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The relations between the energies and angles for two-particle collisions are given for the case of conser-
vative central forces. They have been derived in the laboratory system of coordinates, since this system is of
prime importance for the interpretation of the experimental results. The dependence on the law of inter-
action enters the obtained relations through the function for the c.m.-system scattering angle. Some remarks
on the statistics of encounters are given, and the cross sections for collisions in which the colliding particles
experience given changes in energy and direction are derived. These cross sections can be used to determine
the cross sections describing various physical processes. On the basis of the cross sections derived for the
scattering problem, one can suggest that the “diffraction’ pattern of scattered particles is due to quantized
states of the scattering particles, rather than to the law of interaction.

I. INTRODUCTION

ESPITE the fact that the two-body problem is
fundamental for physical science, it has not been
solved in the general case. Moreover, in the relatively
simple case of Coulomb interaction, there are always
great difficulties involved in the description of phe-
nomena connected with two-particle collisions if they
are not considered in the center-of-mass system. The
laboratory system plays an important role in the inter-
pretation of the experimental results, since all the
observations of collision processes are made in that
frame of reference.

The peculiar role of a fixed frame of reference was
pointed out by Chandrasekhar, who derived some rela-
tions for the two-body problem in the laboratory sys-
tem.}—® Nevertheless, the complete set of explicit rela-
tions between the geometrical variables (determining
the motion of noninteracting particles) and the dy-
namical variables (determining the changes in their
motion due to interaction forces) have not been given.
These relations alone are not sufficient to describe all
phenomena. It is necessary to know in addition the
probabilities (cross sections) of a collision with a given
change in the state of both particles. A partial solution
of this problem has been given by the author for the
Coulomb interaction.# Our problem now is to find the
relations between the geometrical and dynamical vari-
ables in the general case of conservative central forces
on the basis of the laws of conservation of energy and
momentum, and to use them to derive the cross sections
as the functions of the dynamical variables.

II. FORMULATION OF THE PROBLEM

Consider an encounter between two particles of
masses m and m,. As a result of the collision, the ve-
locities of both particles change in direction and in
magnitude. We denote their velocity vectors before the

1S. Chandrasekhar, Astrophys. J. 93, 285 (1941).

(1;‘5.) E. Williamson and S. Chandrasekhar, Astrophys. J. 93, 305
38S. éhandrasekhar, Astrophys. J. 93; 323 (1941).
4 M. Gryzifiski, Phys. Rev. 115, 374 (1959).

encounter by vy and v, respectively, and after the
encounter by vy’ and vy’

We take the z axis of the laboratory system to coin-
cide with the initial direction of particle 2, which,
following the terminology of Chandrasekhar,® will be
called the test particle. As a result of the interaction
with particle 1, which we describe as the field particle,
the velocity of particle 2 changes in magnitude (the
particle energy changes) and in direction (the particle
is scattered). We denote the change in energy of the
test particle by AE, and the direction of the velocity
after the collision by the angles ¢ and ¢ (Fig. 1). Simi-
larly, we can assign the values AE,d, ¢ for the field
particle. It is quite obvious that the result of the colli-
sion will depend both on the interaction law between
the particles and on the geometry of the encounter. To
describe the geometry of the encounter, we need four
geometrical quantities (one linear quantity and three
angular ones). These are (Fig. 2):

(a) the collision parameter D, which would be the
minimum distance between the particles had they not
interacted (it should be stressed that this quantity does
not coincide with the distance between the trajectories
of the two particles);

final velocities

initial velocities

mwm/os//?}m «3
T‘a .

z axis

Fie. 1. Orientation in space (with respect to the laboratory
system determined by the z axis and the vector k) of initial and
final velocities of colliding particles. The initial velocity vectors
of the two particles define the plane which is called the funda-
mental plane.

8 S. Chandrasekhar, Principles of Stellar Dynamics (University
of Chicago Press, Chicago, 1942), p. 89.
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Fi6. 2. Space diagram of an encounter. The relative motion of
both particles takes place in the plane which is called the orbital
plane. The dependence on the law of interaction is completely
determined by the scattering angle in the orbital plane.

(b) the angle 6, which is the angle between the initial
velocity vectors of both particles produced from one
point (the plane determined by these two vectors is
called the fundamental plane);

(c) the angle ©, which is the angle formed by the
segment D with the fundamental plane;

(d) the angle ¢, which is the angle describing the
position of the fundamental plane with respect to rota-
tion about the z axis.

With the aid of Fig. 2, we can readily establish the
range of variability of these quantities:

0<Dgw,

0oL,
0£ 0L 2r,
0< o< 2.
Now we shall attempt to derive the dependence of the
dynamical variables AE, 9, ¢, AE, §, ¢ which describe
the changes in states of colliding particles upon the

initial conditions expressed by the geometrical variables
6, ©, ¢, and D.

M

III. DYNAMICS OF A TWO-PARTICLE ENCOUNTER

According to the elementary theory of the two-body
problem (Fig. 3),% the velocity of the center of mass of
the colliding particles remains constant during the
encounter

mivitmeve= (mit+mo) Vo=maivi+mavy'.  (2)
Hence we can write
V 2= M 202+ M 2vo2~+2M 1M 59195 cosf, 3)
where the following notation has been introduced:
Mi=my/(mitms), Mo=ms/(mi+ms).  (4)

6 S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, Cambridge,
1963), pp. 53-58.

Fic. 3. Vector model of two-particle collision.

Let V and V’ denote the initial and final velocities of
the second particle relative to the first:

©)

then by means of (2) and (5) we can express vi, Vs, vy,
and vy’ in terms of V,, V, V'. Thus,

Vi= Vg"‘sz, V1I= Vg_M2V, ;
V= Vg+M1V, Vzl= Vg+M1V’ .

V=vo—vy, V=v'/—v/;

(6)
™

Since the potential energy of the two particles is zero,
both before and after the encounter, the law of conserva-
tion of energy gives us

I /!
%m17)12+%m2'02 = %mﬂh 24 %Mﬂ& 2.

Hence, using (6) and (7), it is easy to show that V=1,
so that the relative velocity is ckanged by the encounter
only in direction and not in magnitude. The dynamical
effect of the encounter is therefore known when the
change in direction of V is determined.

a. Calculation of AE
From the definition we have
AE=3mvy/2—3mavs?.

®)

Hence, AE is positive if the test particle gains energy in
collision, and is negative if it loses energy. Squaring
relations (6) and (7), we readily obtain

v2=V 2+ 2MV ,V cosd+M2V2, )
2=V 2—2M,V ,V cosd+M2V?, (10)

where ® is the angle between V, and V (see Fig. 3).
Similarly, after the encounter, we have

02=V 24-2MV V' cos®'+ M2V, (11)
where & is the angle between V, and V’. Also
mimsy
AE= V,V (cos®’'— cos®). (12)
m1+ms
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Solving (10) with respect to cos® and using (3) and
(5), we can write

MoVt — m 02+ (m1— ma) V10 COSH

cosb= ,  (13)
(my+mo)V,V
sin®=1v,9, sin/V,V . (14)
Since (see Fig. 3)
cos®’ = cosP cos(r—2¥,)
+sin® sin(r—2¥,) cos®, (15)

we finally obtain

mime
AE=—2 V,V cos?¥,(cosd—sin® cos® tan¥,)
M1+
(16)
or, in implicit form,
hag(0,0,¥,)=AE-+b cos®¥,
—2a sin¥, cos¥, cos®=0, (17)
where
= uv1v; sinf
Ha02 SN, (18)
b= K12[3mevs?— 3mw2+1 (m1—mz)v10, cosf ],
and
u= (myms)/ (m1+ms), (19)

K12=4(mms)/ (ma+ms)?.

The subscript of %, in formula (17) and hereafter, indi-
cates the variable for which the equation 4=0 is to
be solved.

Expressing sind and cosf in terms of relative velocity

hcosz’ (0: ®;\I/0) =cosd
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V, (18) can be rewritten in the alternative form

=3u(— VA2V (02 +0f) — (v2—0)?)'2,  (20)
Mo— M1

b=#(7)22—1)12+ Vz); (21)
Mot

which is of prime importance for the interpretation of
some relations and can also facilitate some trans-
formations.

b. Calculation of the Scattering Angle &

From the definition of the scattering angle 9 we have
cosd=V,-Vy'/V,V, taking into account (7) and using
the vector model of the collision (Fig. 3), we can write

vy’ cosd =M1V cos(V'vy)+V, cosy. (22)
From the spherical triangle V'Vv:0 we obtain
cos(V'vz)=cos(®—7) cos(r—2¥,)
+sin(®—7) sin(r—2¥,) cos®. (23)
It follows from triangle VOv, that
cos(®@—7)= (v2— ;1 cosh)/V , (24)
sin(®—v)=1v; sind/ V. (25)

Taking the scalar product of v; and V,, we obtain

cosy=(1/V ;) (M 1v1 cosb+Ma2s) ,
siny= (1/V ;)M v; sind. (26)

Equation (22), (23), (24), (25), and (26) finally yield

vy’ cosd=1vy— 2M 1 (v2—v1 cosf) cos?¥,
+2M 19, sinf sin¥, cos¥, cos® (27)

or, in implicit form,

1—2(my/ (m1+ms) ) (1 — (v1/v2) cosh) cos?¥,— (v1/v) sind sin¥, cos¥, cos®]

substituting into (28), we find that

heoss (0,AE, ¥ )= cosd—

=0. (28)
M1v,? mi\ %1 my N 1z
{I—I—K 12[ — 1—|—<1——>—— cosﬂ] cos?¥ ;+4——— — sinf sin¥, cos¥, cos®
mave® ma/ V2 mi+ms Vs
It is sometimes more convenient to have the scattering ¢. Calculation of the Azimuthal
angle as a function of AE. Solving (17) for cos® and Scattering Angle ¢
The spherical triangle v2'voV,0 gives us
cos(V,v2')=cosy cosd+siny sind cos(p— ). (30)
On the other hand, we have
(14+AE/E,)'? cos(V,ve )=V, /vs' +M1(V/vg) cos®’.  (31)

1AE mi \2/V\?
x[1+—~—2( )(-) cos""I/g:|=0, (29)
2 E, myi+ms V2

where Eo=1mqvs?.

Taking into account (12), (30), and (31), we can write
Ve  V fmitmy AE
M 1—( I cos@)
mims VgV

vy’ 7%
= cosy cosd-+siny sing cos(¢p— ¢).

(32)



A 308 MICHAL GRYZINSKI

Finally, after substitution of the known expressions for V,, cosy, siny, and cos®, we have

1 1 fmm AE\!?
hy(0,0,AE)=¢d— o—arc cos ( +cos0> (1— (1—}————) cosﬁ)
(14 AE/ E)V2 sin6 sinoL \m0, Es

1m0, mi\AE
- <1+—>——]}=0; (33)
2 mn; mel Eq

or, using (17) and (28), the azimuthal scattering angle ¢ can be expressed in terms of variables ® and ¥,
he (0y®’ ¢,\I/0)

5 (v1/v2) sinf cos¥ ,~+ (1— (v1/vs) cosh) sin¥, cos¥, cos®
=¢— p—arc cos

=0. (34)
T\? o 9.2 2 o 21172
{(—) — { [1———}—2——(1—-—-— cos())] cos¥ ,— 2— sinf sin¥, cos@} }
g my+mq 92 m g Ty

d. Calculation of AE and the Angles § and &

Having obtained the relations for the energy and the direction of the scattered test particle, we can derive the
relations for the energy and the direction of the recoil field particle.

From the law of conservation of energy we at once obtain AE= —AE. Hence, AE is given by Eq. (17) with the
opposite sign.

From the definition of the angle § we have cosd= va v{' /13- 9. Taking into account (6) and using the known
formulas for V,, cos(V'vs), and cosy, we can write

- ~ 1 1 N AE Ma 2 mV1 V\2
Jeoss (0,AE ¥ )= cosd— ——-——[cos@—i—— ——t 2( ) (—) cos™¥ ,,:l =0; (35)
(1+AE/E1)1/2 2 Ve E1 M1+M2 MoV2 \ V1

or, in terms of the variables @ and ¥,
hcosﬁ (0; ®,\I’y) = COS&
08042 (mg/ma—+ms)[ (v3/v1— cosB) cos?¥ ,—sinf sin¥, cos¥, cos@]

- =0, (36)
MaDg? Ma\ V2 my V2 12
{1+K 12|: — 1-!—(1————)—— cosﬂ:l cos?¥ ,— 4——— — sing sin¥, cos¥, cos@}
mavs? mi/ V1 myt+mg 91

To derive the relations for the angle , we consider the spherical triangle v/1V,v:0. The relation between its
angles is

cos(V,+ vi')=cosy cosd+siny sind cos(d— ¢); (37)

on the other hand, we can write

_ cos(V,-vi )=V, /v’ —M2(V /v1) cos?’, 38
and, after some transformations similar to these made previously, we obtain
hE (0,AE~:5: 99)

. 1 1 r 1 2 AE m1— M\ Mal2 M2V ~
=¢— p—arc cos( { — 1+—(1 - >—~—+(1+2 ) cos():l—— (1-!— ) cosﬂ} .
sind sind (1—|—AE/E1)1/2L 2 my/ By my+me/ myvy M1y

(39)

The relations derived above are in the most general angle ¥, is relatively simple’:
form, and the dependence on the interaction law enters o dr
only through the trigonometric functions of the angle = / , (40)
¥,, i.e., the angle describing the scattering of the rmin?{ (r/DY1—=U (r)/3uV*]—1}12
particle in the c.m. system. If the interaction reduces . .
to a central force dependent only on the distance be- Where u, V, D have the same meaning as before, while
tween the particles, then the relation describing the 7 See Ref. 6, pp. 170-171.
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U(r) is the potential function of the two particles and
7min 1S the distance of closest approach of the particle
of mass u to the center of force.

In the special case in which the interaction force can
be written in the form

F(r)=—dU(r)/dr=xk/r, 41)
the relation (40), after the substitution
y=D/r “2)

o= D(uV?/E! =D

has been introduced, results in

Yoo 2 y y—1—1/2
\II,,=/ I:l——y2:F <——> ] dy, (43)
0 r—1\y,

where oo is the positive root of the expression in square
brackets. In this case, ¥, depends only on » and the
dimensionless quantity yo.

If, in Egs. (42) and (43), we set =2 (Coulomb inter-
action), we obtain at once

. (D/B)uV?
BRI (44)
cos¥ =14 ((D/k)uV2)>] 2.
If we set »=3, we have
T &
(D/RB)n 5)

2 (D Ty

In the case of a collision of two rigid impenetrable
spheres of radil R; and R,, (43) gives

sin\I/,,= 2D/ (R1+ Rg) y

cos¥,={1— (2D/ (Ri+ Ra) )2} 1. (46)

The rigid-sphere case is the only model of a collision in
which the scattering angle depends on the collision
parameter and not on the relative velocity of the
particles; we stress, however, that this model is a
mathematical abstraction.

IV. COLLISION STATISTICS. CROSS SECTIONS

In order to define the concept of the cross section,
we shall analyze the motion of two points moving with
inertia in space. We take their position in space to be
completely “arbitrary. Then the probability that the
particles, as a result of their relative motion, pass each
other at a distance D, where the plane of their relative
motion creates an angle ® with the fundamental plane,
is proportional to the surface element 2rDdDd® (Fig.
2). The probability that the particles pass each other
(by the time of their passing we understand the instant
at which the distance between them is smallest) in the
interval of time d¢ is proportional to the change in dis-
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tance between the two points in their relative motion,
Vdt. Taking into account the fact that in the time d¢
point 2 traverses a distance dx=19,d¢ in the laboratory
system, and denoting by f(6,¢)d0d¢ the probability
that the velocity vector of point 1 has a direction deter-
mined by angles 6 and ¢ (see Fig. 2), we find that the
probability of the “collision” determined by the four
geometrical parameters 6, ®, ¢, D on the path dx is

(1/V0)£(8,0)d0do(d0/2x)2x DAD(V /vs)dx, (47)

where the proportionality constant Vo, having the
dimensions of volume, denotes the region in which the
points are found. If N, particles of type 1 are in the
volume Vy, then the number of collisions will be N
times as great; thus

Veoll ™ %1(V/7)2)f(0, go)d@dgo(d@/Zﬂ')Z?deDdx
E?hﬂ(ﬂ,@,gﬂ,l))dﬁ&, (48)

where n,=N1/V, is the spatial density of the field
particles. The quantity o, having the dimensions of
area, is called the collision cross section (in this case
defined by the geometrical variables 8, ©, ¢, D).

Sometimes the collision problem is given differently.
Namely, we are not interested in the frequency of colli-
sions of the test particle with the field particles, but in
the probability that the collision between two definite
particles took place at given geometric variables 6, o,
0, and D. In this case the cross section does not depend
on the velocities of colliding particles, and is simply

av(6,0,0,D)= f(6,0)d8do(d0®/2r)2xrDdD. (49)

With the aid of the relations found above and Egs.
(17), (28), (34), (36), (39), we can go on to cross sec-
tions characterized not by geometrical variables 6, ©,
¢, D, but by the dynamical variables AE, 9, ¢, AE, §, §.

If, for example, we integrate ¢(9,0,¢,D) over the
geometrical variables in the region in which the condi-
tion %ag[6,0,¥,,0,D)]=0 is fulfilled, we obtain the
cross section for a collision in which particle 2 experi-
ences a change in energy of AE:

oan= / / f / ;I:—f(o,qa)alzhm(0,@,\119)]21deDl—i§d0d¢.
(50)

Integrating over the region in which the conditions
hag=0 and /ss=0 are fulfilled, we obtain the cross
section for the scattering of particle 2 in the direction ¢
with a simultaneous change in energy AE:

une= [ [ [ [ £f<o,¢>a[m<o,®,m>]
de

Xathcosd (0, ®,\I’y):|27TDdD"2—d0d¢, (51)
7
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and similarly

o= [ [ [ gf(o,so)é[hu(l),@,\l'»]

Xa[hwﬂ!’ (0; ®7\I’0)]6Eh¢ (07 b ®,‘I’a)]
de
X2xDAD_—dbde. (52)
™

In the same way, we determine the other cross sections
(008,008,945 €LC.). Of course, between the cross sections
mentioned here there occur relations of the type oaz
= S 0AE cossd(cosd), which, under certain conditions, can
facilitate the calculations and the physical interpretation.

On the basis of formulas (17), (36), and (39), we can
give an analogous set of cross sections for the recoil
particle. Combining (17), (28), (34), (36), and (39),
we can determine the cross sections of the type cooss cosd
describing a simultaneous change of state of both
particles.

The function f(,¢) describing the spatial motion of
the field particles in the ls. has the following form in
some particular cases:

(a) isotropic motion of the field particles:

f(6,0)= (5 sinf) (1/27);; (53)

(b) the velocity vectors of the field particles parallel
to the plane passing through the z axis at the angle ¢y,
the position of the vector in the plane being entirely
arbitrary:

J(6,0)=13 sindd(o— ¢0) ; (54)

(c) the motion of the field particles in one given
direction

F6,0)=08(0—00)8(o— o). (55)

The cross sections defined above are exact insofar as
they refer to the abstract problem of the collision of two
isolated particles. In actual physical processes, we al-
ways have to do with the problem of many bodies, and
the analysis of these processes on the basis of the two-
body collision theory always has an approximate
character. Hence, in order to be able to use the two-
body approximation for physical processes, we must
determine its range of applicability. In this case, we
introduce the concept of collision time. Since the entire
effect of the interaction is involved in the relative motion
of the particles and is uniquely determined by the
c.m.-system scattering angle, we define the collision
time as the time after which this angle attains a value
close to that corresponding to the interaction after an
infinite time.

If we note by 7, the distance at which the potential
energy of both particles is equal to their relative
kinetic energy, then all collisions can be divided into
two groups, depending on whether the collision pa-
rameter is less than rc—these are the so-called “‘close

GRYZINSKI

area of close

area of distant
collisions

U = MV?2/2

— U(rg)=Fu)

distance between
colliding particles

F16. 4. Collision in the center-of-mass system. Illustrates the
difference between the close collisions (the impact parameter is
smaller than the distance of closest approach at central collision)
and the distant collisions (it is greater?.

collisions”—or greater than ro—these are the so-called
“distant collisions”—; this division refers only to
interactions described by monotonic functions. For
close collisions, in which the direction of the relative
velocity undergoes a considerable change (7—2¥,— 7),
the main effect of the scattering involves the region be-
tween the radii 7o and ry5, where 7y/2 is the distance at
which the potential energy of the particles is equal to
half their relative kinetic energy (Fig. 4). We can
therefore assume that the time for a close collision is

tcoll°1=2(71/2_'7’0)/V- (56)

For distant collisions (D>>7,), in which the direction
of the relative velocity undergoes only a slight change,
the basic effect of the scattering is manifested in the
region D— Dyjs, where Dyjs is defined by the relation
U(Dy2)=3U(D). We can define the distant collision
time in a similar way:

toondist=2(Dys—D)/V . (57)

The quantities 7y, and Dyj» depend on the interaction
law between the particles; for forces F(r) <7~ the ex-
pressions defining the collision time can be written as
follows:

teon®'= (270/ V) (21 0-D —1) —
(2/V)(2k/uVHY =D (2UG-D 1)

luouidist= (2D/V) (21 0-D—1).

(58)
(59)

Relations (58) and (59) may be put together and written
generally:

toont ~2((ro+D)/ V) (21D —1), (60)

or in the case of a Coulomb interaction (y=2)
bont®'=2r0/V — (2/V)(2k/uV?)2c1/V5, (61)
teon®t=2D/V , (62)
teont=2((re+D)/V). (63)
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Hence, for the two-body collision approximation to
have sense, we must consider only those processes for
which the duration of the act of collision is considerably
shorter than the time in which the field or test particle
undergoes an appreciable change in velocity due to the
interaction with other particles or external fields.

V. CALCULATION OF THE BASIC CROSS SECTIONS

From among the many cross sections defined by arbi-
trary combinations of the dynamical variables AE, AE,
9,3, ¢, $, expressions (50), (51), and (52) are the most
important for the interpretation of physical processes.
Proceeding with their calculation, we note that the in-
tegration over the collision parameter D can be replaced
by an integration over the scattering angle ¥,. Solving
(40) with respect to D?, we can write

D?=F(1/cos?¥,,0) ,
2DdD=F'(1/cos®¥,,0)d(1/cos?¥,),
where the form of the function F depends on the
law of interaction between the particles. If the inter-

action comes from forces «£k/r*, then the function
F(1/cos®¥,,0) has the form

(64)
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where ¥, now given by integral (43), is a function of
the angle ¥, only. In the case of forces decreasing with
the square of the distance, we can write at once on the
basis of (44)

2DdD= (k/uV?)%d(1/cos?¥,),

66
F'(1/cos™¥,,0)= (k/uV?)?, ©
or in the case of perfectly rigid spheres
Ri+R: \? ,
2DdD=< —) d(1/cos*¥,),
1/cos?¥,
(67)
Ri+R,y \?
F’(l/cosﬂ\Ilg)=< - i) .
1/cos?¥,

Taking into account the fact that3

f(xs)

| @ (xc) I ’

where the sum is taken over all roots of the equation
¢(x)=01in the interval (g,b), and integrating (50), (51),

/ F@L () de=5

F(1/cos?¥,,0)= (k/uV?)%1y?(1/cos?¥,), (65) and (52) with respect to the angle ®, we obtain
/’ Vf( \ F'(1/cos?¥,,9) (1o, )d (68)
TAR= —f(6 cos™W,)dé 8
N Vg /[W\I,q(AE,I/ cos?¥,,0) T2 o
[/ Lo L)y AR feosh 0001 o) (69)
AR cos9 = —f(6 O] freoss (AE,1/cos™¥ ,,0 cos™W,)dl , 69
Vg /[WW,(AE,l /cos?¥,,6) T2 - ! !
/ / 0,00 D)y T ot ) T (AE o508,
OAE,cosd,6= —f(0,¢ 0| Meoss ,1/cos™ ¥ AE,1/cos™V .0,
" Vg I[W\y,(AE,l/cosz\If,,,O)]”z - o ’ ”
Xd(1/cos*¥,)dodp, (70)
where we have denoted (14 AE/Ey)'? 1 / f;ﬁV‘*
OAE ,cosd,¢—
Wy,= (2a sin¥, cos¥,)2— (AE+b cos?¥,)2.  (71) £ 2V2mapyvs E?
In the expressions for oag, oarcss We have also inte- F'(u,0) o
grated over the angle ¢ after taking into account the (W(AE, cosd 0))1/2"Lh¢ (AE, cosd,f,0)]
fact that S f(0,p)do= f(6). Without any assumption Ha5 ’
as to the velocity distribution of the field particles Xf(6,9)d0dp, (73)
f(8,0), only the cross sections ¢a g coss and a g cos?,s Can where
be calculated. W= —cos?0+24 B cosf+1—A2— B2, (74)
Integrating over the angle ¥, and performing some £\U2/AE/E,
transformations, we obtain 4= (—) ( - 1) , (75)
(+AE/E)2 1 L2V 2 2
OAR,cos0= —_— 12 9, /AR
* £5/2 2V2maqvivg) Eg? B= (f) E( /E2+@)’ (76)
2 V1 25 my
F'(u,9)
f(@)do, (72) 8D. Ivanenko and A. Sokolov, Classical Theory of Fields

(W:(AE, cosd,6))!/?

(GITTL, Moscow-Leningrad, 1951), pp. 31-33.
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1AE AE\'?
5___1+___._(1-|-—-—) cost, (77)
2 E E

2 2

my 2rV\21
1/cos?¥, — u5=2( )(—) -.
M1+ v/ &

Without detracting from the generality of the con-
siderations, we can still integrate expression (73) with
respect to the angle ¢. This integration yields

(14+AE/E)v: 1 12V

(78)

OAE,cosd, ¢ —

56/2 2\/7%127)17)2 _.527
F’ (uixo)
l[:07 o— QD(AE;ﬂ;o):ldo: (79)
(W(AE, cose,0))"”

where ¢— o(AEJ,0) is defined by the relation 7,
X (6,¢,AE, 0)=0.

Taking into consideration that S oap,cos@ (AE)=0¢oss
and using (69), we obtain the cross section for the scat-
tering of the test particle through the angle 9:

2 Vv F'(1/cos?¥,,0)
Ucos;):z: //""f(e) 2E
=1 V2 (ng(AEi,l/ cos™¥,,0))'/2
(14-AE;/E,)32
|2M 2 (V /v2)? cos*¥ 45 (AEi/ E,) |
Xd(1/cos?¥,)de,

(80)
where

AE;=E{[|cosd |
4 (— 1) (AMA(V /v5)? cos?¥ ,—sin29 )2 2—1}  (81)

are the roots of equation /g3 (AE,1/cos¥,,0)=0.

From-the direct substitution of (81) in (29), it follows
that if 4M,2(V/vs)? cos®¥,>1, then for two values of
1 (=1, 2) there exist two different scattering angles 9
and 7—4d, and therefore in (80) instead of the sum over
iwehave |cosd | — cosd. If 4M 2(V /v2)? cos?¥ ,< 1, then
cosd, independently of 7, is always positive (the par-
ticle cannot be back-scattered) and thus in expression
(80) there is the sum over <.

VI. ENERGY-EXCHANGE RELATIONS

The above relations, derived in most general form,
already allow us to draw some specific conclusions.

Thus, since the cross section must be a real quantity,
we obtain at once from (68) the condition Wyg,>0
which is fulfilled if the determinant of the equation
Wy, (1/cos?¥,)=0 is non-negative, or explicitly

—AE2—AEb+a230. (82)

This inequality does not depend on the character of the
interaction but is a consequence of the laws of con-
servation of energy and momentum; it determines the
limits of the exchange of energy between the colliding
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particles. Hence, solving for AE, we obtain
AE*= —b/2-4(b%/4+a%)"2, (83)

where AE*, being always positive, determines the upper
limit for the gain of energy and AE-, being always
negative, determines the upper limit for the loss of
energy of the test particle. Inequality (82) is therefore
fulfilled if AE-SAESAE.

In the two limiting cases of greatest interest for
us, m1=my and m1<Kms, expression (83) takes the form

AE* 1ir/E, 2 E, :  E 12
(GO
E2 2 Ez Ez E2

for mi=msy, (84)
AEi 1 U1
_—}——I: — (1 _— cosG)
K12E2 2 V2
91 2 o 2 1/2
=+ {(1—— cosB) +(——) sin“’()} ]
Vg Vo
for mi<ms and E<E,. (85)

Differentiating (83) with respect to the angle 6 and
equating the derivative to zero, we find the angle which
must be formed by the vectors of the initial velocities
of the two particles, so that the energy exchange be-
tween the colliding particles is a maximum. Simple
calculation leads to the relations

1 v, Mma 1 vy ma
if ——|1——|<1, then cosOAE—m,m,=———(1——-—>;
20 m 2 9 my
(86)
19 my 10 m
if -—|1——|<1, then cos&AE+m,max=———<1——).
Vo Mo Ve Mme.

(87)

The energy changes corresponding to these angles are
then AE~= —E, and AE*=E,, respectively. We have
obtained a very surprising result, from which it follows
that even in the case where the masses of the collid-
ing particles are unequal, collisions with a full mo-
mentum transfer are possible in a certain energy range.
Thus, if inequality (86) is fulfilled, then for the angle
0= 0 F~max max the test particle can lose its entire energy
in the collision. If, however, equality (87) is fulfilled,
then for the angle 6=0ag*maxmex the test particle can
acquire the entire energy of the field particle. In the case
of colliding particles of equal masses, full momentum
transfer is possible independently of the energy of the
colliding particles, and can occur if the velocity vectors
of both particles are perpendicular to each other. If the
mass of the test particle is considerably greater than
that of the field particle, it can lose its entire energy if
the momentum is smaller than half the momentum of
the field particle; a necessary condition for the acquisi-
tion of the entire energy from the field particle is fulfilled
if the test-particle velocity is no greater than half the
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velocity of the field particle. If inequalities (86) and
(87) are not fulfilled, then it is not possible for a colli-
sion to occur in which one of the particles loses its
entire energy. The greatest energy transfer then occurs
at the angle §=0 or 6=, i.e., when the velocity vectors
of both particles are parallel or antiparallel.
Setting in (83) §=0 (the particles move in the same
direction), we obtain at once
] e

miv1\ 1 121 U1
AEio=o=K12E(1+ )-[—-(1——):i:ll———
Mmave/ 2 2 )
if v9>v1, then AE<O (the test particle overtakes the
field particle and transfers part of its energy to it);

if v,<v;, then AE>0 (the test particle acquires en-
ergy from the field particle which overtakes it).

and therefore:

In the case of antiparallel vectors 6=, (83) gives us

1\ 1 M1v1 M1,
AE*¢_=K12E, 1+—>— — 1--—):1: 1— :|

V2 2 MoV M 2V2
(89)

Now, the gain or loss of energy of the particle depends
not on the velocities of the particles but on their
momenta. Thus,

lf m2v2> miv1,
if MoV < mivy,

then AE<O;
then AE>O.

In a collision with antiparallel velocities, the particle
which has the greater momentum loses energy. In the
case mime and E;<E, (then automatically vy
<Kmaqvg) particle 2 undergoes the greatest possible loss
in energy if the wvelocities of both particles are
antiparallel:

Al;:—ma\x ﬁ_I<-12E2(1’I"'l)1/'l)2) .

Particle 2 can gain the energy if its velocity is smaller
than the velocity of particle 1. The maximum gain in
energy occurs when the velocities of both particles are
parallel. Then this gain is

AE+max QKlez(l —'1)1/'1)2) .

(90)

(1)

At this point, it is worth drawing attention to the

1 #1202 M22'Z)22 AE
W£=2—£[_f2<1+2“’" cosf-+ )—I—Z&[sin%-}————(l————— cosf+

myvy mi20,2
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fact that the maximum change in energy does not at
all correspond to a central collision, as might appear at
first glance. This can be readily shown if we differen-
tiate (17) with respect to the angle ¥, and equate the
derivative to zero. It then turns out that the c.m.-
system scattering angle corresponding to a collision
with a maximum change of energy is different from
zero and equal to

b b 2 1/2
tan¥,=—-=+ {(—) -I—I} ,
2a 2a
where the sign before the root is used according to the
sign of b, so that tan¥,2>0; and only when ¢—0,
which occurs if v1— 0 (scattering on particles at rest)
or sinf — 0 (scattering on field particles moving parallel
or antiparallel), does tan¥, — 0, and hence the collision
parameter D also tends to zero. Inserting the obtained
value of the angle ¥, in expression (17), we obviously
obtain relation (83).

If we regard AE as an independent variable, then
condition (82) determines the limits of integration in
Eq. (68) with respect to angle 6. Solving (82) for cosf,
we then obtain

(92)

cosfye=x0tx1 if —1Kwotx:1<1,
—1 i —12x0kx,
where we have denoted
1 mi\AE v, AE AEN\ 12
e (Y1 2P) 20
2 V(%) E1 Vo E1 Ez
(94)

Diagrams of the integration of the cross section oap
with respect to the angle 6, which is equivalent to de-
fining the region in which inequality (82) is fulfilled for
several special cases of the masses of the colliding par-
ticles, are shown in Figs. 5, 6, 7, 8, 9, and 10.

VII. SCATTERING RELATIONS

Similarly, as the condition Wy,>0 determines the
range of variability of the variables AE, 6, ¥, the con-
dition W¢>0 determines the range of variability of
variables AE,d, 6. Reducing W; given by (74) to the
form

Ey, v, mavs

2E2 El n miv

)G o

it can be easily seen that the condition"W ;> 0 gives us £ < £< £, where £1,2 are the roots of the equation We=0.
Therefore, the range of variability of the cosd is determined by

AE\-1"
C0501,2=(1+—> {

E,

1AE
14+-— El,g(cosﬁ)} ,
2 E

2

(96)
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range of possible energy loss AE™ my=my
as a function of angle &
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i

range of possible energy loss AE~ m,=2m,
as a function of angle &
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2

where

21\2 1 AE] Ey  vgfmy
£1.0= (——) {sin20+— ———[1——-!—-—(———-— 1) cosa:]
PC’ 2 E, E1 V1 \MmMy

1AE Ez Vo /Mo 2 1AE\?
+ ( {sin20+— —[1—-—+—<——-— 1) coso]} - (——) (
2 E2 E]_ U1\ 2E2

P1, P2 are the momenta of both particles before encounter, and P¢ is the momentum of th

Pl= ﬁ12+P22+ 2p1pa cos.

Fic. 5. Possible energy
loss as a function of angle
between initial velocity vec-
tors vi and v for equal
masses of colliding parti-
cles. The parameter is the
ratio of the energies of the
two particles. At the angle
0=0AE"max msx=%7"’ the test
particle can lose its total
energy independently of
theflenergy of the field
particle. The range of the
possible loss of energy for a
given angle and for a given
ratio of E1/Es is represented
in the graph by the radial
arrow. The azimuthal arrow
represents the range of
angles 6 at which the test
particle can lose the given
amount of energy AE.

F16. 6. Range of possible
energy loss as a function of
angle @ for ma=2m;. Now,
the angle 0AEmax max de-
pends on the ratio of ve-
locities of both particles,
and changes from g for in-
finite velocity of the field
particle to 7 for v1 < $ve. The
meaning of the arrows is the
same as in Fig. 5.

V‘ 2 PC 24 1/2
G e
1/ \p
e center of mass:

(98)



F16. 7. Range of possible
energy loss as a function of
angle 9 in the case of heavy
particles colliding with light
(mg>m,). The greatest pos-
sible loss of energy takes
place for antiparallel moving
particles (0AZ max max =%7).

F16. 8. Possible gain of
energy as a function of
angle @ for equal masses
of colliding particles. The
maximum maximorum gain
of energy of the test particle
takes place at an angle
0=4%r.
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range of possibie loss of energy AE™ m«my
as a function of angle €

range of possible gain of energy AE* my=mg
as a function of angle €

e AEpose(8s)
Ep

For parallel or antiparallel velocities of colliding particles (=0 or §=1), the relation (96) takes the form

AE\™12 AE 1:F‘IJ'2,/1)1
cosdy, s — cosﬁ=<1+—) {1+——~(1———~——>} ’ (99)
E, 2E, 1mave/mym

where the upper sign is for the parallel and the lower one for the antiparallel velocity (Fig. 11). In this case there
is a unique relation between the change of energy of the colliding particles AE, the scattering angle ¢, and the
impact parameter D (this can be easily shown putting §=0 or §=1 in the equation Wyg,=0).
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A 316
my=2m,

range of possible gain of energy I
as a function of angle &
by, = F B (- R)~ 18

/]
Jr

[]]
g

8, Fic. 9. Possible gain of

energy as a function of
angle 6 for #a=2m,. The
angle 0A7 max max decreases
with increase of velocity of
the field particle.

N
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"il’"

(1]
.!l
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150°
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AR

~

range of possible gain of energy AE*
as a function of angle ¢

2}
v Fic. 10. Possible gain of
2 energy as a function of angle
0 for a mass of the test particle
much greater than that of the
field particle; if the velocity of
the field particle tends to zero,
the test particle can gain
energy at an angle near to
3 only.

For perpendicular velocities (vi+vas=0) the range of variability of the angle ¢ is determined by

AE E; AE E, AE\? v ma\2 12
B Y ]
AE\T12 AE 2E2 El E2 E1 2E2 1)12 my
costy, 2= 14— 1+— 5 (100)
E, 2E, 14-mo?v2/my0y?

which has been obtained from (96) after substituting W=—(4—B)? is always negative, gives us 6;<0<0s,
0=3r (Fig. 12). where

The condition W;2>0 examined with respect to the
angle 0, after taking into account that for =0 or f=m cosby,a=AB+[(1—A2)(1— B2, (101)
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o' relation between the scattering angle %
% u m,a=m, and the loss of energy aE™
—— —.'.
105° so° 75° el
antiparallel o . paralle
Fic. 11. Relation between velocities . 120 Ulp 60 velocities
the scattering angle ¢ and Y Ve
the loss of energy AE~ in . .= 0! Y04
the case of parallel and 135 _] ) 45°/ s
antiparallel velocities and U — °
for particles of equal masses. s 05 — -,
The parameter is the ratio 150°
of velocities of the colliding 30°
particles. There is a unique
relation bietween the scat% \ -
tering angle and the loss o . Y%
energgy. & 165° Y08 g"=a5 W\ 7% .
\ /(
\ U
100° 808 e | &
02 04| s 08 1 At
le—— AEposs(v) Er
Ez

Fic. 12. Relation between
the scattering angle # and
the loss of energy AE~ in
the case of perpendicular
velocities and for equal
masses of both particles. In
this case there is no unique
relation between the loss of
energy AE~ and the scat-
tering angle & For instance,
the test particle can be
scattered at an angle &
with the loss of energy in 165° '
the interval shown in the
figure by arrows.

180°

range of possible loss of energy AE"as a function
my=m, of scattering angle W

perpendicular
velocities

Since the expression [ (1—A42)(1—B)]"2 has to be a real
quantity, and (1—A4?) can be reduced to the form
(14+AE/E,) sin%9/2 £ which is evidently always positive,
we obtain the condition B2 1, or explicitly

mi/1 AE E, AE\? my 2
52_1_25_(______)-{-(——) (———) <0. (102)
mo\2 Eo Es 2Es/ \my

Solving the above inequality with respect to £, we obtain
the limits for £

El,2= %[(m;,’lh/m:z‘vg)((l _ AE/El) 1/2:!: 1)]2 (103)

Uy
15°
N1
U
pl G
v
2

and then the limits for the angle ¢

AE\2 1AE
cosdy, 2= (1—]————) {1+————
E, 2 E,

g E=(CHEDI IS

Now, the limits do not depend on the angle 4. They
determine the maximum range of variability for the
scattering angle ¢ and for the variable £ if 6 changes
from 0 to = (Fig. 13).
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range of possible loss of energy AE"as a function
m":m‘

L
90266
S

/7
ny
11
177
i
I %

g

Il
/

/L Z2%Z
=

N
NN \| ¥
S\

(TS5
% ":'6% _‘=,I"

of scattering angle %

Fic. 13. Range of fpossible
loss of energy as a function
of the scattering angle ¢ for
6 changing from O to «. For
215%0 the test particle can
be scattered at the same
angle ¢ with a small or
large loss of energy. When
91=0, then independently
of the angle ¢ there is a
unique relation between the
scattering angle and the
loss of energy.

The relation between the angles 91,2 and the change
in energy AE, for AE<O, mi=ms and also for some
special values of the angle 6, is shown in Figs. 14, 15,
and 16.

One could try to solve the condition W>0 with re-
spect to AE and determine the limits for AE as a func-
tion of the angles ¥ and 6. Unfortunately, solution of
(95) with respect to AE in the general case is very
difficult (a fourth-power equation with respect to AE);
therefore, the analytical form of the scattering cross
section can be obtained in some special cases only.

180°

150°

10°

90° I~

SCATTERING ANGLE W

-
b

o 0, 0 so°  120° 150" 180°
ANGLE @

F16. 14. Relation between scattering angle ¢ and the angle 6 for
particles of equal masses and for the loss of energy equal to the
kinetic energy of the field particle. The shaded area represents the
region of possible scattering angles 9 for a given ratio AE~/E,.

8 8
|
YIXX

If the field particles can undergo discrete changes in
energy only or the velocity distribution of field par-
ticles forms the set of discrete values for the angle 6,
then from (72) it at once results that angular distribu-
tions will have sharp maxima corresponding to zero
values of denominator (W;=0). They are responsible
for the ‘diffraction” pattern of scattered particles.
Therefore the spectrum of possible changes in energy
and the orientation of the velocity vectors of the field
particles determine completely the diffraction pattern
of scattered particles, independently of the law of inter-
action, which influences the absolute value of the cross
section only (Fig. 17).

In the case of large velocities of scattered particles
(v2>>v1), Eq. (96), which determines the scattering

3 T T T I‘.l
S| o O m,>»m, T
€l - 3, &‘ AE=-E, T
RNV 757,55 |
= l WA S
i - f_v/Q(égl\xg);:\f?xxx SRR
S=0 L0 [T S8 (B) < g5
| 0 [0, ) 3, N
g Lt o
w ~/ %\/‘, ] '-/’
,’: B KNS NaAvd 4 4
S AR SEa U
g [ BRI N AN | U e
o 0s, 50° 0 10° 150° 180°
ANGLE &

Fic. 15. Region of possible scattering angles ¢ for heavy parti-
cles (mz>>m) as a function of angle 0. The parameter is the ratio
of velocities of colliding particles.
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maxima, can be approximately written:

AEN\T2
cosz‘h_zz(l-{— ) {H—

E,

L/p1\? AE\Y ’
_._(_> ((sinZG—-———) :l:sinﬁ) } ; (105)
2\p, E,

or further, in the approximation |AE~| < E1(ve/v1),

‘ 1/2
- (51n20+—-——~) :i:sine) @«

Thus, we have obtained the very well known dependence
of diffraction rings on the momentum of scattered
particles.

The dependence of the diffraction pattern on the
discrete states of the field particles is more evident if
we examine the scattering of particles in a given direc-
tion. If there exist any favored directions in the velocity
distribution of the field particles, then the velocity dis-
tribution has the form f(8,¢)=8(0—00)5(¢— ¢o) and
from (79), we have

OAB cos9,6 < | 0o (AED 00)— 15

therefore, by means of (33) the direction of a scattered
particle is, for the given value of AE, exactly deter-
mined. As a result, the diffraction pattern has the form
not of diffraction rings but of diffraction spots. If v2>>;
and |AE-| <Ei(v2/v1), then the relation (33) with the

1AE

2 Ity

(106)

Mol

(107)

| 7
§
¢ w28, (o 3a0)
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N2 ssss pr

0
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Fic. 16. Approximate dependence of the range for scattering
angle 9 as a function of angle @ for different values of the loss of
energy.
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Y > beam
of test particles

spatial distribution
of field particles
of velocity v,

v (¢) u(9)

v ()

scatfering on " v,(8"-particles”™ |

scattering on"'v,(¢)-particles spatial distribution
of porticles scattered
with given change

in energy

curve depending
on law of interaction

scattering ungle v
(poemons of maximums are independent of interaction Iuw)

F1c. 17. Dependence of “diffraction” rings on anisotropy
in the velocity distribution of field particles with respect to the
angle 6.

help of (106) results in
¢=o. (108)

In this approximation we have shown that the azi-
muthal scattering angle of the test particle is equal to
the azimuthal angle of the velocity vector of the field
particle with which the former has collided.

Summarizing, we can state that the diffraction pat-
tern is due to discrete states of scattering particles. In
the case of isotropic distribution of velocities of field
particles with respect to the azimuthal angle ¢, the
diffraction pattern has the form of diffraction rings. In
the case of full anisotropy in spatial distribution of
velocity vectors, the diffraction pattern has the form of
diffraction spots or sometimes of sectors of circles (see
Fig. 18). Other forms of the diffraction pattern, such as
of Kikuchi lines, can be interpreted as the result of the
specific orientation of velocity vectors of field particles.

At last, it is necessary to stress that the diffraction
pattern will exist too, although in simpler form, for
continuous changes in energy of field particles, provided
there exists a threshold for the gain of energy.

VIII. SOME SIMPLIFIED RELATIONS

Inserting v;=0 in the expressions relating the dy-
namical variables with the geometrical variables (scat-



Fi6. 18. Dependence of
diffraction pattern on the
anisotropy in the velocity
distribution of field parti-
cles with respect both to the
angle 6 and to the azimuthal
angle ¢.
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spatial distribution of field “diffraction” pattern of particles
tick nted by doubl scattered with given change in energy
ge:ou‘:’ :).s(represe ed by double GF U0, then 9= ¥)
scattering on”’v,(8)-particles”
beam .
of test particles )
U, Z axis
A
U

tering on field particles at rest), we obtain a number of
already known relations. Thus, we obtain for the test
particle,

AE=—Kq, COS2\I’g y
1—2(0m;y/ (m1+m2)) cos?¥,

cost= ’
(1—K 3 cos?¥r,)1/2

AE\™12 1 mi\AE
cosﬂ=(1+———-> [1+—(1+—)—], (111)
E, 2 mal Ey

and similarly for the field particle, which we can regard
as a recoil particle,

(109)

(110)

scattering on'v, (§')-particles”

Eliminating ¥, from (110) and (113), we obtain an
obvious relation between the scattering angle of the
test particle and the recoil angle of the field particle
at rest:

1—2(m1/ (my+ms)) cos?d
(1— K15 cos?d)\/2 .

cosd=

(115)

The relation between the scattering angle of the test
particle and its change of energy in the collision merits
particular attention. In the case of a field particle at
rest, we have a unique relation between the scattering
angle and the change of energy in the collision. Thus, if
the field particles can experience only discrete energy
changes (hence, if they are electrons bound in an atom
or nucleons of a nucleus), then the scattering will have

AE=KuE; cos’¥, (112) the character of “diffraction” rings independently of
cosd = cos¥,, (113) the interaction law between the particles.
_ _ Proceeding with the calculation of the basic cross
cosd= (AE/K1:E5)"2. (114)  sections, in the simple case where 2;=0, we will have
K:E,
OAE=T F/(1/0082\1/9)1/0051\1,0=_K12E2/AE, (116)
AE?
: i > B (1/cos¥,)cosd-+ (1 (ma/my)?sinky" <
Goosy = 2mM—— X cos?¥ ) cosd+ (1 — (mo/my)? sin®3)2] if me<m
& sing (1_ (mz/m1)2 Sin20)1/2 i=1 g 2/ My :| PANR )
2 (117)
X2 F'(1/cos®¥ ;) 2[ 14 cos?d— (ma/my)? sin?¥]  if me>my,
=1
where
1 1— M, cos™+ (—1)? cosd(1—2M o+ M 32 cos) V2
( ) =2M; , (118)
cos?W sin%}
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and

O cosd— 27r (1/C0531§)F, (1/COS2‘I/0) 1/0052\1;0:1/00525 . (119)

Taking into account that the cross section has to be
a real as well as a non-negative quantity, we deduce
from (117) that 0<9 < max, Where

Imax=arc sinmy/ms for me>my,
(120)

Imax= 37 for ma=my,

Tmax=T for me/m—0,

and from (119) that 0<J< 3r independently of the

masses of the colliding particles.

On the other hand, by inserting ¥,=0 in the set of
h functions, which corresponds to back scattering in the
c.m. system, we obtain the relations for the central
collisions. Now, these relations do not depend on the
law of interaction, but only express in terms of geo-
metrical and dynamical variables the conservation of
energy and momentum ; they have been examined very
carefully by many authors.

IX. RELATIONS DERIVED FROM THE
BASIC CROSS SECTIONS

With the aid of the previously defined basic cross
sections, we can determine a number of derivative
quantities describing various processes which accom-
pany the collision of particles. Thus, we can define the
quantity

S= /UAEAEd(AE), (121)

which we call the slowing-down cross section (slowing
down as a result of dynamical friction), and which is
directly related to the range of a particle in a medium:

1 dE
R[22
NJ {S)ay

where N is the density of the field particles, while
(S)av is the slowing-down cross section averaged over
the velocities of the field particles.

Taking into account the fact that oagz is given by
(68) and integrating with respect to AE over the entire
region in which Mv,(AE)>0 [see (71)], we obtain

%4 1 1
S=7r//—f(0)bF’< )cosZ\Ifgd( )dﬁ. (123)
Vg cos*¥, cos?¥,

The quantity S defined in this way, which applies to
collisions with AE<0 and AE>0, is exact insofar as it

(122)
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refers to free field particles (for example, the slowing
down of charged particles in a plasma); if, however, the
slowing down takes place on a quantized set of particles
(e.g., slowing down on electrons of atoms or molecules
in the ground state), then the only collisions possible
are those with a loss of energy equal to or greater than
some minimum value (U). The stopping power will
then be

AE " max
Sy= / oarAEIAE, (124)

-U

where AE max is the maximum energy loss experienced
by the test particle in the collision with the field particle.
Integrating oag over the limits — U, AE ax, We Ob-
tain the cross section for a collision in which the test
particle loses an energy equal to or greater than U':

A E~"max 14 1
0= / capdAE= f f —f(o)F'( )
_v Vg cos?W,

b cos*¥,—U 1
Xarc cos( )d( ) (125)
2a sin¥, cos¥,/ \cos?¥,

In the case of atomic collisions, Q, can be directly
interpreted as the ionization cross section if U is the
ionization potential.

In a similar way, we can construct a number of other
derivative quantities, depending on the specific problem.

It should be noted that the total scattering cross
section is divergent, a fact which is sometimes errone-
ously associated with the Coulomb interaction.®® Actu-
ally, for each interaction described by a monotonic
function, the total scattering cross section is always
divergent,' which is entirely understandable, since the
integration over small scattering angles always corre-
sponds to the integration over a large collision pa-
rameter and, independently of the interaction law
(excluding the abstract model of rigid spheres), the
limit of angles 9 — O corresponds to D— . All cross
sections Gag, GAE coss, Teoss, €LC., integrated over the en-
tire range of variability of the variables are divergent,
and there is no indication as to whether we are dealing
with short-range or long-range forces. For such defini-
tions, we can use, for convenience only, such quantities
as S'oagAEd(AE) or f 0c0ss cosdd(cosd) or other similar
quantities.
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