristic feature of the
Coulomb interaction is the decrease of the cross section
for energy exchange with the square of hE:

1/(~E)'.

In conclusion, we can state that the inverse propor-
tionality of the cross section 0.» to AE, as well as the
form of the function fv, immediately gives a qualitative
interpretation of the majority of phenomena occurring
in Coulomb collisions.

Inserting vl ——0 in the above formulas (scattering on
the field particles at rest), we obtain the well-known

relations:

2)r(qlqs)' 1

m~v2' AE2

with the condition ElsEs(DE&0, (10)

2w(qlq, )s 1 V )
m vss U +IsEs)

0.6
' s.

+*Q (divergeiit for &,
'

1)

= ., /i~ -~==, -, --, -
~,-H'--,'

CI

o&
0 05 8.5 4

I

1S 2 Z.S 3

THE RATIO OF VELOCITIES Os/Eg

FIG. i. Coulomb velocity function fv which determines the
basic dependence of energy-exchange processes on the velocity
of the colliding particles.

the approximation v&
—+0 is not equivalent to the

approximation v2))v~, and that it divers much from the
latter if we consider a collision with a very small energy
exchange (AE«EI):

oAE ~ 1/AEs for vi=0
~ 1/hE' for DE«EI, however, vs&)vl.

2)l (qlqs) IL I2Es
S= — ln-

m~v2' U
(12)

IV. ANALYSIS OF ENERGY CROSS SECTIONS IN
THE CASE OF ISOTROPIC DISTRIBUTION

OF FIELD PARTICLES

Sg) ——
2m(qlqs)' Ilvs'D) '

ln 1+
mlV2 — qlq22

of which (11)is identical with the dependence derived by
Thompson, ' whereas (13) is an equivalent of the Bethe
formula~ provided we take into account that the maxi-

mum impact parameter D at which a field particle can

gain an energy amount greater than U is determined by

qlqs/D& U.

Here it is necessary to draw attention to the fact that

In order to give explicit expressions for oAE, Q, 5, and

SD, it is necessary to define the velocity distribution of
the field particles. In the most common case of isotropic
velocity distribution (f(6)= s sin8), the analytical form
for the arbitrary values of mj and m2 can be derived
only for the expressions o-&z and S&, which has already
been done' '; nevertheless, to give a full picture of the
case, we shall quote once more the results of our final
calculations, especially in view of the fact that some
errors have crept into our previous publication.

(i) Cross section for a collision in which the test
particle undergoes a change in energy AE:

o zE= (oe/hE') (sgn( —6 )E/ E)gI"„s

1(v f fv vs ) 2EI( vs ( vs ml 4Elf'
g.'"=-I —

I &+I ——2—~
I

—
I
*—+I *— 1——

I
1+—

I

2&vs L Evl v, ) 3 DER vl k vl ms 3 EEL v, s)

(14)

'v 4 E f v s) s- s~ssi(AE)
+ ——1—2 —+-

I 1+—
I

(15)
ms 'vl -AE 'v 3 LIE( vl ) ss(AE)

where cos8),s(EE) is given by Eq. (I.93). If we consider a collision for which the energy change is in the range

mIVII t' VII f vl)I I mlvl)
I&EI &&Es s=lt»Esl 1+ II 1—

I
« I~EI&~EV--=ILI&sl 1+—

II
1—

msvs) l vs) v,) k m,v,)
' (16)

6 J. J. Thompson, Phil. Mag. 23, 449 (1912).
~ H. A. Bethe, Ann. Physik 5, 325 (1930}.
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then the integration limits are 0 and s, and expression (15) assumes an extremely simple form:

0p j. 822 jV,
op@=- ——sgll( —AE)+

(hE)' E2 mi 3 /SE/

fTo j. e2 kg——sgn(AE)+-
(~E) E. .. 3 [~Ef

for e2+v~

(17)

[~E[&~E, , and ] m( &~E. ..
then the integration range extends from 0~ to 02, and we obtain accordingly:

«1m2r hE '" 4 EL p
«s —————

~

1— -,'sgn( —aE)+- — — for aE) —-(o2~ —si2)
hE' E2 mi E Ei 3 [~E/ 2

1 i, r hE~'"——
I
1+ I k sgn(~E)+-

~E2 E. ..k E,) 3 fSE[
for EE&—-(on' —pi2) .

2

[~E[&~E, , and ]~E(&~E. .. (20)

then one integration limit is constant, 0 or ~, while the other is variable, and therefore relation (15) cannot be
reduced to a simpler form.

(ii) Cross section determining the dynamic friction of a particle moving in a collection of isotropically distributed
Geld particles

~r = (oo/Ei) ga'*,

mi) (oi)' 1 t sr arc t—an/(2x)'"/1 —xj (if x&1)
gn'*=

I 1+—II
—I—

m, i km, ) 2d K2 n —arc tanD2x)' '/x 1j —(if x&1)

1+sr x+(2x)'"+1 1( sr
+ -In +-~ — +tgx

~

ln(1+x') —2&/x
v2 (1+x2) i&2 2 (ax

where the following notation has been introduced:

(DII r oR o2 r Dp ) f V2 r SQI
sil1+—=dI1+—I, &=

Egin E Vi Vi (gigot) E 'Vi E oi/

For the special case of heavy particles slowed down by light ones (m2&)mi, t= 1 and. p=mi), we obtain

Sn ———(4s (qigg)'/ming)G(d, vg/si),

and now

(22)

(23)

(24)

1 1 sr ar—c tanL(2x)'@/1 —xj (if x&1)
G(d; ss/ii) =-

4d v2 s.—arc tanL(2x)'"/x —1j (if x& 1)

1+sr x+(2x)'~'+1 1r sr
+ ln +-~ ——+Qx ~

ln(1+x') —2+x
(1+x2)»2

The plots of the functions g,'", g~' as well as of the functions gg' and gq', determined by the relations

0= («/U') go'"

~= («/U)ga'*

(25)

(26)

(27)

)which have been obtained by numerical computations of (7) and (8) for f(8)=-,sine in the two essential cases
mi= m2 and mi&(m2$ are given in Figs. 2—8.
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V. APPROXIMATIONS OP DERIVED CROSS SECTIONS

Since we have in view the application of the obtained relations to concrete calculations and to the interpretation
of experimental results, our interest lies not only in exact expressions (which do not always have a physical sense,
since they concern the abstract collision process of two isolated bodies), but also in the simplest possible reasonably
exact approximations of the relations obtained. Thus, in the relations (6), (7), and (8) determining aqua, Q, S,
we approximate the function fv by the first two terms of its series expansion and neglect the dependence of hE on
the angle 8 by putting AE (e) =hE, . Also, we average the integrand over the angle 8 in the range O-v, using
only the part of the integration range over 0 in which (for DE&0) 8),s can be approximated by (see Fig. 9)

& /(&+[~& [)

COSH', 2~~
ER

for sory= 5$2 ~ (31)

Then we obtain

cos0 ~1—2(!AE
I / I

/) E
I

)'+'"/'&'

co882~—1, for 5$y(+F2 ~

(32)

0'0 I I/)(E-I ) & /(&+[&// I)

!(T~z~ fv"'X
I

1——+-
aE' IsE-I E, & E2 3 E, i

[AE [
w' 4- [aZ [

)'+"""'-
X +- 1—

E) vg'+v)' 3
I
hE

E) 2 ( U — U )+&i/(&i+(/)

e——&"'x —()—)+-I 1+—) (&
—

)U' E) E2 3 ( E2 Eg

fol tsyggfs2, (33)

—U e2' 2( U U — ( U' I+eP/oP-

X — +-1 1+
'-a " '+~a'
—U E& E2 4 U —

U~ E)l (//&+(/)

S~ fv(') X —1——ln—+— 1—— 1——
!

U E) E2 U 3 E2 Emi

U v2' IAE, I
4

X — ln +— 1—
Ev+v, ' U 3

for v/s)((mm „(34)

(35)

fv"'=fv
I // ./u=l —

I

& v,i v 2+v,mi

(v '
I
&E-„„„I=&»E&j 1+—1=4E&j — 1+—

I
=E&~

v,) & v, v,i

(36)

(40)

(41)

S=(.,/E, )f, ln(j ~E-.,I/U),

S~=(~o/Ei)fv»(1+(/ l"D/et~)'j

is the maximum energy which the Geld particle of
velocity e~ and energy E~ can gain in collision with the
test particle of velocity v2. For rough calculations as
well as for the qualitative interpretation of Coulomb
collisions, we can make use of still more simpliGed
formulas. Thus, putting in the relations v~ ——0 every-
where except for the Coulomb velocity function fv and
the value d.etermining IEE- I, we obtain a se
relations:

which can be successfully used for the interpretation of
the basic Coulomb coHision phenomena.

Calculating the ratio S/Q, we obtain the mean loss of
energy of the test particle per collision:

~~~= (~o/AE')(1/E))fv,

U
e=(../e) n/a)/, (~—I~E-.,I&

of
U v, m ln(j ~E-..„I/U)—+—

(3&) S 3 E) v2'+vP 1—UIAE-m, ~!
I&» )I =—=U (42)

Q 2 U i U
— 1+ — I+-

I~E-. Ii E, v22+vP
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field particles, it is necessary to average the obtained
relations over v~.'

&b,Z av= ops(v, )f(vg)dvg,

a
CO

a
Ch

la

CL

t.O

0-
C)
I

0,4
I

VELOCITY RATIO Q/V,

FIG. 8. Stopping-power function for heavy particles if slowed
down by light ones when the collisions with loss as well as those
with gain of energy are taken into account.

whence we have in the limiting cases:

(a) in the vicinity of threshold (~ AE, ~~ U)

(43a)

(b) for large velocities of test particles

~p (Eg/ U)+ in(EgpEp/ U)
~(AE )~~ U (43b)

,'(Ei/U)+1-
In atomic collisions

~
(AE ) ~

is simply related to the
mean energy of 8 electrons.

VI. CROSS SECTIONS AVERAGED OVER THE
CONTINUOUS VELOCITY DISTRIBUTION

OF FIELD PARTICLES

Considering that in the majority of physical processes
we have to do with a continuous velocity distribution of

(e)-= e( )f( )d ,

9')-= 5'(v )f( )&v

Provided the maximum of the velocity distribution
function f(v&) is suKciently sharp, so that the most
probable velocity divers at most slightly from the mean
velocity 8&, we can operate with the previously derived
relations, putting into them simply e&= 8j. and
+]= gmyvy . However, we must keep in mind that in the
case of m2)&m~ the threshold for inelastic process dis-
appears in averaging over the continuous velocity dis-
tribution of field particles. This threshoM, being deter-
mined by the field particles of greatest velocity, tends
to zero if the velocity of the most rapid particles
approaches infinity.

Nevertheless, at the threshold with respect to the
mean velocity 8&, which we will call hereafter the
apparent threshold, the change in dependence on energy
can be observed.

Below the apparent threshold, the plot of the aver-
aged cross section is actually determined by the form
of the high-energy part of the function f(v,). The cross
section decreases monotonically to zero according to the
decrease in the number of high-velocity field particles.

Assuming the distribution function to be of the form

(45)

which for region e&))v&' may be approximated by

f(vi) 1/(n 2)!(v&%—,)", (46)

the energy-exchange cross section below the apparent
threshold can be calculated quite easily.

Since for the region considered, all terms in (33), (34),
and (35) with v&/v& can be neglected compared to unity,
we can write:

p4 " v, aE

E,pEp vz (n —2)!kv& v&')

&p 2 vp U v2 U vp 1 &1 ~1 )
U 3 ' g„o vy EypEp vy EypEp vy (B 2). vy vy I—

-"---.':— .. .,.„-;;(-.;.—;;) .'„(-;;) (-:;.)
Vy

AE ~iix
~

EgpE p
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Performing the integration over v~, the lower limit of
integration is obviously v&m'" ——(U/E&~Eq)v2, and sub-
stituting —',rn, (v&')'=EP we obtain successively

Oo & 4 v2 "+'
thr~

AE'
I
AE

I
3 vP

EP " 1 |1 1
xl 4 -I —

I
(47)

( faE-I (n —2)!&n n+1i

vo 2
v2y

"+' Epy" 1
(Q) thr~

I
4

U'3 vgi Ui (n —2)!

0-

0

Ky

laEt
—~ oo rn -"m

jf

Eg/I ~El

m, «m,

~approximation
exact function

1 I t

4 5

(1 1 1 1
XI — — — I, (48)

n+1 n+2 n+3i
K

iaaf ' isa!'
Fxo. 9. Comparison of the exact an,d the approximate limits for

the angle 8 where the latter have been used for the derivation of
approximate energy-exchange formulas.

tr1 2
XI — + . (49)

For m=3, which, as we shall see later, is the most im-
portant case for atomic collisions,

vlf(vz)dvt =» ~

Thus (47), (48), and (49) result in:

rapidly enough with the decrease of v&, then, on aver-
aging over field-particle velocity distribution, some
elements appear which substantially inhuence the aver-
aged cross sections o, Q, S. At n= 3 a logarithmic term
increasing with the ratio vg/v~ appears, which cannot be
neglected. This is bound up with the fact that at v=3
the mean kinetic energy of the field particle is loga-
rithmically divergent. Considering that for v»&v&,

~ Q S"t:+(»/»)'j1/»'
and for v2((vy

o, Q, S~ L+(vg/v2)'j(v2/vg)',
(50)

then, averaging these cross sections over f I
v~ I, at n=3

we obtain:

thr

(51) o, Q, S~ L+(v~/ )'vl2n(n(vg/v~))'j,

oo 1 64 v2 ' bg

faEIi-
'"-"=-'-"H'(-')'

&o 128 tr vm
' Sx) '

(S) 'h~=
V 45&v, Vi

(52)

In the above, the symbol 8& has been used for &m&8&'.

If the distribution function f(v~) does not decrease

where e and k are of the order of 1 and depend on the
particular form of the function f(v~)

Without going into details, and taking into considera-
tion only the first-order correction arising from the
logarithmic term, we can give the approximate forms of
the averaged cross sections for e=3:

~~+ P~.-P-
(aqua), "~ fr"' —— +- lnl 2.7+—

I
1—

IaE ISEI h. v. +V, 3 I v, i &I~E-,I~
(53)

-U v, 2 2( U q vmy-

(Q), '~= —fr&'& — +-I 1+
I
» 2.7+—

I

-hgvP+vi' 3& f&E msxfi

U )
— ( U ) l+v2 l„-9-

(54)

og U v22 IEE,
I

4 U v2
—- ( U ) 1+sml/Sp-

(» "= fv"' —— »— +- 1— » 27+—
U hg v22+vg' U 3

I
hE

I Vx

(55)

For rn& m2, in view——of (28), the presence of a term proportional to E& (for v2~~) is not determined by v2) vf,
but by a stronger energy condition:

E,)E,—
I
~E-I.
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As a result, the presence of the logarithmic term at n, =3 is connected with the particles of energy E(&Es+
~

AE
this leading to the relation

&4E av "=

as well as to

I
ee

I

)
"""+'""

fv' 1——+ in] 27+I
~E I~El S, E, 3 & & h,

(56)

p} &/s~ - U' &+sr/(s(+t/)

(Q) ) — fv(o—) —+— 1— ln
~

2 7+
U' 8, 3 2Es & h& ) ) Es

and similarly to

4( U ( Es ff &/2) —
/ ff) sr/(s(+(/)

(S) 1n — fv(P) 1
[
ln + ]

1 inj 2 7+
U .8& Esj U 3k Es ( h& ) «Esf

VII. CROSS SECTIONS e, Q, 8 IN THE RELATIVISTIC ENERGY RANGE

As has previously been shown by the author, the function Q, and so the functions o and S, describe the inelastic
collision process correctly in the range of relativistic energies, provided the velocities of the colliding particles are
derived from the relativistic relations. Moreover, in accordance with what has been stated above on the general
dependence of the energy-exchange cross sections on the function fv, it will be enough to derive the relativistic
function f„

Considering that in the relativistic case V=(r}ss+r}&s(1—t}ss/cs))'/s (relativistic composition of two perpendicular
velocity vectors') t}&

——c(1—((1+Et/mp&c') ')s)'" and similarly for t}s, we have

(1+as)sKy 21K& (1+Ks
&p) re&=

, 2+,(1+r,) (}+ }'+(e/ }((2+,}/(2+,}}((1+,}/(1+r,}}'
(59)
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where we have put

K& =E&/mp&c' and Ks =Es/m psc (60)

where mo~ and A&02 are the rest masses of the colliding
particles. The graph of the function fv & & '" is presented
in Fig. 10.

At ~~ —+0 and a2~0 we obtain a nonrelativistic
function fv&'&. At s&

——1,the function fv&'& "' is deprived
~a.f (P) re&/f (P)

Q ~Q.f (P) re&/f (P)

~S.f (P)re&/f (P)

(61)

The extension of the application of cross section
formulas so made into the region of relativistic energies,
although it describes correctly a number of physical
phenomena, is a rough approximation, and it cannot
constitute a basis for signiicant conclusions. Therefore,
in order to develop the collision theory, an attempt
ought to be made at deriving analogous relations based
on the relativistic laws of conservation of energy and
momentum.

of the maximum, while at ~~ ~ it tends to the unit
function analogically as in the case of the collision of
perfectly rigid spheres.

Thus, in the range of the relativistic velocities of the
colliding particles, the cross sections o, Q, S take the
form

0 0,5 1.5 z

%4Tto J ~~

) F., mes

3.5 VIII. SCATTERING CROSS SECTIONS
FOR COULOMB COLLISIONS

Fzo. 10. Coulomb velocity function fv& & in the relativistic
energy range where the relativistic formulas for the calculation
of v1, e2, and V have been used.

' L. Landau and Z. Lipshitz, Classical Theosp of Fields (GITTL,
Mockva-Leningrad, 1948), p. 23.

In a great number of collision problems we are in-

terested not only in the cross sections for the energy
exchange between the colliding particles, but also in
their angular distribution. According to the asymmetry
of the description of collisions in the laboratory system
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of coordinates, determined by the direction of the
velocity vector of the test particle, we shall speak about
the angular distribution of scattered particles and the
angular distribution of recoiled particles. The term
"scattered" will refer to the test particle and the term
"recoiled" will refer to the field particle.

Th,e cross section for the scattering of the test particle
at the angle 8 with the change in energy hE is given
by relation (2).

FiG. 11. Differential scattering cross section for the collisions
of a given change in energy in the case of anisotropic distribution
of Geld particles; the figure illustrates the appearance of "dif-
fraction" maxima.

1 1 1
X (62)

242m, v,v2 v- (Ws(8o))'/2

or, taking into account that 8'~ can be expressed in the
alternative form,

oo (1+DE/E2)'/2
05&,CO88

where &i.2(8o,AE/Eu, vi/v2) are the roots of the equation

Ws =0 which are given by (I.96) and (I.97).The position
of the singularities in the cross section O.~~„„q,which is
independent of the law of interaction, has been carefully
discussed in Paper I.

The cross section cr~~„„&in the form written above is

very useful if we discuss it with respect to hE or to the
angle 8. To have a clear dependence on the velocities of
colliding particles we rewrite (62) in a different form:

oz (1+BE/E2)'/2 1 1 1
(64)

p Em 4v. QW„
(T&&,CO8+ =

E22

where now

In the case of a strongly anisotropic velocity distribu-
tion of field particles (Fig. 11), if this can be approxi-
mated by the 5 function

f(8) = 8(8—8o),
we simply obtain:

oo (1+&E/E~)'/2
04@gco8 t9

fvi)' ( 1AE)' vi m2 16E)//16E fm2 16E '
W

Iv2) k 2E/ mi 2 Em) k2 E2 hami 2 E2
(65)

If vi ~0, then obviously (m2/m, )P+2i(AE/E&) —& 0, and there appears a unique relation between the scattering
angle 8 and the loss of energy AE.

In the case of isotropic distribution of the field particles, (2) results:

fTb, E,COS8
E22

=0

)5/2

oo (1+DE/E2)'/'
b&5&b

2%25$2VyV2

for $& (i or (66)

with the limits for f as given by (I.103).
Integrating oz&,„,o over the whole range of variability of angle 8 Lsee (1.104)], we obviously obtain the cross

section ops, on the other hand, integrating over all possible values of hE, we obtain the cross section for scattering
at the angle 8. Although the integration of (66) over AE can be performed, the analytical form of o„,o in the general
case cannot be given because of the difhculty in solving the fourth-power equation de6ning the limits of the integral.

The scattering cross section |T,q in the explicit form can be obtained for parallel or antiparallel velocities of the
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colliding particles only. Inserting then in (1.80) f(8)= 8(8) or f(8)= 8(8—v), we have

0 y=
qiq2 ~v2

p(v2avi)'

~v,
~

2 (1+gE./E )3/2

Z. 2Ep
v2 '=i (—(hE,+fi cos'e )')'"

~

2M i(1+vi/v~)' cos'4 +-'(AEg/E2)
~

(67)

where AE; is given by (1.81), and the upper sign is for
the parallel velocities while the lower is for the anti-
parallel. Because o;„+ must be a real quantity, the
range of integration over the angle 4, reduces to the
calculation of the residues of the poles of the function
under the integral. Taking into account that the poles

are determined by

(1/cos'@,)=AE;/b,

and the integrand has poles of first order,

we can write

q,q,
Ocosy =2'

y(v2avi)'

bE2 (1+AE~/E2) '" 282
(6S)

where we have set

X'-i aE '
~

1—4Mi2(1m vi/v2)'Em/b
~ ~
~;[

Now, the condition (1.81) takes the form:

cosy= (1+gE /Em) '"(1+-',(&E'/Eu)R) & (69)

(—(hE;x+9)')'" AE;2

1+mi/mm

1~Pi/P2
(70)

Finally, after making some transformations, the scattering cross section in the case of parallel or antiparallel

field-particle velocities is

( qiq2 )' vm pi R 1 ( 2 cos'8
I1——+

\m, s, 'J u, fp,ap,
~

(1—R)'sinOk R R' )
2 cosV& '"

1——cos8+i 1——+
R

if R& 2 or R&0

1 ~' p p 2 cosV~'~'q '
X2 1——

i
cos'8+i

i
1——+

R~ 4E R R' I
if 0&R&2. (71)

Taking into account that

1—2/R+ cos'8/R') 0 (72)

or in the case of equal masses of the two particles:

v;„v=v. (qiqp/m2vm')'(8 cos8/sin'vs) . (75)

and comparing with (69), we deduce that if R&0 or
R&2, then the forward scattering as well as the back
scattering is possible, and if 0&R&2 then only the
forward scattering is possible. Assuming that v~

——0, we
obtain directly from (71) the cross section for scattering
of the test particle at an angle 8 by the held particle
at rest:

( q,q, ) 2
0'cosy

km2v2'I sin'8 (1—(m /m )' sin'0)'"

XLcos8+(1—(mq/mi)' sin'0)'I'$' if m2&mi

X2L1+cos'8—(m2/mi)' sin'8]' if m2&mi (73)

If the mass of the test particle is greater than that of
the field particle (m2))mi), then the differential scatter-

ing cross section is divergent not only for 8~ 0 but
also for 8 —+ arc sin(mi/m2) (see Fig. 12). Nevertheless,
the total scattering cross section integrated over the
range 8,&8&are sin(mi/mm) is finite. The presence of
that divergence is obvious if we examine the angle of
scattering as a function of the impact parameter D. In
the case of held particles at rest, for the Coulomb
interaction Eq. (I.110), we get

cos8= 1—2
mi+m2 1+(Dljv '/ 2')i'q

which in the case mi —+0O (scattering by a center of
force) gives us the Rutherford formula

18$5$Q

X 1—4
(mi+mg)' 1+(Dpv2'/qiqm)'

(76)

v',»a=v. (qiq2/m2v22)'2(1+cos8)'/sin%; (74) The graph of the relation obtained is shown in Fig. 13.
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op (1+DE/Eg)'/' 1
dx, (78)

2V2vs~2 g, x'

where xp=(vt/vp);, is determined by the condition
(I.102); or explicitly

/»l /P '"(m& 1 ~E 1~
I

—+-
Ev,i E2i Em, 2 E, ti

(79)

Having performed the integration, we have

o. (1+AE/E p)
'"

$3/2
(

0

re, E,cosg av
g 2 2V2mg8ge2

zero to Ir. From (66), assuming that the velocity dis-
tribution has the form given by formula (45) with m=3,
we have

30' tp' 90'

Ills p

I

120' 150'

~Ip

gg
II I

180'
~ i+1

1 1)-
X2 1—e '/"( 1+—+

~

. (80)
x, 2x&i

ANGINA OF SCATTKQINS

FIG. 12. Differential scattering cross section for scattering on
particles at rest, for colliding particles of diGerent masses.

We see that the divergence of the scattering cross sec-
tion for m2)as~ occurs for the impact parameter at
which d8/dD= 0.

In the same case of m2) mj, the test particle can be
scattered at the same angle 8 at two different values of
the impact parameter D. This is the reason why in (67)
there appears a summa, tion over one or two values of (i).
We have a similar picture in the general case of sin8/0,
as well as for forces different from the Coulomb forces
if only they decrease monotonically with the distance
between the interacting particles.

Expression (3) determining the scattering cross sec-
tion with respect to angle 8 as well as angle p makes
sense if there is anisotropy in the velocities of the field
particles with respect to angle q. Then, according to the
relation (I.32), some values of angle tt are excluded. For
vp))vq and

~

hE
~
&E~vp/vt, according to the results in

Paper I, we have p~p, and. therefore we can write

The graph of the obtained (o.AN, „,a), is shown in Fig. 14.
As can be easily seen from Fig. 14, the "difI'raction"
maximum of "inelastically" scattered particles is ap-
proximately given by

&mvi & 2 E,

(81)
E, i i E,

For
~
hE I /Ep&&1 and vI —+ 0—, we obtain

(
hE

( Ep+(mp/mg)EvI'. (82)

Performing the integration of (oAD,„,a), over
~
hE~ in

the range U&
~

/AE
~

&
~
4E, ~, we shall obtain the

cross section for the scattering of the test particle at the
angle 8 if the particle loses the energy in the interval
mentioned above (in atomic physics this cross section
determines the angular distribution of particles scat-

OAN, cosa, a OAE, cosaf(V )—O a~=(77)

IX. SCATTERING CROSS SECTION AVERAGED
OVER VELOCITY DISTRIBUTION

OF FIELD PARTICLES

where f(p) is a velocity distribution function with
respect to the angle y.

cS
5
gg IR'
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aO lk

so'

ino angle at which

&~y, is divergent)

Similar to our treatment of the energy cross sections,
we may average the scattering cross sections over
the velocity distribution of the 6eld particles. In the
case of a continuous velocity distribution, according to
Paper I, the possible range of scattering angle 8 is from

0' l I I I I I

0 lt 1 ttR 1 3 4 5 $

IPIVACT VARAPIETER D IN IINITE (q,qgEE,)

FIG. 13. Dependence of the angle of scattering on the impact
parameter D, which illustrates the appearance of the divergence
of the differential scattering cross section.
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FIG. 14. Differential scattering cross section for collisions of
given change in energy if averaged over the continuous velocity
distribution of Geld particles of the form given by Eq. (46) for
n=3.

Fn. 15.Scattering cross section in "ionizing" collisions averaged
over the velocity distribution of Geld particles. The "diffraction"
maxima are distinctly visible on the curve for U»FI.

tered in ionization collisions):

max)

U,cosy av=

where xo is given by (79). Performing the integration,

( ) d(QE) (g3) we obtain

o.o (1—U/E, )'"
The exPlicit form of (Q~,««), can be obtained in the (Q~„,o), =
approximation U/Ec(&1. In this case we can write Ec' ~'(U/Ec)

oo (1—U/E, )'~'
U,eosd gv-

Ecc $5/2 U

&0 (I~& max ) )

+o(-U)

( / c)
where the upper sign applies when 2(p,/p, )'g) U/E,

g
—1/ap f d& 84 and the lower one when 2 2 ~

' & U E~. The graph

x, 2xoc) of the cross section obtained is shown in Fig. 15.


