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Two-Particle Collisions. I. General Relations for Collisions in the Laboratory System
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The relations between the energies and angles for two-particle collisions are given for the case of conser-
vative central forces. They have been derived in the laboratory system of coordinates, since this system is of
prime importance for the interpretation of the experimental results. The dependence on the law of inter-
action enters the obtained relations through the function for the c.m.-system scattering angle. Some remarks
on the statistics of encounters are given, and the cross sections for collisions in which the colliding particles
experience given changes in energy and direction are derived. These cross sections can be used to determine
the cross sections describing various physical processes. On the basis of the cross sections derived for the
scattering problem, one can suggest that the "diGraction" pattern of scattered particles is due to quantized
states of the scattering particles, rather than to the law of interaction.

I. INTRODUCTION

IlESPITE the fact that the two-body problem is
fundamental for physical science, it has not been

solved in the general case. Moreover, in the relatively
simple case of Coulomb interaction, there are always
great difhculties involved in the description of phe-
nomena connected with two-particle collisions if they
are not considered in the center-of-mass system. The
laboratory system plays an important role in the inter-
pretation of the experimental results, since all the
observations of collision processes are made in that
frame of reference.

The peculiar role of a 6xed frame of reference was
pointed out by Chandrasekhar, who derived some rela-
tions for the two-body problem in the laboratory sys-
tem. ' ' Nevertheless, the complete set of explicit rela-
tions between the geometrical variables (determining
the motion of noninteracting particles) and the dy-
namical variables (determining the changes in their
motion due to interaction forces) have not been given.
These relations alone are not sufhcient to describe all
phenomena. It is necessary to know in addition the
probabilities (cross sections) of a collision with a given
change in the state of both particles. A partial solution
of this problem has been given by the author for the
Coulomb interaction. 4 Our problem now is to And the
relations between the geometrical and dynamical vari-
ables in the general case of conservative central forces
on the basis of the laws of conservation of energy and
momentum, and to use them to derive the cross sections
as the functions of the dynamical variables.
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encounter by v~ and v2, respectively, and after the
encounter by v1' and v2'.

Ke take the s axis of the laboratory system to coin-
cide with the initial direction of particle 2, which,
following the terminology of Chandrasekhar, ' will be
called the lest Particle. As a result of the interaction
with particle l, which we describe as the fteld parts'cle,

the velocity of particle 2 changes in magnitude (the
particle energy changes) and in direction (the particle
is scattered). We denote the change in energy of the
test particle by AE, and the direction of the velocity
after the collision by the angles tl and P (Fig. 1). Simi-
larly, we can assign the values AE, t'l, $ for the 6eld
particle. It is quite obvious that the result of the colli-
sion will depend both on the interaction law between
the particles and on the geometry of the encounter. To
describe the geometry of the encounter, we need four
geometrical quantities (one linear quantity and three
angular ones). These are (Fig. 2):

(a) the collision parameter D, which would be the
minimum distance between the particles had they not
interacted (it should be stressed that this quantity does
not coincide with the distance between the trajectories
of the two particles);

flnol velocities

II. FORMULATION OF THE PROBLEM

Consider an encounter between two particles of
masses m~ and ns2. As a result of the collision, the ve-
locities of both particles change in direction and in
magnitude. %e denote their velocity vectors before the

Fro. I. Orientation in space (with respect to the Iahoratory
system determined by the s axis and the vector k) of initial and
anal velocities of colhding particles. The initial velocity vectors
of the two particles de6ne the plane which is called the funda-
mental plane.' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).

~ R. E.Williamson and S. Chandrasekhar, Astrophys. J.93, 305
(1941),' S. Chandrasekhar, Astrophys. J. 93, 323 (1941).

4 M. GryziYiski, Phys. Rev. 115, 3'tt4 (1959).
s S. Chandrasekhar, Ersnciples of Stellar Dynamics (University

of Chicago Press, Chicago, 1942), p. 89.
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FIG. 2. Space diagram of an encounter. The relative motion of
both particles takes place in the plane which is called the orbital
plane. The dependence on the law of interaction is completely
determined by the scattering angle in the orbital plane.

(b) the angle 8, which is the angle between the initial
velocity vectors of both particles produced from one
point (the plane determined by these two vectors is
called the fundamental plane);

(c) the angle 0', which is the angle formed by the
segment D with the fundamental plane;

(d) the angle q, which is the angle describing the
position of the fundamental plane with respect to rota-
tion about the s axis.

With the aid of Fig. 2, we can readily establish the
range of variability of these quantities:

P&&D~& ~,
o&s&~,

0~&O~&2gr,

0& p&2x.

Now we shall attempt to derive the dependence of the
dynamical variables hE, 8, p, hZ, , @ which describe
the changes in states of colliding particles upon the
initial conditions expressed by the geometrical variables
e, O, sg, andD.

III. DYNAMICS OF A TWO-PARTICLE ENCOUNTER

According to the elementary theory of the two-body
problem (Fig. 3),' the velocity of the center of mass of
the colliding particles remains constant during the
encounter

Fxo. 3. Vector model of two-particle collision.

v1 ——V,—MsV, v1' ——V,—MsV',

V= V,+M1V, Vs' ——V,+M1V'.

(6)

(7)

Since the potential energy of the two particles is zero,
both before and after the encounter, the law of conserva-
tion of energy gives us

—,'grs»1 +sglsvs sgrr»1 + sgrrsvs

Hence, using (6) and (7), it is easy to show that V= V',
so that the relative velocity is changed by the encounter
only in direction and not in mcgnitlde. The dynamical
effect of the encounter is therefore known when the
change in direction of V is determined.

a. Calculation of AE

From the deinition we have

5E=—5$o82 ——882'V

Hence, hE is positive if the test particle gains energy in
collision, and is negative if it loses energy. Squaring
relations (6) and (7), we readily obtain

Let V and V' denote the initial and inal velocities of
the second particle relative to the erst:

V= Vs—Vly r = Vs Vl
xn

then by means of (2) and (5) we can express v1, vs, v1',
and vs' in terms of V„V,V'. Thus,

gllvl+msvs= (rrsr+ms) Vg= mrvl +msvs .
Hence we can write

V s=Mrsers+Msss s+2M1Mse»s cose,

where the following notation has been introduced:

M 1 l/re( l+gpss)grrM2 ™2/(g11+rrss)

(2)
v 2 P 1+2M1P gp cos@+M12P'2

vrs= V '—2Ms Vg V cos4+Ms'V', (10)

where 4 is the angle between V, and V (see Fig. 3).
Similarly, after the encounter, we have

ss" Vs+2M, Vg V' cos—4'+Mrs V"
4

where 4' is the angle between V, and V . AlsoI ~ f

6 S. Chapman and T. G. Cowling, The 3fathematical Theory of
Xoa Urriform Gases (Cambridge -University Press, Cambridge,
1963), pp. 53-58.

my8$2
AZ= Vg V(cos4' —cos4) .

mr+ ms
(12)
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Solving (10) with respect to cosC and using (3) and V, (18) can be rewritten in the alternative form

(5), we can write
g= 12/( —V4+ 2V2(V 2+ V22) —(V2 —V12)2)'~ (20)

cosC =
2222V2 2121V1 + (4221 W2) V1V2 COSH

(2121+2222) V,V
(13) f 2222 212—1

2 cI c='—c'+ V')
2222+ 2121

(21)

sinC = vlv2 sinH/ V,V.

Since (see Fig. 3)

which is of prime importance for the interpretation of
some relations and can also facilitate some trans-
formations.

cosC'= cosC cos(2r —2&g)

+sinC sin(2r —2@g) cosO, (15)
we 6nally obtain

b. Calculation of the Scattering Angle 4
From the definition of the scattering angle 8 we have

cos8= V2 V2'/V2V2' taking into account (7) and using
the vector model of the collision (Fig. 3), we can write

AZ= —2 V,V cos2+g(cosC —sinC cosO tang)
2121+tl$2

v2 cosB=M1V cos(V V2)+Vg cos+. (22)

or, in implicit form,

kgb(8, 0',Vg) =hE+b co—sag
—222 sin%'g cos%'g cosO'= 0, (17)

where

From the spherical triangle V'Vv20 we obtain

cos(V v2) = cos(912—p) cos(2I —2%'g)

+sin(C —y) sin(2r —2@g) cosO'. (23)

It follows from triangle VOv2 that

c=pv~e2 sin8,
18

It12$ 2122V2 22221V1 + (2221 2222)V1V2 COSH)

cos(C2—p) = (v2 —vl cos8)/V,

sin(c —7)= v 1 sin8/V.

Taking the scalar product of v2 and V„weobtain

(24)

(25)

P= (22212222)/(2221+2222),

+12 4(22212222)/(2221+2222)

The subscript of Il, in formula (17) and hereafter, indi-
cates the variable for which the equation h=0 is to
be solved.

Expressing sine and cos8 in terms of relative velocity

cosp= (1/Vg) (Mlvl cosH+M2v2),
sing= (1/Vg)Mlvl sin8. (26)

Equation (22), (23), (24), (25), and (26) finally yield

V2 COS8= 'V2 —2M1(V2 —Vl COSH) Cos&g

+2Mlvl sinH sin%'g cos%'g cosO~ (27)

or, in implicit form,

h„,g(8, 8,@g)=—cos8

1—2(4121/(4241+2222) )L(1—(vl/v2) cosH) cos'4'g —(vl/v2) sin8 sin+g cos%'g cos07

2221 V 1 2241 V 1
1+E12 —1+i 1———cos8 cos24'2+4 —slI18 sin@'g cosC g cosa~

-2122V2 ( 552 V2 2221+2222 V2

=0. (28)

It is sometimes more convenient to have the scattering
angle as a function of hK Solving (17) for cosO' and
substituting into (28), we find that

h„,g (H, AE, C'g) —=cos8—

c. Calculation of the Azimuthal
Scattering Angle p

The spherical triangle v2'v2V, O gives us

cos(V,v2') = cosy COSH+sing sin@ cos(p —29) . (30)
1

On the other hand, we have

(1+AE/E2)"' cos(Vgv2') = V,/v2'+Ml(V/v2') cosC '. (31)

Taking into account (12), (30), and (31), we can writecc ' V'
X 2+- 21 I I

ccs%, =0, (29)
2 2, ice,+cc,J c

V2' V2' 5 22212222 Vg V

where E2= 2m2v2'. = cosy cos8+siny sin@ cos(g —
22) . (32)
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Finally, after substitution of the known expressions for V~, cosy, sing, and cosC, we have

1 -
t ttl, v, t ( hE~'~'

hq(8, tt,DER)=p —lV
——arc cos -+cos8

i
1—

I 1+
(1+DE/Eg)"'sin8 sine ktlivi ( ~ E2 2

1 tngvt tiki) LIE+- 1+—
i

=0; (33)
2 titiVI tttg) E2

(vi/vg) 81118 cosC g+(1—(vi/vg) cos8) slung cos%' cosa~

Sly Vy

1——+2—1——cos8 cong —2—sin8 sin+g cosa
tli+tSg Vg— t'ai 'Vg 'Vg

=0. (34)—=Q—p—al"c cos

or~ using (1/) anil (2g) the asunuthal scattering angle $ caI1 be expressed. in terms of variables O~ an@%'g

hg(8 e, v Pg)

Having obtained the relations for the energy and the direction of the scattered test particle, we can derive the
relations for the energy and the direction of the recoil 6eld particle.

From the law of conservation of energy we at once obtain d E=—AR Hence, hZ is given by Eq. (17) with the
opposite sign,

From the definition of the angle g we have cos8= vg vl'/v& vi'. Taking into account (6) and using the known
formulas for V„cos(V'v2), and. cosy, we can write

1 — 1 vi dZ ttt2 )'tlivi V '
h...g(8,6Z,%'g) =cos8— — cos8+- — +2 cos'4'g =0;

(1+HZ/Ei) 2 vg Ei tili+tlgl tttgUg vi

or, in terms of the variables 0 and +g

.h,, (g,80+,)—=cos8

cos8+2(tlg/tni+ttig)r (vg/vl —cos8) cos'0 g
—sin8 sin+g cos+g cosoj

tÃgVg ( Hag 'Vg ttig
1+1'» —1+~ 1———cos8 cos'g g

—4 —sin8 sin@g cos@g cosO
-ttiiVP 5 tli 'gi tNI+tttg Vi

To Qellve tile relations for the 811gle $, we consiilel the 8Pllel'leal tll811gle 7 I Pgvg0. The 1'ela, 'tloI1 between 1'ts

angles ls
cos(V, vi') =cosy cos8+siny»n@ cos(4 —y);

on the other hand, we can write
cos(Ug. vi') = Vg/vi' —Mm(V/vl) cosC',

and, after some transformations similar to these made previously, we obtain

hg (8,6Z,P, y)

(
1 1 — 1 tN&ye t ttil tttgytlg»— — (1+- 1+—

I +I 1+2 I
cos8 -I 1+

sin8 sin@ (1+3,Z/Ei)"' 2 till Ei k tli+tlql mivi
(39)

The relations derived above are in the most general
form, and the dependence on the interaction law enters
only through the trigonometric functions of the angle

4~, i.e., the angle describing the scattering of the
particle in the c.m. system, If the interaction reduces
to a central force dependent only on the distance be-
tween the particles, then the relation describing the

angle 0", is relatively simple~:

(40)
--t((t/D)'Ll —~(r)/gt &j—1)"'

where p, V, D have the same meaning as before, while

' Sec Ref. 6, pp. 1N—ill.
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U(r) is the potential function of the two particles and
r; is the distance of closest approach of the particle
of mass p to the center of force.

In the special case in which the interaction force can
be written in the form

F(r) = —d U(r)/dr =+k/r",

the relation (40), after the substitution

tance between the two points in their relative motion,
Vdt. Taking into account the fact that in the timedt
point 2 traverses a distance dx=e2dt in the laboratory
system, and denoting by f(8, 1/2)dgdqr the probability
that the velocity vector of point 1 has a direction deter-
mined by angles 8 and 22 (see Fig. 2), we find that the
probability of the "collision" determined by the four
geometrical parameters 8, 0', q, D on the path Ch is

(1/V p) f(8, (p)dgdy(dQ'/22r)22rDdD(V/2/2)dX, (47)

D ( V'2/k) 1/ (v-1)

&oo y ) v—1-—1/2

1—y'~-
v —1 yp&

has been introduced, results in

(43)

where the proportionality constant t/"0, having the
dimensions of volume, denotes the region in which the
points are found. If N& particles of type 1 are in the
volume Vo, then the number of collisions will be g~
times as great; thus

If we set v=3, we have

(D/k)/2V2
Qg=—

2 {1+((D/k)/M V2)2) 1/2
(45)

In the case of a collision of two rigid impenetrable
spheres of radii Ri and R2, (43) gives

sin%, = 2D/(Ri+ R2),
cos+,= {1—(2D/(Xi+f2) )'}'" (46)

The rigid-sphere case is the only model of a collision in
which the scattering angle depends on the collision
parameter and not on the relative velocity of the
particles; we stress, however, that this model is a
mathematical abstraction.

IV. COLLISION STATISTICS. CROSS SECTIONS

In order to deine the concept of the cross section,
we shall analyze the motion of tvro points moving vrith
inertia in space. We take their position in space to be
completely'arbitrary. Then the probability that the
particles, as a result of their relative motion, pass each
other at a distance D, vrhere the plane of their relative
motion creates an angle O~ with the fundamental plane,
is proportional to the surface element 22rDdDdO~ (Fig.
2). The probability that the particles pass each other

(by the time of their passing we understand the instant
at which the distance between them is smallest) in the
interval of time dt is proportional to the change in dis-

where yoo is the positive root of the expression in square
brackets. In this case, 0', depends only on v and the
dimensionless quantity yo.

If, in Eqs. (42) and (43), we set v= 2 (Coulomb inter-
action), we obtain at once

(D/k)/1 V'
sin% g=

{1+((Dlk)p V')') "'

cosa, = L1+ ((D/k)/1 V')']-'"

dO.

f(8,22)b(h/ s(8,0—,%,)]22rDdD dgd p.
'V2 2'

(50)

Integrating over the region in which the conditions
h~~ ——0 and h„,~——0 are fu161led, we obtain the cross
section for the scattering of particle 2 in the direction 9
with a simultaneous change in energy hE:

&d, E,eosd = V
f(g p2)gpE/1@(8 Qw @—)7

X8/h. ..a(g, eP', )j22rDdD dgdqr; (51)
2'

v.,ii = ni(V/2/2) f(8, q )d8drp(de/22r) 22rDdDdx

ni/r(8, 0', y, D—)dX, (48)

where ni ——Xi/Vp is the spatial density of the field
particles. The quantity 0., having the dimensions of
area, is called the collision cross section (in this case
defined by the geometrical variables 8, Q~, 22, D).

Sometimes the collision problem is given diGerently.
Namely, we are not interested in the frequency of colli-
sions of the test particle with the 6eld particles, but in
the probability that the collision between two definite
particles took place at given geometric variables 8, q,
0~, and D. In this case the cross section does not depend
on the velocities of colliding particles, and is simply

~v(8 0" p,D)= f(8,V)dgdp(dQ~/22r)22rDdD. (49)

With the aid of the relations found above and Kqs.
(17), (28), (34), (36), (39), we can go on to cross sec-
tions characterized not by geometrical variables 8, 0~,

22, D, but by the dynamical variables hE, 8, g, hE, 8, 1ti.

If, for example, we integrate 0 (8,0~, p,D) over the
geometrical variables in the region in which the condi-
tion h/1/rL, 80+ 2( ,8D) j= Ois fulfilled, we obtain the
cross section for a collision in which particle 2 experi-
ences a change in energy of AE:
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and similarly

&hE,cos&, p

V
f(—8, q )h[hrrE(8, 0P,)]

area of close
collisioN

area of distant
collisions

X8[h,.a(8,OP, )]8/he(8, q, 0,%',)]
Qo~

X2~DdD d8dq . (52)
2'

interaction force — F(r) U(r) —potential energy

u(r) - pV'/2

f(8,9)=(l 8)(1/2 ) (53)

(b) the velocity vectors of the field particles parallel
to the plane passing through the s axis at the angle yo,
the position of the vector in the plane being entirely
arbitrary:

f(8, qr) = ', sin88(q-—pp); (54)

(c) the motion of the field particles in one given
direction

f(8 v)=~(8 8p)8(v v—p)— (55)

The cross sections defined above are exact insofar as
they refer to the abstract problem of the collision of two
isolated particles. In actual physical processes, we al-
ways have to do with the problem of many bodies, and
the analysis of these processes on the basis of the two-

body collision theory always has an approximate
character. Hence, in order to be able to use the two-

body approximation for physical processes, we must
determine its range of applicability. In this case, we
introduce the concept of collision time. Since the entire
effect of the interaction is involved in the relative motion
of the particles and is uniquely determined by the
c.m. -system scattering angle, we define the collision
time as the time after which this angle attains a value
close to that corresponding to the interaction after an
infinite time.

If we note by ro the distance at which the potential
energy of both particles is equal to their relative
'kinetic energy, then all collisions can be divided into
two groups, depending on whether the collision pa-
rameter is less than ro—these are the so-called "close

In the same way, we determine the other cross sections
(o...s,o;,.p, e, etc.). Of course, between the cross sections
mentioned here there occur relations of the type 0.~E
=J'osE,„,ed (cos8), which, under certain conditions, can
facilitate the calculations and the physical interpretation.

On the basis of formulas (17), (36), and (39), we can
give an analogous set of cross sections for the recoil
particle. Combining (17), (28), (34), (36), and (39),
we can determine the cross sections of the type 0;„z„„&
describing a simultaneous change of state of both
particles.

The function f(8,y) describing the spatial motion of
the field particles in the l.s. has the following form in
some particular cases:

(a) isotropic motion of the field pari;icles:

I

rq, Iy l~ rptt distance between
coll&d&ng part&cles

Pro. 4. Collision in the center-of-mass system. Illustrates the
difference between the close collisions (the impact parameter is
smaller than the distance of closest approach at central collision)
and the distant collisions (it is greater).

t „ales 2(Dits —D)/V (57)

The quantities ~&~2 and D&~2 depend on the interaction
law between the particles; for forces F(r) per-" the ex-
pressions defining the collision time can be written as
follows:

t ll"= (2rp/V)(2'lt" ' —1)~
( /V)( hit ')"'" "( "'" "—) (5 )

slsl= (2D/V) (2t&&~» —1)

Relations (58) and (59) may be put together and written
generally:

2((rp+D)/V)(2'I( ') —1)

or in the case of a Coulomb interaction (v= 2)

(60)

t«ual 2r p/V —+ (2/V) (2h/t—r—V')' cr 1/V', (61)

olldisl 2D/V

t,.„=2((rp+D)/V).

(62)

(63)

collisions" —or greater than ro—these are the so-called
"distant collisions" —;this division refers only to
interactions described by monotonic functions. For
close collisions, in which the direction of the relative
velocity undergoes a considerable change (m

—2% p ~ pr),
the main effect of the scattering involves the region be-
tween the radii ro and r~~2, where r~~2 is the distance at
which the potential energy of the particles is equal to
half their relative kinetic energy (Fig. 4). We can
therefore assume that the time for a close collision is

t..ll"——2 (ries —rp)/ V. (56)

For distant collisions (D))rp), in which the direction
of the relative velocity undergoes only a slight change,
the basic effect of the scattering is manifested in the
region D—D&~2, where D&~2 is defined by the relation
U(Dtls)=-,'U(D). We can define the distant collision
time in a similar way:
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)fq "/hE/E&

4) E 2e i

pP '/' ~&(LE/E&
(76)

X 8[her(DE, cos0, 8,p))
(W~(AE, cos8,8))'"

Xf(8, (p)d8dq, (73

X f(8)d8, (72)
(Wt (hE, cos8,8) )'/P

o FieldsClassical Theory oand A. Sokolov, as' '""'""--L-n".
d, i95i), pp. 3i- .(GITTL, Moscow-Leningra,
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1 hE ( AE~'~2
)=1+— —

i 1+ —

i
cos8,

2 E2 k E23

m, y2) Vq21
1/cos'e, ~ N2=21

(BZ2+m23 E 'v2I

(77)

Without detracting from the generality of the con-
siderations, we can still integrate expression (73) with
respect to the angle p. This integration yields

particles. Hence, solving for hE, we obtain

hE"= —b/2+ (b2/4+a2) "', (83)

where d!E+, being always positive, determines the upper
limit for the gain of energy and AE-, being always
negative, determines the upper limit for the loss of
energy of the test particle. Inequality (82) is therefore
ful6lled if 5E-~& 5E~& 5E+.

In the two limiting cases of greatest interest for
us, m2 ——m2 and mq«m2, expression (83) takes the form

&5E,cosg, P

p,'V4

$5/2 2%25$2Vy82 E2

(1+4E/E2)'" 1 AE+ 1 Eg )' /E2 ' E,
+4—sin'0

E2 2 E2 i (E2 E2

1/2-

P(N,b8)
X Le, $—y(AE+, 0)]d8, (79)

(Wp(hE, cosy, 8))'"

where p —y(AE,8,0) is defined by the relation hq

X(e,~,aE, &)=0.
Taking into consideration that J'ops„„yd(AE)=o„.a

and using (69), we obtain the cross section for the scat-
tering of the test particle through the angle 8:

F'(1/cos2%' e)U—f(e) 2E2
(W~, (AE;,1/cos2%'„0))"'

(1+aE,/E, )»2
X

~
2M22 (V/22)2 cos2e +-'(AE, /E2)

~

2

tTcosp

where
Xd(1/cos2%, )d0, (80)

VI. ENERGY-EXCHANGE RELATIONS

The above relations, derived in most general form,
already allow us to draw some specific conclusions.

Thus, since the cross section must be a real quantity,
we obtain at once from (68) the condition W2, ~&0

which is fu1611ed if the determinant of the equation
Wz, (1/cos24, )=0 is non-negative, or explicitly

AE2 DEb+a2& 0. — — (82)

This inequality does not depend on the character of the
interaction but is a consequence of the laws of con-
servation of energy and momentum; it determines the
limits of the exchange of energy between the colliding

hE;=E2(Li cos8)
+ (—1)'(4M22(V/2|2)2cos2@g sin2y)~t2j2 1} (81)

are the roots of equation h„,q(DE, 1/cos%'„8)=0.
From. the direct substitution of (81) in (29), it follows

that if 4M2 (V/v2)' cos'4 )1, then for two values of
i (i=1, 2) there exist two different scattering angles 8
and 2r —8, and therefore in (80) instead of the sum over
i we have

(
cos8 I ~ cos8. If 4M2'(V/n2)' cos%,&1,then

cos8, independently of i, is always positive (the par-
ticle cannot be back-scattered) and thus in expression
(80) there is the sum over i.

AE+ 1+- —
i

1——cos8
i

+12E2 2 — ~ &2

fol my =m2, (84)

t"2l' .
1——cos0 — sin'8

'V2 i k 'V2J

1/2-

1 'v2 PE2 1 2'2p m2~
if ——1——&1, then costs-, , =——

~

1——
~;

2 'vy m] 22, k m)
(86)

'Vy Sly 1 'Ul my)
if ——1—~&1, then costs . .=-—1——~.

2 n2 582 m2)
(87)

The energy changes corresponding to these angles are
then dE—= —E2 and hE+=E&, respectively. We have
obtained a very surprising result, from which it follows
that even in the case where the masses of the collid-
ing particles are unequal, collisions with a full mo-
mentum transfer are possible in a certain energy range.
Thus, if inequality (86) is fulfilled, then for the angle
0=eg~-, , the test particle can lose its entire energy
in the collision. If, however, equality (87) is fulfilled,
then for the angle 0=0~g+ the test particle can
acquire the entire energy of the field particle. In the case
of colliding particles of equal masses, full momentum
transfer is possible independently of the energy of the
colliding particles, and can occur if the velocity vectors
of both particles are perpendicular to each other. If the
mass of the test particle is considerably greater than
that of the field particle, it can lose its entire energy if
the momentum is smaller than half the momentum of
the 6eld particle; a necessary condition for the acquisi-
tion of the entire energy from the field particle is fulfilled
if the test-particle velocity is no greater than half the

for m2«m2 and Er &E2. (85)

Differentiating (83) with respect to the angle e and
equating the derivative to zero, we And the angle which
must be formed by the vectors of the initial velocities
of the two particles, so that the energy excha, nge be-
tween the colliding particles is a maximum. Simple
calculation leads to the relations
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velocity of the Geld particle. If inequalities (86) and

(87) are not fulGlled, then it is not possible for a colli-
sion to occur in which one of the particles loses its
entire energy. The greatest energy transfer then occurs
at the angle 8=0 or 8=x, i.e., when the velocity vectors
of both particles are parallel or antiparallel.

Setting in (83) 8=0 (the particles move in the same
direction), we obtain at once

fact that the maximum change in energy does not at
all correspond to a central collision, as might appear at
first glance. This can be readily shown if we differen-
tiate (17) with respect to the angle 4, and equate the
derivative to zero. It then turns out that the c.m.-
system scattering angle corresponding to a collision
with a maximum change of energy is different from
zero and equal to

szy8y 1 'Vy 8y

AE+g p
——Eg2E 1 — — 1——+ 1—— 88

t/Z2'V2 2— 'V2 'V2

tan+. =—~
I

—i+1
2a (2ai

1/2

(92)

( vy 1 ( marvy)
~E+t .—Z»E,

I
1+—— —11—

v, 2 k mgv2i %12'V2

(89)

and therefore:

if e2) v~, then DE&0 (the test particle overtakes the
Geld particle and transfers part of its energy to it);

if f2& v&, then BE)0 (the test particle acquires en-

ergy from the Geld particle which overtakes it).

In the case of antiparallel vectors 0= ted, (83) gives us

where the sign before the root is used according to the
sign of b, so that tang~&0; and only when u-+0,
which occurs if vq —+ 0 (scattering on particles at rest)
or sing -+ 0 (scattering on Geld particles moving parallel
or antiparallel), does tan%'t —& 0, and hence the collision
parameter D also tends to zero. Inserting the obtained
value of the angle @, in expression (17), we obviously
obtain relation (83).

If we regard AE as an independent variable, then
condition (82) determines the limits of integration in
Kq. (68) with respect to angle 8. Solving (82) for cosa,
we then obtain

Now, the gain or loss of energy of the particle depends
not on the velocities of the particles but on their
momenta. Thus,

cosHy, 2= sp+sg if —1 ~~ sp+sy~~ 1
&

+1 if xo+xg) 1,—1 if —1&~ xp+&). ,
(93)

if m2v2) m~e~, then DE&0;
if F2~2& mug, then DE)0.

In a collision with antiparallel velocities, the particle
which has the greater momentum loses energy. In the
case mq«m~ and Ex&Et, (then automatically m&w&

«mmvm) particle 2 undergoes the greatest possible loss
in energy if the velocities of both particles are
antiparallel:

hE,„'—E»E, (1+wan-/v2) . (90)

—+»E2(1 ~1/&2) ~ (91)

At this point, it is worth drawing attention to the

Particle 2 can gain the energy if its velocity is smaller
than the velocity of particle 1. The maximum gain in
energy occurs when the velocities of both particles are
parallel. Then this gain is

where we have denoted

1/ m, ~DE v, AE hE~ 'f2

x,+x,=-~ 1—
~

2k mmi Eg 'V2 E~ Emi
(94)

Diagrams of the integration of the cross section 0~~
with respect to the angle 8, which is equivalent to de-
Gning the region in which inequality (82) is fulGlled for
several special cases of the masses of the colliding par-
ticles, are shown in Figs. 5, 6, 7, 8, 9, and 10.

VII. SCATTERING RELATIONS

Similarly, as the condition 8'+, ~&0 determines the
range of variability of the variables hE, 8, 0"„the con-
dition S~~&0 determines the range of variability of
variables DE, 8, 8. Reducing W~ given by (74) to the
form

myVy

1. m2t2 m2 &2 ) +E E2 &2 m2&2
Ws= ——P 1+2 cosg+ ~+2) sin'8+ 1———cose+

2$ m)5y mP'vPi

~E V~2
costt

i

— —i; (95)
2E, v,i

it can be easily seen that the condition'Wr&~ 0 gives us $&&~ $&~g&, where $&,2 are the roots of the equation W~=0.
Therefore, the range of variability of the cos8 is determined by

hE -'~' 1AE
cosA, 2=

i 1+ 1+- —gi, g(cos8)
E, 2 E2

(96)
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For parallel or anti arallelp e ~elocltles of colMing particles (8=0 or 8=or 8=2r), the relation (96) takes the form

QE ( 1+r2/51

282'E 1+20

( ~pl -I/2

cos81,2-+ cosa=
] 1+

z, i (»)„,„,)
where the upper sign is for the parallel and the lower one for

l io h h h ofe e c g f e e g~ of tlm colhIH g p ticles ~Z theen e c an e of ener
' ' ', e scattering angle 8, @nd th

lllg = Ol'8=2r lll the eqllatlOn WOo=0).
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FIG. 13.Range of ossible
loss of energy as a unction
of the scattering angle 0 for
8 changing from 0 to m. For
e1/0 the test particle can
be scattered at the same
angle 80 with a small or
large loss of energy. When
v& =0, then independently
of the angle 8 there is a
unique relation between the
scattering angle and the
loss of energy.

f80' I

The relation between the angles 8~,2 and the change
in energy hE, for DE&0, m&=m2 and also for some
special values of the angle 0, is shown in Fi s. 14 15
and 16.

One could try to solve the condition 8'~&~0 with re-
spect to hE and determine the limits for hE as a func-
tion of the angles 8 and 8. Unfortunately, solution of
(95) with respect to AE in the general case is very
dificult (a fourth-power equation with respect to hE);
therefore, the analytical form of the scattering cross
section can be obtained in some special cases only.

t80'

If the Geld particles can undergo discrete changes in

energy only or the velocity distribution of Geld par-
ticles forms the set of discrete values for the angle 8,
then from (72) it at once results that angular distribu-
tions will have sharp maxima corresponding to zero
values of denominator (W~=O). They are responsible
for the "diGraction" pattern of scattered particles.
Therefore the spectrum of possible changes in energy
and the orientation of the velocity vectors of the Geld

particles determine completely the di6raction pattern
of scattered particles, independently of the law of inter-
action, which influences the absolute value of the cross
section only (Fig. 17).

In the case of large velocities of scattered particles
(v2))v&), Eq. (96), which determines the scattering

ul f20'

CS

Ng =N)

AE
Ea -&a

w 2

4g

N, »rn,

R'+ 60' 9D' $20' 15'0' t80'

Fxo. 14. Relation between scattering angle 8 and the an l 8 f
p

'
qual masses and for the loss of energy equal to the

e ange or

kinetic energy of the 6eld particle. The shaded area represents the
region of possible scattering angles 8 for a given ratio hE /E2.

AH5LK 0
Fio. 15. Region of possible scattering angles 0 for heavy parti-

cles (m2))m1) as a function of angle |Y. The parameter is the ratio
of velocities of colliding particles.
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maxima, can be approximately written:

—1./2

COS81,2—
E2 2 L~&

1(p 2(
sill 8—

2&ps E Ei

or further, in the approximation I
aE

I &Ecb'2/o&)

C'Q beam
of test part&cies

v,

v(+") spatial distribution
of field particles
of velocitg lJ,

v, (+) v, (&)

p, pt IaE-I '&2

asin8
I
~

p, && Ec ) 222222

(106)

Thus, we have obtained the very well known dependence
of diffraction rings on the momentum of scattered
particles.

The dependence of the diGraction pattern on the
discrete states of the Geld particles is more evident if
we examine the scattering of particles in a given direc-
tion. If there exist any favored directions in the velocity
distribution of the field particles, then the velocity dis-
tribution has the form f(8 p)=8(8 8p)8(&p pop) and-
from (79), we have

scattering on "v,(0)wparticles"

scattering o

I

/

/
/

l.

l

distribution

cles scattered
ven change

in energy

curve depending
on law of interaction

ang,„,d, e cc tLy p(DE,8,8p) $j;—(1o7)

therefore, by means of (33) the direction of a scattered
particle is, for the given value of AE, exactly deter-
mined. As a result, the diffraction pattern has the form
not of diffraction rings but of diffraction spots. If ~2))n~
and IAE I &E2(os/oc), then the relation (33) with the

NI wuuumlp

icattering angle 5
(positions of maximums we independent of interaction law)

FIG. 17. Dependence of "diffraction" rings on anisotropy
in the velocity distribution of field particles with respect to the
angle 8.

help of (106) results in
(108)

u ~
I

sin+&+lseino
ga m,v, ,

~M//A 'lA~

0' 30' + 60' 00' 120' 150' $80'

ANGLE +
FIG. 16. Approximate dependence of the range for scattering

angle 8 as a function of angle 8 for different values of the loss of
energy.

In this approximation we have shown that the azi-
muthal scattering angle of the test particle is equal to
the azimuthal angle of the velocity vector of the Geld

particle with which the former has collided.
Summarizing, we can state that the diGraction pat-

tern is due to discrete states of scattering particles. In
the case of isotropic distribution of velocities of Geld

particles with respect to the azimuthal angle q, the
diGraction pattern has the form of diffraction rings. In
the case of full anisotropy in spatial distribution of
velocity vectors, the di8raction pattern has the form of
diffraction spots or sometimes of sectors of circles (see
Fig. 18). Other forms of the diffraction pattern, such as
of Kikuchi lines, can be interpreted as the result of the
specific orientation of velocity vectors of Geld particles.

At last, it is necessary to stress that the diGraction
pattern will exist too, although in simpler form, for
continuous changes in energy of Geld particles, provided
there exists a threshold for the gain of energy.

VIII. SOME SIMPLIFIED RELATIONS

Inserting v&=0 in the expressions relating the dy-
namical variables with the geometrical variables (scat-
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spahai distribution of field
particles(represented bg double
arrows)

"diffraction" pattern of particies
scattered with given change in energg

{if U, »u, then ts. Y

scattering on u, (8')-particles"

baae
of test parficles

)9 ~a X OX&S

Fre. 18. Dependence of
diGraction pattern on the
anisotropy in the velocity
distribution of Geld parti-
cles vnth respect both to the
angle 8 and to the azimuthal
angle p.

&scattering on"u, ftYj-particles"

tering on field particles at rest), we obtain a number of
already known relations. Thus, we obtain for the test
particle,

1—2{m,/(m, ym, )) cos'e,

(1—Eis cos'4 )'"

( AE —" 1 mi hE
cosrP=

i
1+ 1+- 1+—,(111)

Es 2 ms Es

and similarly for the Geld particle, which we can regard
as a recoil particle,

AE=EisEs cos 4'~, (112)

cos8 = cos%'g,

cosh = (d,E/ICi2Es) "'.

Eliminating 4'~ from (110) and (113), we obtain an
obvious relation between the scattering angle of the
test particle and the recoil angle of the GeM particle
at rest:

1—2{m,/(mi+ms) ) cos'rp
cos8 =

(1—Eis cos'ct)'~'

The relation between the scattering angle of the test
particle and its change of energy in the collision merits
particular attention. In the case of a Geld particle at
rest, we have a unique relation between the scattering
angle and the change of energy in the collision. Thus, if
the Geld particles can experience only discrete energy
changes (hence, if they are electrons bound in an atom
or nucleons of a nucleus), then the scattering will have
the character of "diGraction" rings independently of
the interaction law between the particles.

Proceeding with the calculation of the basic cross
sections, in the simple case where v1

——0, we will have

E1222 xrfc i'
Ogg=X ~' (1/cos +r) &/«s'oy= —&u&alan &

AE2

M,2

o'«so= 2rr XQ &'(1/cour') fcosrP+ (1—(ms/mi)' sin'rP)'r'1 if m, ~( m,
slnrP {1 (ms/m~) siii rP) I i 1

1f f82~+ Sly p

1 l 1—Ms cos'rp+ (—1)' cos@(1—23IIs+M so cos'rp)'~'
/=2M,

icos'@,'I sin28
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o..oge= 2gr(1/ cos'8) F' (1/ cos%' g) ]t.gg~@,=rtggg*e. (119)

Taking into account that the cross section has to be
a real as well as a non-negative quantity, we deduce
from (117) that 0~&8~&8,„,where

8, = arc sinner/ms for ms) grtr,

refers to free Geld particles (for example, the slowing
down of charged particles in a plasma); if, however, the
slowing down takes place on a quantized set of particles
(e.g. , slowing down on electrons of atoms or molecules
in the ground state), then the only collisions possible
are those with a loss of energy equal to or greater than
some minimum value (U). The stopping power will

then be
1

8mftx g 7l fol m2= my

for m2 m~0,
(120)

(12&)

and from (119) that 0~&8~& rsgr independently of the
masses of the colliding particles.

On the other hand, by inserting %,=0 in the set of
h functions, which corresponds to back scattering in the
c.m. system, we obtain the relations for the central
collisions. Now, these relations do not depend on the
law of interaction, but only express in terms of geo-
metrical and dynamical variables the conservation of
energy and momentum; they have been examined very
carefully by many authors.

IX. RELATIONS DERIVED FROM THE
BASIC CROSS SECTIONS

where dE, is the maximum energy loss experienced
by the test particle in the collision with the 6eld particle.

Integrating o.~g over the limits —U, AE. . . we ob-
tain the cross section for a collision in which the test
particle loses an energy equal to or greater than U:

V 1
f(e—)F'I

Vs ICOS Vgl

) bcos'4g —U ~ tr 1
(125)

E2a sin+g cos%'gI kcoss@gt

%ith the aid of the previously defined basic cross
sections, we can determine a number of derivative
quantities describing various processes which accom-

pany the collision of particles. Thus, we can de6ne the
quantity

(121)S= «~SEd(aE),

which we call the slowing-down cross section (slowing
down as a result of dynamical friction), and which is
directly related to the range of a particle in a medium:

1 dEE=-
N (S).„

(122)

where S is the density of the field particles, while

(S), is the slowing-down cross section averaged over
the velocities of the 6eld particles.

Taking into account the fact that o.&z is given by
(68) and integrating with respect to DE over the entire
region in which Ms, (AE) ~)0 Lsee (71)j, we obtain

V p 1 q t 1

f(8)bF'~ —
~

cos%,d~ ~d8 (123).
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The quantity S defined in this way, which applies to
collisions with DE&0 and AE)0, is exact insofar as it

In the case of atomic collisions, Q„can be directly
interpreted as the ionization cross section if U is the
ionization potential.

In a similar way, we can construct a number of other
derivative quantities, depending on the speci6c problem.

It should be noted that the total scattering cross
section is divergent, a fact which is sometimes errone-
ously associated with the Coulomb interaction. '"Actu-
ally, for each interaction described by a monotonic
function, the total scattering cross section is always
divergent, "which is entirely understandable, since the
integration over small scattering angles always corre-
sponds to the integration over a large collision pa-
rameter and, independently of the interaction law
(excluding the abstract model of rigid spheres), the
limit of angles 6 —+ 0 corresponds to D —&~. All cross
sections 0.q~, o-~~...,~, 0...~, etc., integrated over the en-
tire range of variability of the variables are divergent,
and there is no indication as to whether we are dealing
with short-range or long-range forces. For such defini-
tions, we can use, for convenience only, such quantities
as J"oashEd(DE) or J'o„,e cos8d(cos8) or other similar
quantities.




