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This paper presents a classical theory of Coulomb collisions, as a particular case of the previously pub-
lished general theory of two-particle collisions. There are derived and presented explicitly, in the laboratory
system of coordinates, both the energy and angular relations for two-particle collisions and the cross sections
related to them. Apart from the exact formulas, approximations are obtained, which should prove to be
both sufficiently exact for the majority of calculations and at the same time fairly simple, while emphasizing

the main features of the Coulomb interaction.

I. INTRODUCTION

F all the interactions occurring in nature, a special

role is played by those whose forces decrease with

the square of the distance, i.e., by the Coulomb and
gravitational forces.

Clear understanding of the interaction (collision)
processes of many-particle systems invariably requires a
profound knowledge of the two-particle collision process.
As in other cases, so too for the Coulomb forces, full
analysis has not been made of the collision process in the
laboratory system of coordinates, the significance of
which has been emphasized for the first time by
Chandrasekhar.! The analysis of this problem up to
now has been highly fragmentary and incomplete, and it
has concerned rather particular cases only. It is enough
to mention here the well-known Rutherford formula
concerning the scattering of charged particles, which
has played a decisive role in the knowledge of the struc-
ture of the atom, or the Bohr interpretation of some
atomic-collision phenomena. These problems, like a
number of others (Thompson’s theory of ionization, for
example), concern the scattering on particles at rest;
the approximation resulting therefrom is sufficiently
correct only within a certain range of the phenomena
under consideration, and the failure to realize this has
in many instances led to completely erroneous con-
clusions. '

A close study of the problem of two-particle collision,
already partly carried out by the author,?? yielded an
extremely simple explanation for a number of phenomena
in the field of atomic collisions. The aim of the present
paper has been to analyze the Coulomb interactions
more completely on the basis of the general theory of
collisions given by the author previously.*

II. BASIC CROSS SECTIONS FOR
COULOMB FORCES

The relations derived in Paper I as a result of general
considerations, arising only from the laws of conserva-

1S, Chandrasekhar, Astrophys. J. 93, 285 (1941).

® M. Gryzifiski, Phys. Rev. 107, 1471 (1957).

3 M. Gryzifiski, Phys. Rev. 115, 347 (1959).

¢ M. Gryzifiski, preceding paper, Phys. Rev. 138, A305 (1965),
hereafter cited as I.

tion of energy and momentum, are easily applied to
forces decreasing with the square of the distance, i.e.,
to the gravitational and Coulomb forces. As we have
already shown, the characteristic features of the inter-
actions are expressed by the scattering angle in the
center-of-mass system. In our formalism, therefore, the
dependence on the interaction law enters the basic cross
sections as well as the derivative quantities through the
function F’'(¥,,0) defined by the Eq. (I1.64), which in
this case takes the very simple form F’(k/uV?)2. The
constant % in the above expression determines the
coupling force between the interacting bodies. For the
gravitational field, the constant % is mmeG, where m;
and m; are the masses of the colliding particles, and G is
the gravitational constant (G=6.7X 108 g~! cm? sec™);
in the case of the Coulomb field we have: 2= gigs, where
q1 and ¢ are the charges of the particles under considera-
tion. Since the function F’ enters directly as a factor in
all the cross sections describing the interaction of
particles, the form of all relations is independent of
the constant &.

Taking this into consideration, we shall subsequently
speak only of the Coulomb interaction, while bearing
in mind that by substituting G=6.7X10"% g~! cm?
sec™! we obtain relations for gravitating particles.

The above being considered, the fundamental cross
sections as given by (1.68), (1.72), and (1.79) will take
the form

ago 1 1
OAE= -—
E1E2 K12 ™
d(1/cos?¥,)
x / / fr _f(6)ds, (1)
Wy, (1/cos?¥,,AE,0))12
oo (1+-AE/E)2 1 1
OAE,co88— " -
E22 25/2 2\/2—71127)17)2 ™
f(0)d0
x [ e
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ago (1+AE/E2)1/2 1 1
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E22 55/2 2\/2_7%2'1)1'1)2 m
6,
X/ fI6,0(¢)] w0, (3
(W«(AE,cos9,6))!/2

where we have introduced the notation

oo=m(q192)?, 4)

21 2 7}22 3/2
[
v9/ \v12+4092— 29,95 cosO

while the remaining symbols are the same as those

OAE=

AE? E,

1(AE)

IN LABORATORY SYSTEM

oo sgn(—AE) 02(AE) E, my Ey
" / fvl:l—————(l—~—) cosf—2— sin20:| #(0)d8, 6)
) E AE
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introduced in Paper I. First, we shall proceed to calcu-
late the above integrals under various assumptions with
respect to the distribution function f(6); next, we shall
give expressions for several most important derivative
quantities; and finally, we shall prove the correspond-
ence of the formulas obtained to a number of already
known relations.

III. CALCULATION OF ENERGY-EXCHANGE
CROSS SECTIONS

Performing the integration in Eq. (1) over ¥, in the
range Wy, =(1/cos*¥,,AE,0)>0, we obtain the cross
section for a collision in which the scattered particle
undergoes a change in energy AE:

V2 ma

where the integration limits for an angle 6 are determined by the condition (1.93).
Having obtained the final form of the cross section gag, it will be rather easy to give explicitly certain derivative
relations which, however, have direct counterparts in the physical phenomena observed. Starting from (6), we

can immediately give the cross sections for:

(i) a collision in which the particle loses energy in the interval U< |AE| < | AE max| (which corresponds to the

ionization process in atomic collisions),

—|AE"max| oo 02(=U) E1 El 2, my -
Q=/ G'AEd(AE)=—‘—/ fv {xl:x—U— sin20+1—————(1——) cosOJ}
U 0

UE, J oy

(ii) stopping power of a quantized particle with a minimum excitation energy U,

—|AE " max|
S=/ oasAEd(AE)

-U

g0 02(=0) E1 V1 my IAE‘_(O) | E1
= fv{[l————(l——) c050:| In—+42—sin?{ 1

El 81 (=U) Ez V2

i f@ds; (1)
Es 1o me 2=U/|AE” ()]
U
me U U (~|AE-(0)I)]f(0)d0’ @

where AE—(6) is determined by (1.83) while 8(— U), as in the case (4), is similarly determined by (1.93), in which

we have inserted AE=—U.

Now, the relations (1.123) and (1.83) determine the stopping power of the free particle:

AE+max ao T E1
SD=/ oagAEJAE=— fV

1—-2:—2— %:( 1 —Z—:—) cos0] ln[l—i- (#Z;f)z]f(())dﬁ , 9)

EJo

AE “max

which, as we well know, is divergent with respect to the
impact parameter D. The last formula is identical with
the dependence for the gravitating bodies obtained by
Chandrasekhar.®

In the four expressions derived above, essential for the
interpretation of the majority of phenomena taking
place in collisions of charged particles, there appears a
function fy, characteristic of that interaction, which
determines the nature of the relations obtained. The
graph of this function is given in Fig. 1.

5 S. Chandrasekhar, Astrophys. J. 93, 323 (1941).

In two limiting cases, v2>>v; and 95Ky, fv leads to a
dependence very common in atomic collisions:

fr— (01/v2)2~1/E; for v>>u
— 21/v9~A/E, for 2:Kv;.

In the region of large energies of the test particle (in
Coulomb collisions, a particle of large energy is one
whose velocity is much greater than that of the particle
with which it collides), the effects of interaction decrease
inversely as the particle energy; whereas, in the region of
low energies, the effects of interaction decrease propor-
tionally to the square root of the particle energy.
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For vo— vy, there appears a strong resonance between
the test particle and the field particles, which, inter alia,
is directly connected with the appearance of oscillations
in the plasma. Another characteristic feature of the
Coulomb interaction is the decrease of the cross section
for energy exchange with the square of AE:

OAE < 1/(AE)2

In conclusion, we can state that the inverse propor-
tionality of the cross section gaz to AE, as well as the
form of the function fy, immediately gives a qualitative
interpretation of the majority of phenomena occurring
in Coulomb collisions.

Inserting v,=0 in the above formulas (scattering on
the field particles at rest), we obtain the well-known
relations:

2m(gqig2)? 1

OAE= S
mve?  AE?
with the condition K12.E,<AE<0, (10)
2w )2 1 U
st L, 1
m1v22 U K12E2
2 2 KpE
_ 71'(9192) In 12 2, (12)
m1v22 U
27(q1q2)? uve?D\ 2
D=——9?—h{r+( : )], (13)
M1v2? G192

of which (11) is identical with the dependence derived by
Thompson,® whereas (13) is an equivalent of the Bethe
formula” provided we take into account that the maxi-
mum impact parameter D at which a field particle can
gain an energy amount greater than U is determined by

qlqg/D__>_ U.

Here it is necessary to draw attention to the fact that

oar=(0o/AE?) (sgn(—AE)/E1)g*™,,

1/ 0;\2 g\ 2 vy \ 12 2 E1/ va\2
e (-2
2 Vg N 1 3AE 1
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Fic. 1. Coulomb velocity function fy which determines the
basic dependence of energy-exchange processes on the velocity
of the colliding particles.

the approximation »;— 0 is not equivalent to the
approximation v55>%;, and that it differs much from the
latter if we consider a collision with a very small energy
exchange (AEKE,):

(TAECKI/AEZ for 21=0

«1/AE® for AE<KE;; however, v5>7,.

IV. ANALYSIS OF ENERGY CROSS SECTIONS IN
THE CASE OF ISOTROPIC DISTRIBUTION
OF FIELD PARTICLES

In order to give explicit expressions for oaz, Q, S, and
Sp, it is necessary to define the velocity distribution of
the field particles. In the most common case of isotropic
velocity distribution (f(8)=3% sinf), the analytical form
for the arbitrary values of m; and me can be derived
only for the expressions oar and Sp, which has already
been done?:?; nevertheless, to give a full picture of the
case, we shall quote once more the results of our final
calculations, especially in view of the fact that some
errors have crept into our previous publication.

(i) Cross section for a collision in which the test
particle undergoes a change in energy AE:

(14)
Vg m; 4 E; 7%
-220)]
V1 me 3 AE 7)12
My Vg E1 292 4 E.l 292\ 2 z=cos801(AE)
—_——1— ——+-——(1+——> }} , (15)
My 12 AEv? 3AE ;2 z=c0s02(AE)

where cosfy,2(AE) is given by Eq. (1.93). If we consider a collision for which the energy change is in the range

1 m101
IAE] <AE9=0—K12E2(1+—)(1_'—> or IAE[ SAE0=1{‘=K12E2(1+—>(1__>,
V2

mM2V2 V2

6 J. J. Thompson, Phil. Mag. 23, 449 (1912).
7H. A. Bethe, Ann. Physik S 325 (1930).

(16)

MoV
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then the integration limits are 0 and 7, and expression (15) assumes an extremely simple form:

do 1 me, 4 E1

AE="— ——MI:sgn(——AE)-{-—————:I for 2,29
(AE)? Eym, 3 |AE]
a0

1 V9 4 Ez
= ———I:sgn(AE)—l——————] for 2.<9.
(AE)? E; v, 3 |AE|

If
|AE|>AE¢y and |AE|>AEger,

then the integration range extends from 6; to 6,, and we obtain accordingly:

g0 1 me AE 172 4 El M
Ap=——— —(1-——) I:% sgn(—AE)+- -—-—-—:| for AE>——(ve?— v,
AE? E2 mi E1 3 IAEI 2
g9 1 V2 AE 1/2 4 Ez M
1
=——— 14— 3 sgn(AE)+——— for AELS ——(ve2—1:2).
AEZ E2 (21 Ez 3 IAEI 2

If
IAE!ZAE():() and lAE[SAEaEN,
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(7

(18)

(19)

(20)

then one integration limit is constant, O or m, while the other is variable, and therefore relation (15) cannot be

reduced to a simpler form.

(ii) Cross section determining the dynamic friction of a particle moving in a collection of isotropically distributed

field particles
Sp=(00/E1)gp®%,

gDex=(1+ﬁ>(ﬁ>2_l_{t—s’[ arc tan[(2¢)/%/1—x] (if x<1) ]
2d

ma/ \ vy V2 Lrx—arc tan[(2x)12/x—17] (if >1)
t+sr  x+(2x)1/24-1 1{ sr > z=g?
i : Fi/xc ) In(1+a2)—2¢ ,
Noj . (14-x2)172 2\\/acT Ve ) in(i+e) \/x] omr?

where the following notation has been introduced:

D,u. 172 Vg Vg D,u 1/2 Vg V2 meo—m1
o R - B o T B
7192 U1 U1 7192 V1 U1 ma-t+my

For the special case of heavy particles slowed down by light ones (m2>>m;, t=1 and p=m,), we obtain
Sp=—(4m(q:92)*/m1v:*)G(d,v2/v1) ,

and now

1—sr[ arc tan[ (2x)12/1—x] (f x<1) ]
V2 Lr—arc tan[(2x)22/x—1] (if >1)
14sr x4+ (2x)17241 1/ sr
+ In }
VI (14a)r 2\Wa

6 /)—1{
(’vzvl_;;

=g2

: \/x) ln(l—i—xz)—z\/x}

Ze=12
The plots of the functions g,®*, gp°* as well as of the functions g¢®* and g%, determined by the relations
Q= (00/U*)ge*™,
S=(o0/U)gs™,

(21)

(22)

(23)

(24)

(25)

(26)
e

[which have been obtained by numerical computations of (7) and (8) for f(6)=4sinf in the two essential cases

m1=ms and m;<Kms ] are given in Figs. 2-8.



A 326 MICHAL GRYZINSKI

10 — 0 o — T T — T
i | 1 1
1 | —
I lm »)m ! "Th formula i
ms= m, : — T - 1 o
AE<O' —— AaE<0 Lk ! }
= Es¢
Idél oz Es
G et
! AN
Sw 1 I/y =U" ! /"' \\
m AN I /[ N /, "Iv
= N /17 N [N x g - 4
= 77X NS = N
- &) 4 . |®= N
2 /8N NENE® 2 L=
vl ! \\ \ N bt L (Sl [rg;lw +
g ! AN A\ N.¢ e | [= = |
- I NN : | = =T
S 3) AIIRNPON S | o2 3
> 2 % R N x " Dzl
> 01— .:,"I ] ’o'"b \/\4‘) N > 01— é f}g“
- ", Hy— A B =
= i w % N o g €
[ FH—rTa b— — T (-3 — el i
w o T3 e, N w o [ge g
= W E} o N =z [* 5
42— EI - > €
s 31 \ -
1 5 -] \\ | §| E
- 5! | -
l llsl =l | 3 [=J
2 T ol = e
£ g <l s
£ | L@ |
oor| | | ] ! | ol = I
o5 1 5 10 e 7 ol 1 10
ENERGY OF TEST PARTICLE IN M—éUNITS PARTICLE ENERGY IN ﬁ'tg—s,' UNITS
F1c. 2. Graph of the function which determines the probability Fic. 4. Enerev-exch functi ex f ! £
of the collision in which the test particle of energy E» and mass T ergyir;e )ﬁleagf; O?Iflce;?,; éast p:rl;ictﬂz_ 0SS of energy
m; loses the amount of energy AE if it collides with a field particle
of the same mass and energy E..
" ——FH ! T
1 ——H
I 3 — &
[ 6ue = S ik 96 at = 2t jar 9e -
lfor mam, and AE<OD © for m,&m, [and AECO
1 I T S |
T I IR T T T 11T
| — exact function g% |_—exact function g¢'
-~- approximate function gg -=-- approx. function ge
2
w ,b -1 "é 3) & ' /
o™ 1 7 ARV T\ T =
z SIS 8 /
2 1A 1S\, s Qg) 4
2 %/ TN £ il
S ) 7 / \ e A7 1
(g \ 7 ) 7
w ¢ ;y’// \’\ \\ \\l\1 w ,////AV/ f
br ’ f \\\ [ v
z A/ Jn I\ = A, i
4 \ =
S I\ o
: I\ 7l
(T3]
N o | "2\ o / {
> v %I\ >3- ?-a ' H A'
= I %\ a It -
w ‘p,, \ u It u L
j== WO fEEE —
= > t ol
g [2) s—
-3 = , ! ﬁ\zxs el &K
= % | \ S £
g3 \\ 23 \
001 T 1 oot L]
o 1 10 a ! 10
VELOCITY RATIO Uy/U, VELOCITY RATIO U,/U,
Fie. 3. Exact energy-exchange function g°* and its approxi- F1c. 5. Exact and approximate values of the energy-exchange

mation g, for the loss of energy in the case of colliding particles  function for the loss of energy versus the ratio of the velocities
of equal masses. of colliding particles.



COULOMB COLLISIONS IN LABORATORY SYSTEM

I T I

| | I

I —
(mg'mc)
T 1
exact function gg
approximate function '

of
o
z
o
E A \\\
frd // VANEY d \\ \\ &
X 2 A
=z ATAANE - ']
7 N AN \ ~
ot ] s NS N N
- A N \ NN
ot i/ T N .
N o ,rll N 0“1 m
=z T N & T
= I 25N NI
b 11 % N\ N
’l "0,’ A
I %,
,%,o"“ €~ anl
¢
Ny 1N\
; ’o’ %:\
o0 L1
! 10 100

ENERGY IN UNITS &

Fic. 6. Graph of the function which determines the form of the
cross section for the collision in which the test particle loses an
amount of energy greater than a fixed value U up to the greatest
possible loss AE max.

A 327

10 RS Np—— - 1111 _‘L_,_ {
—— R e
g T T T T T
[ §=% 9, (me>»>m,)
| — exact function g§*
--- approximate function g
i ™N
S P V/EN
3 y oty e AN & HT
: /i ’_l'_‘ K\ 2
o 7SN R N
S Wi/ A ERN A
- A/ IA\NAN
fr 7] i ! \ :
& N N
ANl AN
4 H A\ ‘.
< : \ -
z o # .
. I :
S F : \
- x 1
rAnE
' \
i N
001
o1 ! 0

VELOCITY RATIO U/,
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For mi=ms we can give the analytical form of the cross sections considered. Then we have, accordingly,

go 1 274 IAEI AE E1
cAR=-— (_> <_-|- > if 0<——<1——
(AE)2\ v/ \3 E, E, E,
a0 [ v2\%/4 1]|AE] [AE|\/2 E, AE
=— <_ (____._)(1—_—-> if 1—-—<——X<1, (28)
(AE)2 U1 3 3 Eg E2 E2 E2
oo 2 1g U\3/2
Q:-)(——(l—-——) if E.<E+U
U2 3 U1 E2
oo f V1 Tr2 U U .
=— _..> [-+_—(1_ )] if Ey>E+U, (29)
U2 V2 3 1 EZ_EI
aof 02\ 4 10U U\'2 U 14+(1—U/E,)'"2
o) et «
U V1 3 2 Ez E2 E2 1"‘ (1'— U/E2)1/2
gof 1\ 4 U U E,—F,
e
U\ve/ L3 E,—E,/ E; U
U/EN\Y2f4 E, 2 [E\Y? 14(Ey/E,)'?
+_(_> (“_ +__(_) ]n—————————————)] it E>U+E;. (30)
E\E, 3E,—E, 3 \E 1—(E./Ex)'
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V. APPROXIMATIONS OF DERIVED CROSS SECTIONS

Since we have in view the application of the obtained relations to concrete calculations and to the interpretation
of experimental results, our interest lies not only in exact expressions (which do not always have a physical sense,
since they concern the abstract collision process of two isolated bodies), but also in the simplest possible reasonably
exact approximations of the relations obtained. Thus, in the relations (6), (7), and (8) determining oaz, Q, S,
we approximate the function fy by the first two terms of its series expansion and neglect the dependence of AE~ on
the angle 6 by putting AE=(8) = AE .. Also, we average the integrand over the angle 6 in the range 0-m, using
only the part of the integration range over in which (for AE<O0) 6;,» can be approximated by (see Fig. 9)

| AE—| \ B/ (BrHAED
cos@l,gz:i:<1- ) for mi=ma, (31)
E,
o811 —2(| AE~| /| AE " max | ) 1H222/ 2% (32)
cosfo~—1, for m<ms.
Then we obtain
) IAE—[ 4 IAE-I E1/(ErHAET])
o~ fV<°>><[ (1———)—{——](1-— ) for mi=ms
AE? |AE-| E, £,/ 3 E,
| AE‘[ o2 4 IAE_I 14022/ 912
Xl: -+ :”:1-—-( : ) ] for mi<msz, (33)
E1 ’1)22+'012 3 |AE—max|
a0 U 2 U U\ HE1/(Er+U)
Qﬁ—fV(O)XI: (1—*)4--(1-{-—)](1————) for mi=ms
U2 3 E, s
U U U U 14922/ 91%
XI: 1 )](1————)[1—(———) :I for mi<ma, (34)
El '022""01 3\ ! AZ':__maxl | AE—maxl l AE—max!
U EN E, 4 U U\ BA/(EU)
st 2o )t (1] (1-L) —
Ez U 3 E2 E2
U V92 fAE maxl 4/ U U 1422/ v12
XI: ):“:1-—<~——— ) :| for mi<ma, (35)
Brotor 0\ ama] | AE ]|
where
u1\? 175
FrO=fy|pmrsz= (-) ( ) (36)
V2 P
and
N 22\ 2 U1
IAE_maxl =K12E2(1+'_)=4E1<_") <1+_)=E1a (37)
Vg 41 Vg
is the maximum energy which the field particle of S~(0o/Ey) fv (| AE~max| /U), (40)
velocity v; and energy F; can gain in collision with the S0/ Ey) fy In[ 14 (V2D /qug0)?], (41)

test particle of velocity v.. For rough calculations as
well as for the qualitative interpretation of Coulomb
collisions, we can make use of still more simplified
formulas. Thus, putting in the relations »;=0 every-
where except for the Coulomb velocity function fy and
the value determining |AE max|, we obtain a set of
relations:

oar=(oo/AE})(1/E1) fv, (38)

), @

U
Qﬁ(fo/U)(l/El)fV<1—_*

l max |

which can be successfully used for the interpretation of
the basic Coulomb collision phenomena.

Calculating the ratio S/Q, we obtain the mean loss of
energy of the test particle per collision:
In(| AEmax|/U)

7)22

4|U

S 3 Eivd+u? 1—U|AEmu|
(AE-)| =—=U , (42)
0 2(1' U ). U o
3\ |AE |/ | Eyvttor
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Fic. 8. Stopping-power function for heavy particles if slowed
down by light ones when the collisions with loss as well as those
with gain of energy are taken into account.

whence we have in the limiting cases:
(a) in the vicinity of threshold (| AEmax|— U)

[(AE-Y|— U, (43a)
(b) for large velocities of test particles
4(E/U)+In(KE/U
[(AE-)|— LB DA I ERE ) (43b)
(E/U)+H1

In atomic collisions |(AE~)| is simply related to the
mean energy of § electrons.

VI. CROSS SECTIONS AVERAGED OVER THE
CONTINUOUS VELOCITY DISTRIBUTION
OF FIELD PARTICLES
Considering that in the majority of physical processes
we have to do with a continuous velocity distribution of
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field particles, it is necessary to average the obtained
relations over v;:

(oaz)or= / o(o1) f(o2)dvs,

Qo= / 0ws) f(vr)don, (44)

<S>av=/ S(vl)f(vl)d'ul.

Provided the maximum of the velocity distribution
function f(v;) is sufficiently sharp, so that the most
probable velocity differs at most slightly from the mean
velocity 7, we can operate with the previously derived
relations, putting into them simply ¢,=7% and
Ey=3}m9,%. However, we must keep in mind that in the
case of ma>m, the threshold for inelastic process dis-
appears in averaging over the continuous velocity dis-
tribution of field particles. This threshold, being deter-
mined by the field particles of greatest velocity, tends
to zero if the velocity of the most rapid particles
approaches infinity.

Nevertheless, at the threshold with respect to the
mean velocity #;, which we will call hereafter the
apparent threshold, the change in dependence on energy
can be observed.

Below the apparent threshold, the plot of the aver-
aged cross section is actually determined by the form
of the high-energy part of the function f(v;). The cross
section decreases monotonically to zero according to the
decrease in the number of high-velocity field particles.

Assuming the distribution function to be of the form

f(vl) = 1 (31_())"6—010/01 s (45)
(n—2)\ v,
which for region v,>>v,° may be approximated by
f)=~1/(n—2)(v:*/v))", (46)

the energy-exchange cross section below the apparent
threshold can be calculated quite easily.

Since for the region considered, all terms in (33), (34),
and (35) with v./v; can be neglected compared to unity,
we can write:

oo 4/” <1 AE 7)2) 1 (2)10>"d( ‘l)1>
AE? 3 p™in/y0 Uy K12E2 V1 (n—Z)! U1 ‘1)10 ’
2 e Vo Vg U v 1 20\" /v,
[ = (oo e o K )
o100 U1 KiEs 11 KiEs vi/ (n—2)\ vy 7,0

V2
(VAE'>a.vthr=
(Q)ustir=— !
Q av = — —
U23
god r® Vg U  v\2
S [ A2
U3 1™y 0 Uy KisEs v,

V1
[ AE—maxlszEz‘— .
V2

(n—12) r(vv_ll())d(vl:o) ’
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Performing the integration over v;, the lower limit of
integration is obviously v,™r=(U/K3FEs)vs, and sub-
stituting 3m,(v,°)2= E," we obtain successively

< > . ao 1 4(‘1)2) ntl
OAE " )av o T
AR |AE-| 3\op

ES\* 1 1 1
(i 2y (L)
|AE-|) (n—2)\n nt+1
(Ot E(”) (ﬁ‘—) !
U? 3\g,° U/ (n—2)!
1 1 1 1
x(—— ) (49)
n nt+1 n—l—-2 n+3
0'04 Ve ntl El() 1
o))
U 3\,0 U /(n—2)!

1 2 1
X(2-——+—). @)
n nt+l nit2

For n=3, which, as we shall see later, is the most im-
portant case for atomic collisions,

771=/'z)1f(1)1)dv1=v1°.

Thus (47), (48), and (49) result in:

() 1 64 V2 4 51 3
<0AE'>avthr=—— ‘( ’ (50)
AE? [AE-| 9\ 5,/ \|AE-|
(Ot 4 32(7;2)4(81)3

" prs\e/ \u/’

<S> e oo 128(‘02) (81)3
YU 4s vl

In the above, the symbol &; has been used for $m,7,2.
If the distribution function f(v;) does not decrease

(51)

(52)

l AE[ ‘1)22

o 4 g |AEI 14-v22/5:2
PREEPNTIERINE) SIS
AE? |AE[ gl 7)22+512 3 0 IAE_maxI

vg? 2/ U
(gl 7)22+1)1 3\

R
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“ EEF“ iag1™ 1 gl %2 m=m,
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mgKm,
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" approximation
; i 1 i 1 1
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i
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Fi16. 9. Comparison of the exact and the approximate limits for
the angle 0 where the latter have been used for the derivation of
approximate energy-exchange formulas.

rapidly enough with the decrease of vy, then, on aver-

‘aging over field-particle velocity distribution, some

elements appear which substantially influence the aver-
aged cross sections o, Q, S. At =3 a logarithmic term
increasing with the ratio v/7; appears, which cannot be
neglected. This is bound up with the fact that at =3
the mean kinetic energy of the field particle is loga-
rithmically divergent. Considering that for v2.>>vy,

0, Q, S [+ (v1/v2)%]1/v4?

and for 1.y,
7, Qy S [+ (v1/v2)*(v2/v1)?,

then, averaging these cross sections over f|u|, at n=3
we obtain:

7, Q, S [+ (01/v2)* Ina(va/71))*]

where « and % are of the order of 1 and depend on the
particular form of the function f(v,).

Without going into details, and taking into considera-
tion only the first-order correction arising from the
logarithmic term, we can give the approximate forms of
the averaged cross sections for #=3:

(53)

|AB- maxl> ln(2'7+£>]<1— |AE[jmaxl)[1—<|AEI‘]max[)l+W2/mj (59

‘1)22 l AE max l 4/ U

U
<S> vlnz__f (0)[ In
v 51 '1)22—'-1)1 U 3\ E

g U 14222 /512
) ln<2.7+—)][1—(——————> ]
max] 1_)1 |AE_max]

(55)

For my=ms, in view of (28), the presence of a term proportional to E; (for 93— ) is not determined by v2> vy,

but by a stronger energy condition:

EgZEl— I AE—|.
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As a result, the presence of the logarithmic term at #=3 is connected with the particles of energy E1< Eo+|AE~|,
this leading to the relation

o 1 |AE| &\ 4 Ea— |AE[\12 | AE|\ &v/(&rHAED
(oam)ay= _“—fV(O)[ <1———>+— ln(2.7+<——————> ):|<1— ) , (56)
AE? |AE)| & Ey/ 3 & E,
as well as to
) U 2 U Eo— U\ 172 U\ 1 81/ (B1+T)
<Q>w‘“=—fv<°>[—+—(1———> ln(2.7+< ) )](1——) ; (s7)
U2 51 3 2E2 81 E2
and similarly to
oo U S\ E, 4 U Eo— U\ 12 Uy 81/ (&1+0)
<S>av1“=—~fv<°>[—<1——) 1n—+—(1~—) 1n(2.7+( ) )](1——) . (58)
U -81 E2 U 3 E2 81 E2

VII. CROSS SECTIONS ¢, Q, S IN THE RELATIVISTIC ENERGY RANGE

As has previously been shown by the author,? the function Q, and so the functions o and S, describe the inelastic
collision process correctly in the range of relativistic energies, provided the velocities of the colliding particles are
derived from the relativistic relations. Moreover, in accordance with what has been stated above on the general
dependence of the energy-exchange cross sections on the function fy, it will be enough to derive the relativistic

function fy.

Considering that in the relativistic case V= (v22+v,2(1—142/c%))!/2 (relativistic composition of two perpendicular
velocity vectors?) v;=c{1—((14 E1/moc?)~1)?}!/2 and similarly for ve, we have

(14x2)?

fy@ ol K1 2+K1/1+K2>2[
v Ko 2+K2\1+K1

where we have put

k1=E1/mpc® and K2=E2/m0202’ (60)

where mo; and mos are the rest masses of the colliding
particles. The graph of the function fy(® ! is presented
in Fig. 10.

At k;— 0 and x;— 0 we obtain a nonrelativistic
function fy©®. Atk;=1,the function fy® re! is deprived
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Fic. 10. Coulomb velocity function fy©® in the relativistic

energy range where the relativistic formulas for the calculation
of 11, v, and V have been used.

25 3 35

-~

8 L. Landau and E. Lipshitz, Classical Theory of Fields (GITTL,
Mockva-Leningrad, 1948), p. 23.

3/2
(14k2)* (k1 /k2) ((2+r1)/ (2+x2))(1+x2)/ (1+,<1))2] ’

(59)

of the maximum, while at x; —o it tends to the unit
function analogically as in the case of the collision of
perfectly rigid spheres.

Thus, in the range of the relativistic velocities of the
colliding particles, the cross sections o, Q, S take the
form

relza fy O xel/ £, 0

Qra™~Q- fV(O) rel/fV(O) )
Sre1§S' fV(O)rel/fV(O) .

(61)

The extension of the application of cross section
formulas so made into the region of relativistic energies,
although it describes correctly a number of physical
phenomena, is a rough approximation, and it cannot
constitute a basis for significant conclusions. Therefore,
in order to develop the collision theory, an attempt
ought to be made at deriving analogous relations based
on the relativistic laws of conservation of energy and
momentum.

VIII. SCATTERING CROSS SECTIONS
FOR COULOMB COLLISIONS

In a great number of collision problems we are in-
terested not only in the cross sections for the energy
exchange between the colliding particles, but also in
their angular distribution. According to the asymmetry
of the description of collisions in the laboratory system
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F1c. 11. Differential scattering cross section for the collisions
of a given change in energy in the case of anisotropic distribution
of field particles; the figure illustrates the appearance of “dif-
fraction” maxima.

of coordinates, determined by the direction of the
velocity vector of the test particle, we shall speak about
the angular distribution of scattered particles and the
angular distribution of recoiled particles. The term
“scattered” will refer to the test particle and the term
“recoiled” will refer to the field particle.

The cross section for the scattering of the test particle
at the angle ¢ with the change in energy AE is given
by relation (2).

v1\2 1 AEN\? 71
OISR R
Vg 2 E2 Ve

MICHAL GRYZINSKI

In the case of a strongly anisotropic velocity distribu-
tion of field particles (Fig. 11), if this can be approxi-
mated by the 6 function

we simply obtain:
g (1+AE/E2)1/2

OAE cosd =
E22 23/2
1 1 1

X - H
2V2mywiws m (W e(6,))/2

(62)

or, taking into account that W, can be expressed in the
alternative form,

ago (1+AE/E2)1/2
OAEcosd=~ __— —
Ey? g
1 1 1
X - ’
m1vy 2m ((§—E1)(§—£2))M2

where £1,2(00,AE/E2,v1/v5) are the roots of the equation
W =0 which are given by (1.96) and (1.97). The position
of the singularities in the cross section gaz,coss, Which is
independent of the law of interaction, has been carefully
discussed in Paper I.

The cross section a g cosg in the form written above is
very useful if we discuss it with respect to AE or to the
angle ¢, To have a clear dependence on the velocities of
colliding particles we rewrite (62) in a different form:

() (1+AE/E2)1/2 1 1

OAE cosd™= - ) (64)
Ey? £ Esdm /W,
where now
me 1AE\/1AE me 1 AE\?
) cosﬁ(——é—i—— ——)(— —E) - <—£+~ —) . (65)
my 2 Ez 2 E2 m1 2 E2

If v, — 0, then obviously (ma/m1)é+3(AE/E;) — 0, and there appears a unique relation between the scattering

angle ¢ and the loss of energy AE.

In the case of isotropic distribution of the field particles, (2) results:

ay (1+AE/E2)1/2 ].
OAEcos9="—"— for £<¢<E
E22 55/2 2\/77)12‘01‘1)2
=0 for §£<& or £<é (66)

with the limits for £ as given by (1.103).

Integrating oaz,css Over the whole range of variability of angle & [see (1.104)7], we obviously obtain the cross

section oaz; on the other hand, integrating over all possible values of AE, we obtain the cross section for scattering
at the angle ¢. Although the integration of (66) over AE can be performed, the analytical form of oo in the general
case cannot be given because of the difficulty in solving the fourth-power equation defining the limits of the integral.

The scattering cross section aeoss in the explicit form can be obtained for parallel or antiparallel velocities of the
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colliding particles only. Inserting then in (1.80) f(8)=6(8) or f(8)=05(6—=), we have

d(1/cos?¥,)

1+AE;/Ey)32
- (1+AE/E,) )

[ q192 :r |vaFo,| 2 /
Tcosd = ) 9
u(v2Foy)? v, i=1.J (—(AE;+b cos?¥,)?)1/2 ’ [ 2M (17 v1/v2)? cos?¥+3(AE:/Ey) | ’

where AE; is given by (I.81), and the upper sign is for
the parallel velocities while the lower is for the anti-
parallel. Because o.s9 must be a real quantity, the
range of integration over the angle ¥, reduces to the
calculation of the residues of the poles of the function
under the integral. Taking into account that the poles
are determined by

(1/cos?¥,)=AE;/b,

and the integrand has poles of first order,

/‘ xdx b
(—(AEx+0)H)2  AE?

we can write

I: 192 ]2[7)2:F°U1[
O'cos0=27r
wu(v2F01)?

V2
2 bEg (1+AE¢/E2)3/2 2E2
X . (68)
=1 AE? |1—4M2(1Fv1/v5)°Es/b| | AE;]|
Now, the condition (I.81) takes the form:
cosd= (14 AE;/Es)12(1+3(AE;/E2)R), (69)
where we have set
1+my/m
R=___if ) (70)
1£p1/ps

Finally, after making some transformations, the scattering cross section in the case of parallel or antiparallel

field-particle velocities is

i

cos?d

( Q192 >2 %2 P R
Ocosd = 2w

M2v22

Taking into account that

1—2/R+cos?¥/R2>0 (72)

and comparing with (69), we deduce that if R<0 or
R>2, then the forward scattering as well as the back
scattering is possible, and if 0XR<2 then only the
forward scattering is possible. Assuming that v,=0, we
obtain directly from (71) the cross section for scattering
of the test particle at an angle ¢ by the field particle
at rest:

( 0192 )2 1 2
Ocosy =T N N
mave?/  sintd (1— (mg/my)? sin?)/2
X [cosd+(1— (ma/my)? sin2®)V2 2 if ma<mmy
X 2[ 1+ cos?d— (ma/m;)? sin?d |2

(73)

if me>my
which in the case m;— (scattering by a center of

force) gives us the Rutherford formula

Tooss=T(q192/M22%)22(1-4-cos?)?/sin*d; (74)

= 1—
o1 | prEpal (I—R)“’sin‘*ﬂ\ R R

1 2 cos?F\!/?
X[(l——)cos&—f—(l——-l— ) ]
R R R2?
1\? 2 cos?¥\1/2\?
XZ[(I——) cos%?—i—((l———-l— ) ):I if O0<RL2.
R R R?

)—1/2

if R>2 or RZO0

(71)

or in the case of equal masses of the two particles:
Oooss=T(q1q2/m2%)%(8 cosd/sin*d). (75)

If the mass of the test particle is greater than that of
the field particle (ms>>m;), then the differential scatter-
ing cross section is divergent not only for ¢— 0 but
also for & — arc sin(my/ms) (see Fig. 12). Nevertheless,
the total scattering cross section integrated over the
range 6,<0<arc sin(m;/m,) is finite. The presence of
that divergence is obvious if we examine the angle of
scattering as a function of the impact parameter D. In
the case of field particles at rest, for the Coulomb
interaction Eq. (1.110), we get

my 1
cost= l:l -2 ]
my+me 1+(D/~W22/q1q2)2
My 1

—1/2
x[1—4 : ] . (76)
(m1+m2)2 1+(Dﬂ1}22/4192)2

The graph of the relation obtained is shown in Fig. 13.
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Fic. 12. Differential scattering cross section for scattering on
particles at rest, for colliding particles of different masses.

We see that the divergence of the scattering cross sec-
tion for ms>m; occurs for the impact parameter at
which d¢/dD=0.

In the same case of me>m;, the test particle can be
scattered at the same angle ¢ at two different values of
the impact parameter D. This is the reason why in (67)
there appears a summation over one or two values of (i).
We have a similar picture in the general case of sing0,
as well as for forces different from the Coulomb forces
if only they decrease monotonically with the distance
between the interacting particles.

Expression (3) determining the scattering cross sec-
tion with respect to angle ¢ as well as angle ¢ makes
sense if there is anisotropy in the velocities of the field
particles with respect to angle ¢. Then, according to the
relation (1.32), some values of angle ¢ are excluded. For
vo>0; and |AE~| <Eqvs/v1, according to the results in
Paper I, we have ¢~ ¢, and therefore we can write

7)

O'AE_,OOS!,,'ﬁgo'AE—.COEI,f( ‘P) o=0¢)

where f(¢) is a velocity distribution function with
respect to the angle .

IX. SCATTERING CROSS SECTION AVERAGED
OVER VELOCITY DISTRIBUTION
OF FIELD PARTICLES

Similar to our treatment of the energy cross sections,
we may average the scattering cross sections over
the velocity distribution of the field particles. In the
case of a continuous velocity distribution, according to
Paper I, the possible range of scattering angle & is from

MICHAL GRYZINSKI

zero to w. From (66), assuming that the velocity dis-
tribution has the form given by formula (45) with #=3,
we have

[0 (1+AE/E2)1/2 1 © g1z
/ dx, (78)

(UAE .cos:?)a.v =
E? £ 2V2D10,

2 20 X

where %0=(v1/92)min is determined by the condition
(1.102); or explicitly

Vg E 1/2 M
s
U1 2 mi

Having performed the integration, we have
()} (1+AE/E2)1/2 1

<0'AE,coso>av= i
Ey? g2 2V2mibyve
1 1
x2[1— —1/ro(1+—+——>]. (80)
X0 2x02

2
The graph of the obtained (¢a coss)av is shown in Fig. 14.
As can be easily seen from Fig. 14, the “diffraction”
maximum of “inelastically” scattered particles is ap-
proximately given by

Mo\ 2 IIAE_l
()
m1V1

1AE1) 70
25 (79)

2 E,

|AE-[\12 |AE-|
-(1— ) cosﬂ)z —1. (81)
E2 El
For |AE~|/Es<1 and ¢ — 0, we obtain
I AE_I.’l’Eo—l— (M2/M1)El92 . (82)

Performing the integration of {(vaz,cs0)ay OVer |AE| in
the range U< |AE~|<|AE max|, we shall obtain the
cross section for the scattering of the test particle at the
angle ¢ if the particle loses the energy in the interval
mentioned above (in atomic physics this cross section
determines the angular distribution of particles scat-

B=arc sin(ft) (scattering angle at-which
Geoes is divergent)

ANGLE OF SCATTERING

0, z 3 4 5 6 7 ]
IMPACT PARAMETER D IN UNITS (q,q,/2E,)

F16. 13. Dependence of the angle of scattering on the impact
parameter D, which illustrates the appearance of the divergence
of the differential scattering cross section.
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AVERAGED CROSS SECTION <Gyeav

in units [

tered in ionization collisions):

Qv cos8)av= /

-U

~|AE " max|

<0'AE.cosd>avd(AE) . (83)

The explicit form of {Qv cosg)av Can be obtained in the
approximation U/E.<1. In this case we can write
oo (1—U/E,)\2
<QU cos-’)av— -
E 2 55/2( U / E2)

20(|AE " max|) 1 1
X/ |:1— ‘1/x°<1+——+——):|dx0, (84)
20(—U) X9 2%¢%
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F16. 15. Scattering cross section in “ionizing” collisions averaged
over the velocity distribution of field particles. The “diffraction”
maxima are distinctly visible on the curve for US> E;.
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///
/

~
B,

where x, is given by (79). Performing the integration,
we obtain

oo (1=U/Ey)'/?
Ey?  £(U/E»)
X{%:l:[xo(l____e—l/:to)__%_e——llzo} ,

<QU ,cosd)av

(85)

where the upper sign applies when 2(po/p1)26>U/E,
and the lower one when 2(ps/p1)2(<U/E;. The graph
of the cross section obtained is shown in Fig. 15.



