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It is shown that in the case of the model for solid ortho-hydrogen considered, the ground-state super-
lattice structure, produced by the electrostatic quadrupole interactions, may be derived exactly. It consists
essentially of two unequal sublattices: one consisting of molecules 2 in the state 3II =0 and the other con-
sisting of molecules B in either of the states M= &1, the latter being twice as many as the former. The
configuration on each triangular plane, normal to the axis of symmetry of the lattice, is such that each A
molecule is surrounded by six B molecules, and each B molecule is surrounded by three A molecules and
three B molecules. The transition temperature of the system is found to be 5.8'K in the zeroth approxima-
tion and 3'K in a tetrahedral approximation, the latter being in agreement with the experimental estimate.

INTRODUCTION

'HE speci6.c-heat measurements of Mendelssohn
et a/. ,

' Hill and Ricketson, ' and lately Ahlers and
Orttung, ' have established that solid hydrogen with a
high ortho-hydrogen concent:ration ()62%) exhibits
a ) anomaly at about 1.6'K. These, together with
nuclear-magnetic-resonance experiments, ~' indicate
that solid hydrogen undergoes a co-operative transition
at this temperature. This transition is due to the
ortho-component of hydrogen, since the speci6c-heat
anomaly is not observed at low concentrations, and
only its nucleus (with 5=1, as distinct from para-
hydrogen with I=O) could be responsible for the
nuclear-resonance absorption. The mechanism by
means of which the ortho-hydrogen molecules cause
this transition~]is considered to be basically the
removal of their rotational degeneracy in J=1 by the
crystal field, resulting in general in three distinct states
~=0, 3E=&1.' ~ ' It has been shown that at normal
pressure only electrostatic quadrupole-quadrupole inter-
actions need be considered between neighboring mole-

cules. ' ' Thus it may be concluded that the transition
is eftected through a co-operative ordering process, in
which the elements are molecules in the states 3f=0,
M= +1, respectively, and the configurational energy is
determined by the quadrupolar interactions. ~" Thus
above the transition temperature there will be
random distribution of the elements whereas below the
transition temperature an ordered array ~ill appear,
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the ultimate form of which will be determined by the
lowest confIgurational energy.

In this paper, the case of pure ortho-hydrogen is
considered. It is a convenient starting point from the
theoretical point of view before proceeding to the
study of lower concentrations (i.e., diluted with para-
hydrogen). Besides, with the development of promising
experimental techniques, pure ortho-hydrogen is no
longer such a hypothetical substance as it has been
until relatively recently. It is shown that given the
crystal structure and the interactions between neighbor-
ing molecules considered here, the ground-state super-
lattice structure can be derived exactly and the thermo-
dynamic properties of the system evaluated using well-
known statistical-mechanical methods. In the following,
the theoretical model used is described and the ground-
state configuration derived; subsequently, the transi-
tion temperature is calculated. This theoretical model
has already been investigated by Bell and Fairbairn";
however, they performed their calculati. oos on a
conjectured superlattice structure which is very differ-
ent from the exact ground-state configuration derived
here.

THE GROUND STATE

The basic features of our theoretical model for pure
ortho-hydrogen are as follows: (a) the crystal structure
is hexagonal-close-packed; (b) the intermolecular
interaction is purely an electrostatic quadrupole-
quadrupole interaction; (c) the axis of quantization
is parallel to the axis of threefold symmetry of the
lattice; (d) the crystal field is axially symmetric, so that
each molecule is in one of two states: A, with &=0 or
8, with JtI=&1. These postulates have already been
discussed in the literature. '

In Fig. 1 a section of a hexagonal-close-packed
lattice is shown with the axis of symmetry normal to
the paper and consisting of two consecutive plane
triangular layers: one in full lines and the other above
it in broken lines; this latter could just as well represent
the layer immediately beneath the former. The whole
lattice is a repetition of the scheme shown: Sites on
alternate layers are vertically aligned, and each site is
in a vertical line passing through the center of a
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triangle formed by sites on its neighboring layer, thus
forming a tetrahedron (e.g. , sites 1, 2, 3, 4, and I, 5,
6, 4). In a given triangular layer, every alternate
triangle is the base of two tetrahedra, the vertex of
one being a site on the triangular layer immediately
above it, and the vertex of the other being a site iii the
layer immediately beneath it. Each site has twelve
nearest neighbors; six are in its own triangular layer,
three form a triangle on the layer immediately above it,
and the remaining three form a triangle on the layer
immediately beneath it. It will be necessary to classify
nearest-neighbor bonds into two types: "in" bonds,
meaning bonds which are in one of the triangular
layers, e.g., 1—5, 1—6; and "off" bonds, meaning bonds
which are off the triangular layer; e.g., 1—4, 1—2.
Since the axis of quantization is chosen parallel to the
axis of symmetry, it follows that the "in" and "off"
bonds form angles of ~/2 and cos ' (&g-', ), respec-
tively, with the axis of quantization. The other observa-
tion which will be required is the fact that if the lattice
consists of E sites, then it can be subdivided into X
tetrahedra of sites, such that each nearest-neighbor
bond is found on one tetrahedron only. Such a set of
tetrahedra may be obtained by taking either all
tetrahedra the vertices of which point upwards, or all
tetrahedra the vertices of which point downwards (the
vertical direction in Fig. I is normal to the paper).
This means that half the total number of tetrahedra on
the lattice are considered; also each tetrahedron is
symmetrical with respect to the axis of quantization.

The quadrupole-quadrupole interactions co between
a neighboring pair of molecules can be shown to reduce
to the following':

oigg = 4)I,P4 (cos8),
6e'Q'

oi~s = —2XP4(cos0),
25rp'

otss ——XP4 (cose);

where A and 5' refer to the two molecular species M =0
and &=&1, respectively, 8 is the angle between the
axis of quantization and the line joining the pair of
molecules, Q is the quadrupole moment of the molecule,
rp the intermolecular distance, and e the charge of the
electron.

FIG. 1.Two consecu-
tive plane triangular
layers of a hexagonal-
close-packed lattice.
The axis of threefold
symmetry is normal to
these planes.

FsG. 2. The two possible ground-state tetrahedral configurations
of A(M=O) and B(&=&1) ortho-hydrogen molecules with
quadrupolar interactions and the axis of quantization normal to
the base triangles.

We now determine the ground configurational state
of the system. The total interaction energy E is

E= P th), „'&, (t=A,B; rri=A, B),
(i j&

(2)

the summation being over a11 nearest-neighbor mo-
lecular pairs, (i,j) on the lattice. Since the lattice may
be subdivided into N tetrahedra such that each nearest-
neighbor bond is found on one tetrahedron only, 8
may be expressed in the form

(3)

where e; represents the total interaction energy of a
single tetrahedron, summed over its six bonds. It is
obvious that

E&Ãep, (4)

where ep is the minimum total interaction energy for a
single tetrahedron.

Since each molecule is in one of the states A or 8, it
follows that each tetrahedron has 2'= 16 configurational
states. Using expression (1) and bearing in mind that
the axis of quantization is the same for all tetrahedra,
one can evaluate e for each one of these states. We
find. that eo ———(9/8}X and is given by two configura-
tions shown in I'ig. 2. The base of each tetrahedron is a
triangle in the plane triangular layer of the lattice, i.e.,
normal to the axis of quantization. It is seen that in the
minimum energy state the base triangle must have the
configuration: two 8 molecules and one A molecule.
The fourth molecule on the tetrahedron may be A or B.
It now follows that the minimum energy E of the
lattice is obtained if each one of the N tetrahedra is
in one of the con6gurations of Fig. 2. This leads to the
following requirement for the lattice as a whole: Each
triangle on any of the plane triangu]ar layers which is
the base of a tetrahedron must have two 8 molecules
and one A molecule. This is shown in Fig. 3, and the
over-aH pattern is clear: each A site is surrounded by
six 8 sites; each 8 site is surrounded by three A sites
and three8 sites, and the ratio of A to8 is1:2.That the
pattern is unique may be seen by denoting any site A
and completing the rest according to the above re-
quirement. It follows that every triangular layer in. the
lattice must have the configurational pattern, shown
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Fio. 3. The ground-state con6guration of A (AC=0) and
B(jf= &1) ortho-hydrogen molecules on a plane triangular
layer of a hexagonal-close-packed lattice normal to the axis
of quantization.

in Fig. 3. Therefore, in order to construct the ground
state of the three-dimensional lattice, one has to super-
pose such triangular layers. In Fig. 4 two such layers
are shown. The circles at the centers of alternate
triangles represent the vertices of the tetrahedra based
on those triangles (e.g. , 8023) and form the next
triangular layer (either beneath or above). It is clear
that in the scheme described every tetrahedron in the
lattice will be in one of the states shown in Fig. 2.

Looking at the lattice as a whole, in the ground
configurational state the lattice consists of triangular
layers (normal to the axis of symmetry), each following
the scheme of Fig. 3. This does not lead to a strictly
unique arrangement because each time one places the
(I+1)th layer, one has the option of having a site
(e.g. , "8"of Fig. 4) A or J3 since this will not change the
energy of the tetrahedron (0238). But, once any one
site on the (n+1)th layer has been determined as A,
then the configuration of that layer is determined and
will follow the pattern shown in Fig. 3.This degeneracy,
however, does not affect the basic configurational
scheme of the lattice which may be described (looking
downwards at Fig. 4) as chains of A sites running
roughly along the axis of symmetry, surrounded

pro. 4. The ground-state superlattice structure of A (3C=0)
and B{3f=~1) ortho-hydrogen molecules on a hexagonal-close-
packed lattice. The circles at the centers of the triangles represent
two other triangular layers: one above and the other beneath the
triangular layer shown, . Each one of the three layers has the
con6gurational pattern of Fig. 3.

entirely by similar chains of 8 sites: thus "0, 8" is
part of an A chain and "9,5" part of one of the sur-
rounding B chains. The only consequence of the
degeneracy is that the A chain could have run along
ccO 7)P or ccO 9))

Ke can now conclude that in the ground state of
solid ortho-hydrogen, two sublattices are formed: "1"
comprising one-third of the total number of lattice
sites occupied by A molecules in the state M=O; and
"2" comprising two-thirds of the sites occupied by 8
molecules in either of the states M =~1.Of the twelve
sites neighboring a site on sublattice "1",ten are on
sublattice "2," and two on sublattice "1";on the
other hand, a site on sublattice "2"has seven neighbors
on sublattice "2"and 6ve on sublattice "1"(see Fig. 4,
where A sites denote sublattice "1"and B sites sub-
lattice "2").

In Table I further details which will be required in
subsequent calculations are given. Finally, the ground-

TABLE I. The number e,& of bonds of various types in the
ground state of ortho-hydrogen molecules on a hexagonal-close-
packed lattice with E sites. The bonds link a site on sublattice a
urith a nearest-neighbor site on sublattice b (a=1, 2; b=1, 2)."In" denotes bonds in the triangular planes normal to the axis
of symmetry of the lattice and "oR" those that are not. The
sublattices are shown in Fig. 4, where 8 sites are on sublattice"1"and B sites on sublattice "2".

ccInPP ccPR1
& Total

+11
N22

+lo

0 E/3 X/3S 4XP 7E/3
2A" 4$/3 10N/3

Total number of bonds=6Ã

'~A 1++Bl +/3
n~s+ ebs ——2(V/3,

+A 1++As riA
y

rIB1++B2 '+B

rig+ms ——1V.

(6)

e now define two parameters, m and ~ which

state energy Eo is

Es=Ees ———(9$/8)X (X=3.613X10 ' erg). (5)

EQUILIBRIUM PROPERTIES

In the previous section it was seen that in the ordered
state, sublattice "1,"comprising one-third of the sites,
is occupied by A molecules (Sf=0) and sublattice
"2," comprising two-thirds of the sites, is occupied by8 molecules (AS=&1). In general, let e~ be the total
number of A molecules, eg~ the number of A molecules
on sublattice "1," and e~~ the number of A molecules
on sublattice "2";e~, ega, and n~~ are similarly defined
for B molecules. Hence, for a total number of sites g,
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determine the ordering in the lattice:

m= (na —nA)/N,

where
(O = (OAB —

2 ((OAA+(Oaa),

AB g +AA BB
'+A1 +A2 +B2 '081

Q=
-'x -'x -'x -'x
3 3 3 3

Hence, using (12) we have:

E/NX = —(1/48) (81E—39E'+42m —70), (16)

K=nAB/N and E'=nAB/N.

e total number of pairs E» of type AB comprises
of the types (A1)(B1), (A2)(B2), (A1)(B2),

and (A2)(B1) L(A1) means: molecule A on sublattice
"1"j; therefore,

(9) NAB N(A1)(B1)+N(A2)(B2)+N(Al)(B2)

+N(A2)(B1) —'nAB+n'AB. (17)

N= nA1+nA2+nB1+nB2

Nm = —(nA1+nA2)+nal+nB2

Na = 2nal+—na2 )

No =2nA1 —nA2,. (o= 2(2/3)
Using Table I,

1V nA1 na1 71V nA2 na2
1VAB=2—X X +2X X X

3 N/3 N/3 3 21V/3 21V/3

10' f nA1 na2 nal nA2+ -I X- + X
3 EN/3 2N/3 N/3 2N/3 j

1 21
6nAlnal+ nA2na2S 2

from which one derives:

n A 1= -', 1V(1—m+ 2o),
nA2=-,'N(1 —m —o),
na1 ———,'1V (1+m—2o),
na2=-,'N(1+m+o),

o = (2n/3).

(10)

It follows that in the case of perfect order, m= 3 and
0.=1. The parameter o. determines the degree of sub-
lattice ordering and varies between 1 in the ordered
state and 0 when the sublattices are indistinguishable.

Using (6), (7), (8) we obtain: pa~rs

The con6gurational energy E is given by

nAB(OAB+n AB(A) AB+nAA(A)AA

+n AA(o AA+naa(oaa+n BB(o BB ) (11)

where mAA, EBB, . denote the number of nearest-
neighbor pairs of molecules AA, AB, and ~AA,

co'AB, ~ ~ the interaction energy between such pairs
given by (1). The terms with a prime indicate pairs
which are "off" the triangular planes normal to the axis
of symmetry (e.g. , "0,8" in Fig. 4) and the others
indicate pairs "in" such planes (e.g., "0,1" in Fig. 4).
This further classi6cation is necessary because the
interaction energy depends on the angle made by the
pair with the axis of quantization.

From (1)

+1S(nAlna2+'nA2'nB1) ~ (18)

To obtain nAB and n'Aa each term in (18) must be
divided in the ratio given by Table I for "in" and "og"
bonds; e.g. , the term (A1) (B2) must be divided in the
ratio 3:2 between nAB and n'AB. Hence,

1 3 21 3
nAB — X nA222B2+ X15(n»na2+nA2n-al)

E 7 2 5

9
EnA2nB2+ 2nAlna2+2nA2na, ) .

2S
and

&AB
I+A2PB2+2PAlPB2+2PA2PB1], (20)

lV 2

where
~'AA = —(13/18)»
(o'Aa = (13/36)X,

(o'Ba ———(13/72) X.

GOAA= gX ~

GOAB = —4X ~

P~l= n/lN(/=A, B; m=1,2).
Similarly,

(21)
(12)

COBB= ~X~ 4 21
'n Aa= 6nAlnal+ X nA2na2S- 7 2

2
+ X 15(nAlna2+nA2nal)

5nAB+2nAA 6nA, n'Aa+——2n'AA =6nA,

nAB+2nBB=6nB n AB+2n'BB=6na
6

+A 1+B1 '+A2+B2 SA1SB2 SA2+B1
(»)

and

(22)

which substituted in (11) give )2'+ AB
E = =6P AlPBl+PA2PB2

E+= 2N((oAA+o) AA+(oaa+o) BB)+2('nB nA)

X ((oaa+(o BB (oAA (o AA)+nAB(d+n Aao) (14) +PA)PB2+PA2PB, j . (23)

The quantities e», n», e», are of course not in-

dependent but are related as follows:
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F,= kT lnge—rtBkT 1n—2+8, (26)

We have seen that for perfect order m=-', and
m=1, i.e., PA2 PBl 0 PAl 3 and PB2 3 t from

(21) and (10)7. Substituting in (20) and (23) and
subsequently in (16) gives

E/NX= —9/8, (24)

which is identical with (5). Similarly with n=0, and
m, =—,''one obtains E=O, as expected in the disordered

state.
The partition function 0 of the system may be

written

0=++2"Bg(rtA, rtB,rtAB, rt'AB) exp( —E/kT), (25)

where g(NA, rtB 1$AB 22 AB) is the number of ways ttA and

g& molecules can be arranged to give e~~ and e'~~

pairs. The factor 2"& is due to the twofold degeneracy
of the P molecules (M= &1).

In the zeroth approximation, " the con6gurational

free energy Ii, is given by

gives a minimum in F,. For this we further derive

6 O'Il 1 1 1 2 2
+ + + +243@, (31)

kTX Om' 3 2Pgg 2Pgg pg2 P~,

6 O'F, 1 1 1 2 2
)

5$O& 3 PA1 PB1 PA2 PB2
(32)

3 O'F 1 1 1 1 1
+ + +

kTiV Oo' 3 Pgj Pgj Pg2 P'~2
—243m. (33)

R' —PQ&0, P+Q) 0.

For m= ~~, a-=0,
kTcV ~27s=o; r=

~

—+243x))0,
6 ~4

(34)

If
P=B2F /Dms Q=B2F /Bo2 R=B2F /BmBo

then, as is well-known, the conditions for a minimum
in F, are

together with the equilibrium equations,

BF,/Bm =0, BF,/cjn =0; (27)

kTcV i27o=
~

—2cz,).
(35)

(tV/3)! (2Ã/3)!

(stA 1) ~ ('NB 1) ~ ('IA 2) ~ (rtB 2) ~

Therefore, the condition for a minimum reduces to

Q)0, (36)

243'(27/4 or kT/X) 9/4. (37)

is gives T&5.8'K. Therefore, the disordered state
is stable for T&5.8'K and we conclude that T,=5.8'K
is the transition temperature.

It is necessary next to determine whether the transi-
tion point located above is of the first or second order.
In the case of transitions of the first order there is
another solution of the equilibrium equations at T= T„
other than that of complete disorder (m=-'„rr=0 in
this case) and giving a second minimum in the free
energy. This second solution with n &0 is a more ordered
phase. The transition at T= T, invo)ves a sudden jump
from the disordered (n=0) solution, to the tr)0
solution which henceforward (T(T,) gives the mini-
mum in the free energy while the n =0 solution becomes
a maximum. This transition is accompanied by latent
heat. On the other hand, in the case of transitions of
the second order, there is no second solution at the
transition temperature. At T=T, the a=O solution
is at an inflexion point L(it2F)/(Bns) =0), changing from
a minimum (T)T,) in the free energy to a maximum
(T(T,). Henceforward (T&T,), the minimum in the
free energy is at 0.&0, and the distinctive characteristic
in this case is the continuous progression from the
disordered state (n=0) to the ordered state (n=1)
(see Refs. 11, 12).

In the case of Eqs. (29) and (30), there is another
solution at T= T, (m=0.3085, o. =0.315) but on

- pggp'g2 — 84K,6 OIi.
=ln (1—3m)

8Pggp'g2 16kT
—(1+m—2o-) (1+m+o)2

=ln
8(1—m+2o) (1—m —o)'

—84m(1 —3m) =0, (29)
and

-Pggpg2 243K3 B~c
=ln

P~gpg2 16kT

-(1—m+2o. ) (1+m+o)

(1+m —2o) (1—m —o)

—243xo =0, (30)
where 2;=X/(16kT) and o= —srr.

It is seen that Eqs. (29) and (30) are always satisfied

by the solution m = 3 and 0-=0—this is the disordered

phase. (It may be noted here that m=3 for perfect
order also. ) However, the solutions will not be stable
at all temperatures, since a solution of (29) and (30)
could equally give a maximum in F,. We now seek the
temperature range for which the solution m= 3, 0-=0,

i.e.,
Using Stirling's theorem, (10), (16), (20), (21), and

(23), we obtain from (26), (27) and (28) the equilibrium

equations of the system: Th'

"E. A. Guggenheim, 3lsxtgres (Oxford University Press,
New York, 4952).

"L. D. Landau and E. M. Lifshitz, Statistical I'hysics
(Pergamon Press, Ltd. , London, 1959).
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further examination it is found that it is not a minimum
but a metastable state. It is therefore concluded that
the system goes through a transition of the second order
() type) at T=5.8'K.

Bell and Fairbairn' obtained a practically identical
result in their zeroth-order calculation but the super-
lattice structure they conjectured was configurationally
a very different one from the exact ground state
derived here. This can be seen immediately by com-
paring the values of nz: they obtained m=3 and m=0
for the disordered and ordered phases, respectively; in
our case m= 3 for both phases. This means that in their
case the ratio of 2 molecules to 8 molecules changes
from the statistically expected 1:2 to 1:1 and con-
sequently, in addition to the configurational ordering of
A and 8 molecules, one-quarter of the latter must be
converted to the former. Since in our case m is the same,
only ordering need take place.

These results are in the zeroth-order approximation
and it is well known that such approximations predict
too high values for the transition temperature. A
higher-order analysis is being undertaken. Meanwhile
a better estimate of the transition temperature may
be obtained relatively easily using percolation-theory
data. This has been found to be the case in other systems
investigated, namely, magnetic spin systems. " In
the present case, taking the tetrahedron as the basic
unit of the system, the transition temperature is found
to be 3'K (see Appendix). This is identical with the
estimate of Smith and Housley' obtained by extrapolat-
ing their nuclear magnetic resonance measurements of
the transition temperature at lower concentrations
(&86%) to 100%.

It would be of great interest if direct experimental
evidence of the properties of pure, or almost pure,
ortho-hydrogen become available in the near future
for comparison —in particular, as far as this paper is
concerned, regarding its crystal structure, transition
temperature, and superlattice structure. Other properties
of the system, such as the dependence of the transition
temperature and other thermodynamic quantities on
the concentration of ortho-hydrogen, will be inves-
tigated io due course.
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APPENDIX

An outline only of the tetrahedral approximation is
given here. A more detailed discussion of the general
method will be published elsewhere.

'6 A. Danielian (to be published).

g' exp( —Pe'„)/Z, =p„ (A1)

for the probability of the tetrahedron being in the
ground state 6'„. The temperature for which (A1) is
satisfied will be the temperature required.

In the present case,

—
y 134+y 56+y 56+y 14+3y 15+3y26+ 6ysr (A2)

where y=exp(P)/24) Lsee Eq. (1)j and P, =0.2 for a
face-centered cubic lattice. ' "Assuming p, is approxi-
mately the same for a hexagonal-close-packed lattice,
we solve

2y"/Z, =0.2, (A3)

and obtain y=1.037, hence T=3'K.

'4 H. L. Frisch and J. M. Hammersley, J.Soc. Ind. Appl. Math.
11, No. 4 (1963).

"M. F. Sykes and J. W. Essam, Phys. Rev. 133, A310 (1964).
"H. L. Frisch, E. Sonnenblick, V. A. Vyssotsky, and J. M.

Hammersley, Phys. Rev. 124, 1021 (1961).

As in the text, the hexagonal-close-packed lattice (I )
is divided into E tetrahedra such that each nearest-
neighbor bond is found on one tetrahedron only. Each
tetrahedron can be in any one of the 16 states referred
to in the text (second section), but as the temperature
is lowered an increasing proportion will be in the ground
state.

We now consider a second la, ttice (I.'), formed by
joining the centres of the Ã tetrahedra of L. L' is also
hexagonal-close-packed. Each site of L' is labeled 'A'
or "8" depending on whether the tetrahedron sur-
rounding it is in its ground state or not. According to
percolation theory, " if each site on a lattice can be

or "8" independently of the rest, then at a
critical concentration of A's an in6nite cluster of A' s
will be formed. If the tetrahedra of I are regarded as
independent (this is the tetrahedral approximation)
then the ideas of percolation theory may be applied to
I,' and it may be deduced that at a certain critical
concentration p, of A sites, an infinite cluster of A sites
will be formed. Furthermore, if an A site denotes a
tetrahedron of L in its ground state, then at this con-
centration it may be said that long-range order has set
in (since a large section of the lattice I. is now in the
ground state) and the temperature at which this occurs
is the transition temperature.

The final step consists in determining the tempera-
ture at which 1Vp, of the tetrahedra are in their ground
states or, the equivalent, in determining the tempera-
ture at which the probability of a tetrahedron being in
its ground state is p, . Since the tetrahedra are regarded
as independent, this may easily be obtained from the
partition function Z, of a tetrahedron as follows: if
Z, =P exp( —Ps„), Lwhere e„represents the eigenvalues
of the tetrahedron (I=1 . ~ 16) and P=1/kTj and
if e'„ is the lowest energy with degeneracy g', then we
have


