
OFER, RAKA VY, SEGAL, AN D KHURGIN

then using formula (4), we obtain the value 7.5X10 '"

for Dr/r. For the Dy'" deformed nucleus, the isomeric
shift is probably due to the difference in deformation
between the 26-keV level and the ground state, and the
nuclear factor Ar/r in Eq. (4) should be replaced by
crM '4 (n= 'a8, where 8 is the deformation factor"). The
quadrupole moment of the ground level of Dy'" (2.6 b)
corresponds to a value of 0.20 for u= 38. We therefore
obtain for EQ/Q= Dn/n the value 2X10 '. This value
is not in disagreement with the direct Mossbauer effect
measurements of Qt/Qo (Table II).

The fact that no isomeric shifts were found between
Dy203 and the intermetallic compounds of Dy implies
that ~$6, (0) ~' is at least a factor of 3 smaller in DyA12
and in DyI'e2 than in Dy metal.
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The band structure of PtSb2 is calculated in a tight-binding approximation, assuming that the conduction
and valence bands are formed primarily from an incomplete set of 5d electrons on ionized Pt, the band gap
arising from spin-orbit splitting; the interaction with the 6s orbitals is included. Interactions with the Sb
atoms have been largely ignored, apart from certain geometrical sects. The calculated bands show the ob-
served symmetries and approximately the observed effective masses, but are very shallow; the full effect of
this shallowness on the transport properties has not yet been determined.

I. INTRODUCTION

PLATINUM antimonide (PtSb2) forms a cubic
~ ~ crystal with the pyrite structure (see Fig. 1); i.e.,
the Pt atoms constitute a face-centered cubic lattice,
while the Sb pairs have their centers either on one of
the cube edges or at the body center of the Pt lattice.
The axes of the four nonequivalent Sb2 pairs point
along the four (111) directions. The cell parameter is
6.43 A, the separation of the antimony atoms in each
pair is 2.67 A.

There are four nonequivalent Pt sites in the unit
cell; the surroundings of one of these sites has been
sketched in I"ig. 1. It will be seen that the nearest
neighbors are a nearly regular octahedron of six Sb
atoms, the axes of the octahedron being tilted at an
angle of 24' from the cubic axes. The angles between

FIG. i. Crystal
structure of PtSb2,
the nearest neighbors
to a corner Pt atom
being shown. Cell pa-
rameter 6.43 A, sepa-
ration of Sb2 pairs
2.67 A.

the axes of the octahedron are 90'&5~"; we shall pre-
sume that this small departure from orthogonality is
unimportant in comparison with the large tilt of the
octahedron.

Platinum antimonide is a low-band-gap semicon-
ductor —data taken from the rate of change of conduc-
tivity with temperature give a band gap of 0.08 eV.
The behavior of the magnetoresistance and the piezo-
resistance indicate that the maxima of the valence
band are on the (1,0,0) axes, while the minima of the
conduction band are on the (1,1,1) axes. ' The crystal
is hard, and has a melting point of 1230'C. The con-
junction of a high-melting point with a small band gap
suggests that the electrons involved in the formation
of the conduction and valence bands are not primarily
involved in the cohesion of the crystal. Unfortunately,
it is not possible to be certain a priori which of the
electrons are not involved in bonding, but a plausibility
argument suggests that there is an unfilled shell of
nonbonding d electrons around each Pt atom, and that
we are therefore most likely to find the conduction
bands associated with this shell. The structure of atomic
Pt is Ss'p'd'; the formation of octahedral bonds with
the surrounding Sb atoms will take up the d, 2 „2 and
d3, ~ „2 electrons, as well as all the s and p electrons in
the outer shell; we are now left with six d electrons not
involved in bonding. Either two or four of these will

' D. H. Damon, R. C. Miller, and A. Sagar (to be published).
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be removed by each Sbe pair to complete the Sb-Sb
bond, the precise number depending on the Sb-valence
state. It will appear that the only band gap that can
exist when states are formed from the available d
orbitals occurs when only two out of the six states are
filled, so that the subsequent calculation will involve
bands formed from the d,„,d„„and d„states in quad-
ruply ionized platinum. In view of the high degree of
ionization, a tight-binding calculation has been judged
appropriate.

12&12 matrix can be simplified readily in such a way
that only one 3)&3 block need be considered in detail,
the remainder being merely a perturbation on the
basic solutions.

The starting point of the calculation is the presump-
tion that the nonbonding orbitals on each Pt site can
be expressed in terms of the axes defined by the Sb
octahedron surrounding it. If 8 is the angle between one
of the octahedral axes a,nd the nearest cubic axis, then
it turns out that a convenient parameter to use is tang.

II. THE INTERACTION MATRIX

Since there are four nonequivalent sites, the Hamil-
tonian must involve the interaction of each sublattice
with the other three. Three d orbitals are involved, so
that the resulting Hamiltonian will be a 12&(12matrix-
or 24&24 when spin is included. Fortunately, the

a = tang= Lb/v3/(&), —b/%3) j,
where a is the lattice parameter, b the separation of an
Sb pair. For PtSb2, we find Q= 0.316.

The coordinates (x',y', s') defined by the octahedron
surrounding the Pt atom in the site —',a(i,j,k) are then
r'=A&;; „) r, where (for the case of Fig. 1)

Q Q

A&ooo)= (1+2a ) & a 1 a
Q Q 1

A&)to)= (1+2n ) i n—Q Q '

Q

Q

(2)
1 Q

A&tot)
——(1+2n') ')' —n 1

Q 1 Q

a A«tt) = (1+2n ) ~ n 1
Q Q

The angular dependence of the wave function around
each atom can then be written in terms of the crystal
coordinates through the appropriate transformation,
terms of order Q' being ignored except in the major
term. As was remarked in the Introduction, the d, 2 „.~
and d3,.~ „2 orbitals are considered to be removed from
the calculation, since they are involved in bonding, and
should therefore be of much lower energy than the re-
maining d orbitals. The basis states are then the d,.„,
d. .., and d„, orbitals. The radial dependences are all
the same, the angular dependences must be expressed
in terms of crystal coordinates; for example, the angular
dependence of the d, „orbital on the corner atom is

sublattice by p„', the basis functions take the form

6'(~) = ( rrr rr)er'r r„"

d'rQ„'(r —r„o)LV(r)—U(r —r ')j

where E is the number of cells in the crystal, n stands
for the nth cell, r„" is the position of the member of
sub1attice p in the nth cell, and ~ is the wave number.

If the actual potential in the crystal is V(r), while
the potential due to a single Pt ion at r„"is U(r —r„"),
then the matrix element connecting the states P„', iP„"is

&(rt„"(r—r„")expI i)& (r„."—r„)j, (4)

where the sum over n is now taken to be a sum over
nearest neighbors only.

Provided that the interaction is between nearest
neighbors only, only four interaction energies appear in
the final form of the calculation, and it can be shown2
that only three of these are independent, provided that
only two-center integrals are involved. These four are

(*'y') &ooo)
= (*—ny —as) (ax+y+«)/(1+ n')

Q (3)
(xy) n(ys)+n (xs—)+n (x' y') . —

1+2n'

((*y)«oo) I
V—UI (*y)&»») = ——:~,

((*y)&oo» I
V—UI (*y)&o»))= -'&,

((xy)&ooo) I
V Ul (ys)&t)o))= oC

((ys) &oo» I
V—Ul (*'—y') «)t)) =-'D= l(&+C)

' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

This function is normalized to order Q, it being
understood that the (x' —y') orbital is not properly
normalized, but has the same constant multiplying the
angular dependence as have the (xy) set of orbitals.
The remaining wave functions are listed in Part A
of the Appendix.

The determination of the interaction matrix follows
the usual course for a tight-binding calculation, though
somewhat complicated by the presence of four sub-
lattices. Denoting the ith orbital on a site in the pth
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The factor 4 has been inserted because a sum over
four atoms is always involved; A, B, and C are all

positive, with A greater than the others. Various other
interaction energies —reducible to sums of A, B, and

C—do appear in the calculation, but can be eliminated

later. The elements of the interaction matrix can now

be written down, being derived from (4), using basis
functions of the same type as (3). For the most part,
terms of only zero and first order in o. will be included,

apart from one systematic exception —the factor (1—n2)/

(1+2n2) that appears in the principle term of (3) will
be retained wherever it appears multiplying another
principal term; the reason for omitting other terms of
order cz' will be given later.

The total interaction matrix can be written as a
4&(4 supermatrix in which the rows and columns corre-
spond to the sublattices, taken in the order (000),
(110), (011), (101);each element is then a 3X3 matrix
in which the rows and columns correspond to the wave
functions taken in the order d,„, d „and d„,. The re-
sult is

0
H= Ei+ai bi-

E2+&2+b2
.E3+o3—bo

Ei+&i+bi
0

E3—a3—53

E2 o2+b2—

E2+~2+b2
E3—~3+ho

0
E1—G1—51

E3+~38+b8
E2—G2—62

Ei ai+b—i
0

(6)

where a1is the transpose of a1, etc. , and

—A.c1c2

Brc1C2
—Cr$1$2

—CP1S2
Brc1c2

Brc2C3
E2= —Crs~sa

—Crs2sg

BrC2C3
—A pC2C3.

BrC1C3

i
—C„S]$3

—A C1C3

—C~1S3

Brc1C3&

and the matrices a„, b„are linear in o. , their explicit forms are given in Part 8 of the Appendix.
In the above the following abbreviations have been introduced:

~2 2

A„=~ A, and similarly for 8„,C„.

cosk;= c; sink, =s;,

where k;=K;a/2. The reduced wave number k will be used throughout the rest of the calculation. The interaction
matrix (6) can be simplified greatly by a similarity transformation with the unitary matrix

where I is the unit 3&&3 matrix. Then

I
S=-', I

I
.I

I I
—I I
—I —I
I —I

where

Ho
S—'IIS= d™

d1 d2 d3

H1 d4

H2 d6

H3.

(10)

and

&o=Ei+E2+E3 &i= Ei E2+E8- —
+2 Ei E2 E3 +3 Ei+E2

d i= -', (oi—i32)+-', (~33+~3)—b2

d 3= -2, (i33—t33)+-'2 (o2+o2) —bi

d5 2 (o2 G2) 2 (+i++1) b3

d2 2 (i32 i32)+2 (oi+i31) b8

do= —
2 (G3—G3) —2 (G2+r32)+bi

do= 2 (t'ai —~i) —2 (@3+~3)+b2.

(12)

All terms of order 0. have been shifted oR the diagonals, and are now simply a perturbation on the bands formed

by Ho, H&, etc. It is for this reason that most terms of order e were omitted from the interaction matrix, for they
too are removed to the oR-diagonals by the transformation S.
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B0 is the principal part of the Hamiltonian, B~, B~, and B3 being derived from it. The explicit forms of II0
and B~ are

A rC1C2+ Br(C2C2+ C 1C2)—C„S2sa
—C~gss

A „C1C2+Br(C1C2 C2C—2)

C&$2$3

—C~2S3—A „C1C2+B„(C1C2+C2C2)—Cp1$2

Cp2S3
ArC1C3 Br(C1C2+C2C2)

C+ys2

C~sis3—C„sysg
A rC2C2+Br(C1C2+C1C2)

—C&SI$3

C+i$2
ArC2C2 —Br(C1C2 C1C2)

(13)

It will be seen that B& can be derived from B0 by
replacing k2 by sr+k2 in Ho, in fact, Hi, H2, and Hs
are translations of B0 over one reciprocal lattice vector
along the axes of y, s, and x, respectively. The presence
of four matrices on the diagonal with nonvanishing
matrix elements connecting them corresponds to the
fact that the four Pt sites are nonequivalent, so that
the basic zone is now the simple cubic zone rather than
the zone for the face-centered cubic structure. Thus the
principal effect that the tilt of the octahedra has had
is to reduce the interaction energies by the factor
f (1—cs2)/(1+2n2)P, and to introduce a connection be-
tween the matrices on the diagonal; a more subtle
effect is that the nature of the off-diagonal matrices is
such as to reduce the symmetry of the bands from full
cubic (0") to Tb, which is the symmetry of the crystal.
However, as will be shown later, the interaction of the
d bands with the s bands is far stronger than the inter-
action between the d bands, so that the only part of
the Hamiltonian with which we shall be concerned is B0.

Figure 2 sketches the bands resulting from B0 for the
(100) and (111) directions, the bands are triply de-
generate at the origin of k space, with energy A„+2Brr-
The upper band is doubly degenerate, the lower band is
single. The bands are shown as reflected back towards
the origin at ki=sr/2 rather than continuing out to
k&=m, which is the zone boundary for the face-centered
cubic structure; one would normally expect that the
interband degeneracy at k;=sr/2 would be lifted either
by the matrices d;, or by a combination of spin-orbit
splitting and the d;, resulting in the formation of a band
gap at the zone boundary. This is the case over most
of the surface of the zone, but it is shown in Part C
of the Appendix that there are some particular com-
binations of functions such that the degeneracy at the
intersection of the principal axes with the zone surface
cannot be lifted. The only band gap possible for this
combination of d orbitals must then come from the
effect of spin-orbit coupling acting on the triple de-
generacy at the origin.

e
r

k=
(1, 1, 1)

= k

(1,0, 0)

-2e
r

order to keep track of the behavior of the results. The
integrals were found using wave functions of the type
introduced by Slater, i.e.,

yea rn" ie Z~rlnn —nof—(g y)

where rI,* is the effective quantum number, Z* the
effective nuclear charge, and a0 the first Bohr radius.
Following Slater's rules, n*=4 for the shell with quan-
tum number 5, and Z*= 10—Es for an electron in the
d shell, where S is the number of other electrons in
the shell and s is a screening constant. Slater's value
for the screening constant (0.35) cannot be expected to
hold for electrons of such high quantum number; s was
therefore calculated from the second ionization energy
of Pt, since this involves the ionization of a. Sd electron
(the first ionization energy is the removal of a 6s
electron). This energy' is 18.35 ev; on using the rule
W= Wst(Z*/st*)2, where Wss is the ionization energy of
hydrogen, we find Z*=4.67 for Pt+, and hence Z*=6.67
for quadruply ionized Pt; the value of s is 0.666.

The contribution of one of the nearest Pt neighbors to
the difference between the crystal potential and the
atomic potential for an atom at the origin was taken
to be

(V—L )one atom= Z e [1/r2 (1+X)/ro], —
where r0 is the separation of nearest neighbors, and r2

E(k)

III. THE BAND STRUCTURE

A. Preliminary

Before introducing the spin-orbit coupling the inter-
action energies, A, 8, and C will be determined, since
it is necessary to know their relative magnitudes in

2 (l, l, l) -A - 2B
r r

k
2

(1,0, 0)

Fxo. 2. Sketch of the complete d orbital band structure within
the 6rst cubic zone. The upper band (E&—A„+28,) is doubly
degenerate, the lower band is single.

s Americas INstitstte of physics Harsdbook (McGraw-H&1] pook
Company Inc., New York, 1957).
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is measured from the neighboring site; X is a small
constant such that fP*(ri) (V—U)P(ri)dr=0. On
evaluating the integrals, one finds

8 C A„B„C„
.54 „,0.741 0.878 2.0 0.42 0.50,

all values being expressed in eV.
A couple of changes will be made before the spin-

orbit coupling is introduced. An effect of Sec. II has

been to show that the Hamiltonian IIO involves states
that are unambiguously the simple d orbitals; it is now
convenient to relabel these in the order

d..=li), ~*.=12), d,:=I»
Further, it will appear later that all effects with

which we shall be concerned occur fairly close to the
origin of k space; the Hamiltonian (13) will therefore
be expanded as far as order k'.

—',(A,—B„)k'——,
' (A„+B„)kzz

—C„k2k3
—C,kgke

—C,k2k3
—,'(A, —B„)k'——,'(A „+B„)k,2—C„kgkm

—C„kafka

—,
' (A, .—B,)k' —-', (A „+B,)ki2

(16)

where the zero of energy has been shifted to A„+2—B„.
The spin-orbit interaction can be taken as

H, o= —2@i s, (17)

where / is the orbital angular momentum, s the spin, and Sp= ~, ~ being the spin-orbit splitting. The constant p
should be positive (corresponding to inversion of levels), since the d band is more than half fille. The usual pro-
cedure of setting up the total Hamiltonian in terms of eigenfunctions of Jwill be followed, but it should be remarked
that eigenfunctions of both J and nsJ cannot be formed —since only three of the five d orbitals are being used.
The matrix of H, o is shown in Part B of the Appendix, the eigenfunctions and associated eigenvalues are

(~2) 'Llpi) —zl~»j
(v'6)-'L2-3)+»+ Pi)),~ „, .
(g6)—'l 2 P3)—z P2)—ni)j (18)
(v2) 'I l~i) —zlP2)3

(v3) 'L Pi)+z a2) —a3)j g 2 g(~3)- L -1)+' P»+ P3)j
where la), lp) a,re the states with electron spin up and spin down, respectively.

The total Hamiltonian is most conveniently written out with the group of terms for which J= 2 separated from
those for which J=—,', as follows:

Kt
$0'

where z=i 4, 0=5, 6, the states being numbered in the order in which they appear in (18). In terms of the
matrix elements H;; of Ho we find

'(H +H ) -(2@3)'(Hn —H»+2iHzz) (V3) '(Hzz —zHz. )
(2v3) '(Hzz —H, z

—2zHzz) -', (H„+H,+4H„} 0
(~3) '(Hiz+zHzz} 0 z (Hzz+Hzz+4Hzz)

0 (VS)-i(a„+i+„) (2~~) (+11 +22 ~&+23)

z (Hll+Hzz+Hzz) 3 0
0' 0 z (Hzz+Hzz+Hzz) —&

(/6) —z(H» —Hzz+iHzz) (3&2) '(Hzz+Hzz —2/1» —3zHzz) (V2) 'H» (g6)-'(Hzz+2iHzz)
(+6) '(HII —2zHzz) (V2) 'Hzz —(392) (Hzz+Hzz —2Hzz+3zHzz) (g6) (Hzz —Hzz —iHzz)

(20)

where $=3p ——0.66, and the zero of energy is now
—A„+2B,+iz

4 Although V—U is not constant within the cell surrounding the
erst atom, yet the d orbitals on this atom are not connected to
each other through V—U, nor is their energy changed. The re-
quirement that the basic orbitals be locally eigenfunctions of the
crystal potential is therefore suSciently well satisfied —a too
perfect adherence to this principle would appear to prohibit the
formation of bands. Exception can be taken to the use of Z* as
being literally the charge that the electron on one site sees on its
neighbor, this choice is intuitive, based on the usual argument that
the greatest part of the integral comes when the electron is close

The Hamiltonian defined by (19) and (20) is identical
in form with that found in the valence bands of Si and
Ge. ' K;, which corresponds to the valence band in

to the neighbor. A justi6cation can be given, since the value ofZ* for 6s and 6P electrons is 6.1, not far diferent from the value
for d electrons; thus if one decomposes the Sd state on one atom
into a set of states based on the neighbor, the principal contribu-
tors will move in Gelds corresponding to values of Z* between
6.1 and 6.67.

~ G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 95,
568 (1954).
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these compounds, has been much investigated, while

K„which corresponds to the split-off band, is already
diagonal. There are two distinct solutions of K;, each
doubly degenerate; the solutions of the upper and lower
bands will Grst be considered separately, before going
on to consider their interactions through K; . From
X' wc GIll

E,=-', (A,—28,)k'a-', {-',(A„+8 )'k4

+ lL4C 2 (A +8 )2j(k 2k 2+k 2k 2+k~2k 9) })/2

These solutions can be greatly simpliGed by making the
"spherical" approximation

K gives, for the split-off band,

E,= —()+3 (A „—28,)k'. (23)

The numerical values of A„B„given in (14) yield:
E~——0.79k', E2 —0——.01'lk', E,= —8+0.39k', all energies

being in eV. It is obviously not certain whether E2 goes

up or down with increase of k, but it is clear that E2 and

E, intersect, so that the effect of 3'.;,must be considered
in detail. It is to the interaction of these two bands that
we must look for the formation of the valence and con-
duction bands.

C„=-', (A„+8,).
The two bands are then

(21)

B. Entexaction of the d Bands

E)———', (A „—8„)k',
Em ——-', (A,—58,)k'.

The matrix which diagonalizes BC; has been given by
22

Ehrenreich and Overhauser' as follows: If we write

then

ce—itIP

d —i@

0

ce"
b

0
de i&

dei&

0

—ce—"

0 E
de'&

and define U such that U 'KiU=

(c id)e-"
(Eg—a)U= (6%2) '
(E );(q ())

i (c id)e—

i (c+—id) e'&

i (Eg a)e—'(~')—
(E~—a)—(c+id)e

—(E)—a)
(c+id) e

i (c+id)e-
i(E~ a)e—((()+4)

i(E~—a) e((8+y)

i (c id)e—'&
—(c id)e—"
—(E)—a)

where 6'= (E)—a)'+c'+d'
3.' can now be reduced as follows:

U- 0 Se X U 0 E U-~
0 I,K; ~ K 0 I 3'.; tU K

(25)

(26)

where T;;=gqU;),—'BC/,;.
It is quite easy to show from the forms given in (24)

and (20) for U and K;, that the following relationships

hold:
T46 T35 ) T45 T36

where I is the unit 2&&2 matrix, and E, is the diagonal

form of 3', Since X,, is already diagonal, the blocks

U—'Ki represent interactions between diagonal forms.

It is still impossible to obtain the eigenvalues of this

matrix exactly; however, it is only that part which in-

volves the interaction of the bands E2 and E that need

be treated exactly, for E& is a sufficiently rapidly in-

creasing function of k that the interaction between it
and the other bands can be considered to be no more

than a perturbation. We therefore strike out from (24)
those rows and columns in which E~ is on the diagonal,

being left with the 4&&4 matrix

E2 0 T35 T36

0 E2 T45 T46

T3$ T46) Ey 0
~T36 T46 0 Eg

The matrix (26) is therefore formally identical with
3C;, apart from a reordering of rows and columns. The
eigenvalues are the roots of the secular equation

(E—E2)(E—E.)= I&ss('+[& ('.

The right-hand side of the above equation can be
found analytically without approximation, though the
job is extremely tedious. The calculation is, however,
greatly simplified by the use of the spherical approxnna-
tion, Eq. (21). This approximation gives E& and E2
fairly well, but is quite evidently unjustiGed for the
calculation of the interaction between E2 and E„ for
on taking the explicit forms of the matrix elements it is
seen that K,, depends only on ~(A,+8„) in the (100)
directions, and only on C, in the (111)directions. The
coupling between the bands therefore appears to be
much stronger along the principal axes then it is along
the body diagonals, since ~~ (A,+8„)is more than twice
as great as C„. However, it will be shown in the next
section that the interaction of the d bands with the s
band is such that the effective value of C„ is doubled,
with the result that Eq. (20) is nearly satisfied. We
therefore write

-', (A„+8„)—+ C, C„~C.
'H. Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 33j.

(&956).
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These substitutions being made, the calculation be-
comes straightforward, though tedious. An outline is
given in part (D) of the Appendix; the result is

(E—Es) (E—E,)= (2/9) C'k'. (27)

C. Interaction with the s Bands

As is to be expected where a transition metal is in-

volved the origin of the s band formed from 6s wave
functions centered on Pt sites is close to the center of
the d bands, and the action of the s bands on the d
bands is an important part of the Hamiltonian, though
it has been omitted from the discussion in the interests
of clarity.

The various matrix elements needed to describe the
generation of the s band and its interactions with the d
band are:

(s(sw) I l —~
I si»ol)= —lS

(s&s«) I
l' —~

I (e')(»o))= —s

(&&sea& I
&—~

I
(&'—3")&tot&) = —sQ,

(28)

the notation being similar to that used in (5).
Of these constants, only S is needed to describe the

generation of the s band, which, because of its sym-

metry, is not affected by the nonequivalence of the Pt
sites. P is the major contributor to the interaction with
the d bands, since no interaction involving Q could

appear if e were zero.
First the interaction energies will be calculated and

an attempt made to Qnd the relative positions of the
d and s bands, before going on to And their contribution
to the interaction matrix. Slater s rules give the ioniza-
tion energy of a 6s electron from Pt suKciently well

(for this case the rules are m*=4.2, Z*=18—0.85K, 1V

being the number of electrons in the fifth shell); for
the 6s electron when four of the 5d states are not ulled,
we have Z*=6.1. Then, following the same procedure
as before, we 6nd

S P P„
4.01 3.54 2.65 and Q P, (29)

where P,= (1—rr )/(1+2n')P, and all values are in eV;
Q has not been calculated accurately because there is
no need for an exact value. There is a slight incon-
sistency in the notation, since the ratio P„/P is not

equal to the ratios A„/A, etc. ; the difference comes
about through the fact that the s orbitals are not
affected by the tilt of the octahedra, so that the
product of an s orbital with the principal part of one
of the d orbitals contains the factor (1—a')/(1+2o. )'
once only.

The energy of the s band measured from s level Az

PQCSO 1S

Es,= Ws W,+A„—28, 3$—os+ —"o„—(30)

where Wq, W, are the ionization energies for the Sd
and 6s states ie M,cNo, and b~, 8, are perturbations on
the energies of the d and s bands due to other bands.
The ionization energies can be calculated from the rule
W=W&(Z*/e*)', where WIr is the ionization energy
for hydrogen; then, neglecting 8&, 8„one 6nds Ed,
= —1.8 eV. A correction for the interaction with the
rather small number of bands that we already know
about can be made, ~ reducing E~, to —1.0 eV. This
calculation indicates that the origin of the s band is
somewhat below the origin of the d band —a feature
which would altogether destroy any possibility of
Gnding a finite band gap. Fortunately, the result should
not be taken too literally, since it involves the diGer-
ence of large quantities (e.g. , Ws ——37.8 eV); all that
has been shown is that Sd and 6s bands are in fact
clos- it will be assumed that Eq, is small and positive.

The interaction of the d bands with the s bands can
be treated by the methods of Sec. II, resulting in the
formation of four s bands (a single band of energy Es,
at k=0, and three others derivable from it, of energy
Es,+4$ at k=0), and of a set of interactions between
these and the d bands (there are no interactions be-
tween the s bands). The three upper bands are of no
particular interest, but will be used in a later section
to illustrate a point; they are therefore listed here. The
interaction matrix for the principal d bands and all of
the s bands has the form

where

'Ho Hg, ).Hg, 8, .

E,= S(—ctcs+ cscs+ cres) = —3$+Sk'

for small values of k.
The difference in energy between the s band and the

principal d bands at k=0 is therefore

Ed,+Sk'
Es,+4$ -Skss

Es,+4$ Skss—
Es,+4$ Skts. —

(31a)

~ The energy of the d band at k=0 is perturbed both by the other d bands through the matrices d; defined in (12) and by the
upper part of the s bands through the perturbations listed in (31b). The effect can be determined by second-order perturbation
theory, with the result

1+2'
Bs= —2e' (A —38)—osQ'/S.

~1 cP~

The energy of the s band at k=0 is not aRected by this set of bands, the numerical results are then Bz= —0.8 eV, 8,=0.
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and
'P,kgk2 Q.Pkj.k3 o,Pk2k3

Hs, P—„—ktks nPkrks rrQ[2+-,' (k'+ks') )
,P„ksks rrQ[2+-', (k'+kts)] nPktks

crQ[2+-', (k'+ksr) g
O,Pk2k3
O,Pkgks

(31b)

Hi, H s, Hs, E', (k)

where E,(k) =Es,+Sk'
The most convenient way to take account of the s

band is to use second-order perturbation theory on all
the elements of Ho before diagonalization, by means of
the following strata, gem: E,(k) is a much more rapidly
increasing function of k than are any of the diagonal
elements of Hs, so that E,(k) —H;; is always much
greater than are the differences between the various
H;;. Therefore, despite the fact that the valence and
conduction bands are formed some distance away from
the origin of k space, one can set all the diagonal
elements of Ho equal to their average, which is
s(A„—28„)k', when dealing with the perturbation from
the s band. Second-order perturbation theory then gives

H;,H„
8IIg=

H, ;—E,(k) Rk'
(32)

where R= 5—s (A,—28,).
In the last step it has been supposed that E~,(&5k'

for those values of k which are involved in the forma-
tion of the valence and conduction bands; Eq„has, in
effect, been kept as an adjustable parameter up to this
point, and has now been set virtually equal to zero-
a choice which has the advantages of both analytic
simplicity and of providing the best fit to the available
data.

The above procedure reduces the effective part of
the interaction matrix back down to a 3X3 block, so
that spin-orbit splitting can be incorporated and the
energy levels determined as before' using matrix ele-
ments H@+oH;;. The energy of the heavy mass band

8 This reduction to a 3)&3 interaction matrix necessarily implies
the use of mixed d and s orbitals as basis functions; the elements
of the spin-orbit coupling matrix are therefore changed in magni-
tude as a result of the decrease in amplitude of the d orbitals,
though the matrix is not changed in form since l=0 for the s
orbitals. The effect is greatest on the (11k) axes since each basic
d state is here mixed with a fraction -,'E'„/E of the s state, this
fraction is 0.24, from which the square of the amplitude of the
d orbitals is found to be 0,94. This change is small enough to be
ignored.

and He is defined in (16).
Only the principal s band need be considered now;

this is the erst term in H, and the interactions related
to it are the 6rst column in H~, . On writing out Ho as
a matrix, and denoting the elements of the 6rst column
of Hq, by H;, (i=1,2,3), the interaction matrix
becomes

Hgg H)2 Hg3 Hg,
H12 H22 H23 H2s

Hg3 H23 H33 H3,

is now

, p"'
~Es'= e (A,—58,)k' — -'(ktskss+ks'k '+ k 'k ')

Ek'

6C ~+
~

—+ ~ki'ks'k '/ks (33a)
k2 Ay8)

and the energy of the split-oG band is

E,'= —8+-', (A,—28„)k'

1. P„'
(ktskss+kssk s+k skss) . (33b)

3 Ek'

It now remains to determine the interaction of E2'
with E,' through 3C;.; in this interaction the off-
diagonal terms of Ho are peculiarly important, and
will be treated in a different manner from the remainder.
For example, consider H~2

His= —C,ksks, 5His= —(P '/Rk')k sksks.

The form of 6H~2 is the same as the form of H»,
apart from the factor kts/k'. On replacing this factor
by its angular average o5 3 the e8ect of the perturbation
is just to increase the effective value of C„ to

C.ir C,+s'P, '/R. —— . (34)

The numerical value of C,q, is i.15 eV, from the
values given in (14) and (29). But rs(A„+8„)= 1.2 eV,
so that the spherical approximation is now sufficiently
good for the calculation of the matrix elements T;;
defined in (26). The procedure followed is to use the
unperturbed values of the diagonal elements of Hp
together with C,gg in place of C, on the oG-diagonal
elements —it being considered that the use of E2', E,'
in place of 82 and 8, will take suKciently good account
of the variation of the diagonal elements. The secular
equation for the energy E is then

(E E,I) (E E I) (2/9) Csk4 (35)

where C=s[s(A„+8,.)+C,ti)=1.17 eV, and Es', E,'
are given in Eqs. (33).

D. Numencal Evaluation of the Band Structure

Equation (35) determines the band structure; the
positions of the valence and conduction band's maxima

9 This method is better than might be supposed, af ter taking all
perturbations into account, the value of the e6'ective coupling
constant C remains exactly —',(A,+B,l on the principal axes, and
is exactly C,ff in the (111) directions. Since the approximation
described vas made only for the purpose of determining the
coupling matrix T, and since the coupling constant changes by
only 5% between the major symmetry axes, the assumption that
it is constant is reasonable.
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and minima, together with the values of the effective
masses, can be found from it analytically. However,
before proceeding with the calculation, some qualita-
tive remarks on the origin of the band structure will

be made, since the complexity of the argument has
been such as to hide the simplicity of the effects
involved.

The band structure arises primarily from the d „,d „
and d„, subset of the Sd orbitals, though these are
de6ned in coordinates that differ for each Pt site.
Nevertheless, the main part of the interaction matrix
is precisely that which would be found if the orbitals
were defined in terms of the crystal coordinates, except
that the magnitudes of their interactions are decreased.
This set of d orbitals has cubic symmetry, so it is not
very surprising that their Hamiltonian in a face-
centered cubic lattice has precisely the same form as
that derived for p orbitals in the valence bands of Si
and Ge; any resemblance to these materials ends at
this point, for it turns out that the split-off band has a
positive effective mass, while the heavy-mass band has
a negative effective mass. A rather strong interaction
prevents the two bands from crossing, with the result
that the maximum of the valence band and the mini-
rnum of the conduction band are removed from the
origin of k space.

If d bands alone were involved, then, in the spherical
approximation, the same maxima and minima of energy
would be found at all orientations in k spac" though
the breakdown of the spherical approximation would
prevent so peculiar a structure, and both valence and
conduction bands would be located on the (111) axes,
where the magnitude of the interaction between them is
least. However, the 6s band interacts strongly with the
Sd bands, depressing the energies of both split-off and
heavy mass bands downward in the (111) directions
while leaving them unchanged in the (100) directions.
A more subtl- and less comprehensibl" effect of the
6s band is that it alters the interaction between the
valence and conduction bands in such a way that the
magnitude of the interaction is virtually independent
of orientation; it is therefore only necessary to find where
the split-off and heavy mass bands go up or down most
steeply in order to locate the orientations of the various
maxima and minima. Since both bands are depressed in
the (111) directions by their interaction with the s
band, the maxima of the valence band must fall on the
principal axes of the crystal, while the minima of the
conduction band must lie on the (111)axes.

The magnitudes of E2' and E ' are

Ep' = —0.02k' —0.32 (k PkP+kPkP+ k Pk P)/k'
—5.32k Pk Pk P/k4,

E '= —8+0 39k'—0.65(kpkP+kPkP+kpkP)/k'.

The axes on which the principal maxima and minima
of g fall are known; to find the appropriate values of k
it is sufhcient to use the magnitudes of E2', E ' on these
axes alone. But since all the effective masses are re-

The values of the constants in (36) are then found
to be

l V e
(100) axis 0.02 —0.32 0.39
(111)axis 0.33 1.09 0.17

—0.65 (37)
0.22.

The positions of the maxima and minima of E can
be derived from (35) and (36), setting k& ——0. The energy
eigenvalues are

E=
p [—B+ (v —X)k'$+-'{[B—(v+X)k'j'+4Ik'}'", (38)

where I= (2/9)C'=0 30 (eV)'
The values k=kp for which BE/Bk=0 satisfy the

relationship

X—v =+{(X+v) [8—(X +v) k'p) +4Ik oo) /
{P (g+v)k ()

2j2+4Ik 4)1/ 2 (39)

The solutions of (39) are

k '= &L(~+ v) ~(~—v)I'"(»+I) '"j/
[(X+v)'+4Ij. (40)

The & sign in (40) comes from the solution of an-
other quadratic; values of ko must be substituted back
into (39) to determine whether they belong to the
valence or conduction bands.

The curvature of the band at ko is

828
=[—29,+2(X—y)Eo+12ko'(»+I))l

Bk2

[B+2Ep+ (X—v) kp'j. (41)

The effective masses normal to the symmetry axis
involved can be found from the change in E when k~
is nonzero. This change is

where
hE=-,'(1af)lkp+-', (1wf)lkp, (42)

f= [8—(X+v)k p j/{[8—(X+v) k p j+4Ik p )
Since k is the reduced wave number defined in (9),

the effective mass is given by

m* 4It2 (j'E
=0.733

5$ 5562 gk2

8 E
(E being in eV) . (43)

Bk'

quired, not just the effective mass parallel to the axis
on which the band is formed, E2' and E,' will be ex-
panded to order k~2, where k& is a small component of
wave-number normal to the axis in question. Measur-
ing k along an appropriate syrrunetry axis, E2' and E.'
must have the forms

Ep' —Xk'——+lkP E,'= —8+vk'+eke. (36)

When ir is on one of the (111) axes, we use the
relationship

(k 2kP+k 2k 2+kPk 2) /k2 ~ Lkp lk 2+. . . .

1 5
kgkPkP/k4 —+ —k' ——k P+

27 27



BAND STRUCTURE OF PtSb2

Using the relationship (38) to (43), together with the
table of values listed in (37), the effective masses and
other quantities are found to be

m~/m m4/m mX/ns 6' Eo E4 ko

Valence band 0.52 0.60 0.57 1.0 —0.895 0.818 0.24
Conduction band 0.53 0.37 0.42 1.15 —0.088 0.22

where m&=effective mass parallel to symmetry axis,
m2= effective mass normal to symmetry axis, mN
=density-of-states effective mass, m& ——(m&m&')'~, 0;
=conductivity of band when Inaterial is intrinsic,
(normalized to 1.0 for the valence band), E6——value of
E at which the band is formed, E,=band gap, and ko
=value of k at which the band is formed.

The erst four columns listed above do not depend on
b; using the experimental value of E, (0.08 eV), 5 was
found to be 0.10 eV. The value of ko was derived from
this value. The conductivities 0.; are estimated by
making the (probably correct) assumption that the
scattering mechanisms for both bands are the same,
so . that the conductivities will be proportional to
nnz~6~'(1/mal+2/m6), I being the number of bands.

The bands are drawn in Fig. 3. Further comment on
the results is reserved for the 6nal section of this paper.

E. Inequality of the Transverse Masses
in the Valence Bands

This calculation has proceeded so far as though the
only relevant part of the lattice were a face-centered
cubic lattice of Pt ions, a substantial number of inter-

actions that have the symmetry T" rather than 0"
having been ignored. The most important result of the
author's disregard of the true symmetry of the crystal
has been that both valence and conduction bands
appear as ellipsoids of revolution about the appropriate
axes. However, it is possible without violating the sym-
metry for a band located on one of the (100) axes to
have three distinct eGective masses rather than two-
though this is not possible when the band is on one of
the (111)axes. This effect is observed in the magneto-
resistance of P-type samples; the data can be fitted by
supposing the surfaces of constant energy in the valence
band to be ellipsoids centered on the (100) axes, the
principal axes of the ellipsoids being in the ratio
0.7:1.0:1.3.

The author has not been able to calculate the mag-
nitude of this effect, and must therefore be content with
a demonstration that it exists. This demonstration
could„presumably, be given in terms of a sum of the
interactions of the d bands with all other bands, but
such a procedure would both be cumbersome and would
still fail to give quantitative results; for this reason
only interactions that are already known will be used.
Such interactions are those between the principal d
bands and the other d bands, and also those with the s
bands; the latter are far simpler in form, so they alone
will be considered.

If the moduli of the matrix elements connecting
some band p of energy E„(k) with the basic d states
~i) are H,„, then the changes in energy of the split-off
band and the heavy mass band are

6E,= ', kg„'+H2„'+H6„' j-/(E, —E„),

8E2 L6 (k'+3k6 )Hg„'+ 6 (k'+3k6 )H6„'+6 (k'+3k'')H6„'+k6k3HgpH2y+klk6HgyH6y+kgk2H2pH6pf/ (E2—E„)~

k'

(the latter formula is quite readily proved in the spherical approximation by the same means that are used in the
Appendix in deriving the interaction between the bands E6, E,).

The low-energy s band produces no e8ects that are of any consequence in the present discussion; it is the upper
three which involve the crystal symmetry. The energies are listed in (31a), the interaction ma, trix elements H,„
are the last three columns of (31b). Both energies and matrix elements will be used in the form in which they are
shown (but with Eq, =0), and the perturbations written out to order k'; terms of fourth order in k that should ap-
pear in both the E„and H;„will be neglected —they add only to the complexity of the results without altering
their form. On setting Q= I' one 6nds

P' 9 ii
5E = —n'—1+—k'+—k'

S 4 48

P' 5 P'
462 462 {k2+(k 2k 2+k 2k 2+k 2k 2)/k2}

S 8 S

Q P
{9k4 96 (k 6k 2+k62k 2+k 2k 2)+11k 2kPk 2/k2+ 6 (k 6+k 6+k 6)/k6}

48 S
3 P2

+ ~2 {k4(k 2 k 2)+k 4(k 6 k 2)+k 4(k 6 k 2) }/k2 (44)
64 S
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3HI
d band s band

E(k) IV. CONCLUSION

0. 4

eV
(1,0, 0) axis

—-0.05
0.08 eV

011 eV

FIG. 3. Band structure near k=0. The position of the s band is
undetermined; it need not come as close to the d bands as is
indicated.

The only term of interest here is the last term in

582, for it is the only term that does not involve full
cubic symmetry. The method which will be followed is
to add this term into the secular equation (35), neg-
lecting any changes in the coupling of the valence and
conduction bands. This procedure is adequate for
demonstration purposes, though not sufhcient for a full
evaluation of the effect.

If the maximum of the valence band on the x axis is
at k= (kp, 0,0), then the last term in (44) is proportional
to kp'(kpP —kpP) in the neighborhood of this maximum.
Adding this term into the secular equation, the altera-
tion in the valence band becomes

3 P2
bE„(ipp) ———', (1—f)—n'—kpP (kpP —kp'),

64 5

f being defined in (42). The nature of this change is

clear: it represents an increase in the effective mass
parallel to the y axis, and a decrease in the effective
mass parallel to the s axis; the symmetry of the corre-
sponding changes for bands on the y and 2, axes can be
read off from (44). It is readily verified that terms such
as the above do not affect the equality of the transverse
masses in the conduction band.

The actual magnitude of this contribution to the
mass difference is only 10 ' electron masses, or about
0.5% of the total difference; it is, however, typical in
form of other contributions, particularly in the absence
of any effect from E,. The magnitude of p(1—f) is
0.12, so that only 12% of any change in E& appears in

A„; this would imply a rather gross distortion of E2 if
it alone were to provide the observed mass difference.
It therefore seems likely that the greater part of the
effect is derived from a change in the interband coupling.

(010)

o (100) axis

,
=(100)

0.4

(011) ( 101)

F&G. 4. Valence
band; cross sections
of the surface of con-
stant energy for I"
= —B. The volume
contained is equiva-
lent to 2.9&&10"elec-
tron states.

rmal to (ill) axis

,
I (110),

0. 4

' D. H. Damon, R. C. Miller, and A. Sagar (to be published).

The above model of the band structure of PtSb2 has
eight conduction band minima on the (111) axes, and
six valence band maxima on the (100) axes. Piezo-
resistance and magnetoresistance data suggest that the
symmetry assignments are correct. The most striking
feature of the calculated bands is the extreme com-
pression of the structure around the origin of k space,
resulting in very shallow maxima and minima —the
barrier between the maxima of the valence band is
0.011 eV, that between the minima of the conduction
band is 0.007 eV. For energies of excitation greater than
the barrier height the original six or eight surfaces of
equal energy fuse into a single surface; cross sections
of this surface are shown in Fig. 4 for the valence band
in the case when E=—5. The surface contains 3)(1.0"
states; it may be possible to detect this effect through
the abrupt decrease in frequency of de Haas —van Alphen
oscillations that would result when the doping exceeded
this level, provided that the mobility were not too low.

There are few methods which could detect the sug-
gested compression of the band structure, but infrared
absorption could provide a check on the calculation if
suKciently pure samples were available. The first ab-
sorption edge corresponds to an indirect electronic
transition, since the conduction band is not above the
valence band; the least band gap for direct transitions
is 0.915. Direct transitions should therefore start at
photon energies only 0.01 eV above the first absorp-
tion edge.

The only check that can be made on this calculation
is through the transport data of Damon et a/. "At low
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temperatures and impurity levels the calculated values
of the effective masses are given as the simple values
at the stationary points, as in Sec. IIID. At high tem-
peratures and impurity levels the majority of the holes
or electrons move in a single deformed band rather than
in several degenerate bands; an estimate of the effective
masses at high temperature was made by finding the
angular average of the eGective mass at mean excitation
energies corresponding to 700'K in the valence band„
and to 1100'K in the conduction band. "The calculated
ratios of masses at high temperatures are presented as
though the bands were ellipsoids of revolution about
the appropriate symmetry axes, with mass mt parallel
to the axis and m2 normal to it; m~ is found from
828/Bko when lt is on the axis, and t&12 then obtained
from the relation

1 1 1 2)
m 3m, m2)'

m being the mean effective mass. This scheme was fol-
lowed since it is the way in which experimental results
are usually interpreted, and since it gives a convenient
estimate of the warping of the band.

The comparison with experiment is shown at the top of
the next column. The first figure givenfor each calculated
quantity is for low temperature, the second for high

(tttnr), (tttsr) c (tttr/ttto) (1tt I/ttt2) c (Crt) c/(Crt) c

Calc. 0.57-0.72 0.42-0.54 0.87—0.67 1.43-1.36 1.15-1..6
Obs. 0.21—0.7 0.5 0.61 2+-,' 1.3

Subscripts c and n refer to the conduction and valence bands,
respectively.

temperature. The measured values are given under the
appropriate calculated values.

The total density-of-states eGective mass for the
valence band —i.e., m'I'mN, where e is the number of
bands —was determined from the variation of Seebeck
coefficient with carrier concentration at 77'K; the value
found, 0.7, also fitted the high-temperature data, which
were used to And the ratio of densities of states in the
conduction and valence bands. The mass ratio in the
valence band is derived from the magnetoresistive eGect;
the value given refers to the mean transverse mass,
since the two transverse masses are not in fact equal
(Sec. IIIE). The mass ratio in the conduction band is a
rough estimate from the piezoresistivity.

ACKNOWLEDGMENTS

The author wishes to thank Dr. R. C. Miller for 6rst
drawing his attention to this subject and for subsequent
useful information, and also Dr. D. H. Damon, most
particularly for pointing out the importance of the s
bands.

APPENDIX A' THE BASIS STATES

The angular dependences of the various basic d states, derived in the same way as (3), are

(xY) iooo& = f(xy) —n(ys)+n(xs)+n(x' —y')
(x's') tooo& n=(x—y) n(y—s)+f(xs)+on(xo y')—on—(3s'—r')

(y's') «oo& n(x=y)+n(»)+f(ys)+ on(x' y')—+on(3s' r')—
(xY) &»o&

=f(xy) —n (xs) —n(ys) —n(x' —y')

o&= (*y)+f(*)+ (y)+-.' ('—y') —l (3'—')
(y's') tllo& n(xy) —n(»)+f(ys) ——,'n(*' —y') ——;n(3s'—r')

(xY) (o»& = f(xy) —n(xs)+n(ys)+n(x2 —y')
(x's') (o»& =n (xy)+f(xs) —n (yz) ——,'n (x' —y')+-,'n (3s'—r')

(y s') (ott&
———n(xy)+c (xs)+f(ys) ——',n(x' —y') ——,'n(3s' —r')

(xY) t»»= f(xy)+n(xs)+n(ys) —n(x' —y')

(*'s') (tot) = —n(*y)+f(*s)+n(ys) —-,'n(x' —y')+ —,'n(3s' —r')

(y's') &to»= —n(xy) —n(»)+f(ys)+on(x' —y')+on(3s' —r'),
where f= (1—n')'/(1+ 2n')'.

APPENDIX B' MISCELLANEOUS MATRICES

The various matrices a„, b„defi ednin (6) are

(A J3)clc2+ (C+D)$1$2 (A+Ii)ctc2 (C D)$1$2
&1=n (A —+)ctcs+ (C+D)$1$2

.—(A+8)crc2+ (C D)$1$2—
"The latter temperature is the calculated degeneracy temperature in the only ct-type sample used, with 6X10" electrons/cm',

the former an estimate of the region which was most important in ending the high-temperature results in p-type samples. The
temperature chosen is not very critical, the mean eflective mass in the conduction band only changes from 0.40 to 0.56 as the ex-
citation increases from 300'K to in6nity, most of the change occurs at low energies.
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.—(A —B)c2ca—(C+D)s2sg

as= a —(A+B)cics+ (C D—)sis8

(A +B)cmca+ (C D—)$2$8

—(A+B)cic3 (C——D)sisi

—(A B)c—ics+ (C+D)siss

2Bcpcs

(A B—)c2cs (C—+D)s2$;
—(A+B)c2c3+ (C D)$2$3

(A —B)cics+ (C+D)siss,

—2Bcyca
Q

2Bcyc2

—2Bcycg 62= G —2Bc2c3 b3=n
2Bcic3

The matrices d; can be derived from the above from their definition in Eq. (12). One of them, di, will be used
in the next section of the Appendix; its explicit form is

—(C D)sisa-
ds= u (C D)sisa—

~ (C+D)$2$3 (A+B)c2c3 (A B)cic3+2Bcic2

(C+D)s2sa
(A+B)c2c3+ (A B)cica 2—Bcic2—

The matrix of the spin-orbit coupling Hamiltonian

(17) is

p
Zp

Ql P
0 Zjtl ' ZP

jtl 1jtl

the states being written in the order ~n3&, ~u2&, ~P1),
IP3&, IP2» 1~1).

of d3 involving the interaction between ~2& and ~3&

are finite over the whole zone boundary. Such a mix-
ture of states occurs everywhere except at the point
k= (ir/2, 0,0), since Ho and H aare nondia'gonal else-
where; it then remains to see whether the introduction
of spin-orbit coupling will lift the degeneracy at this
point.

At k= (ir/2, 0,0) the sum of IIO, or Hi, and the spin-
orbit coupling Hamiltonian is

By Zjtl

zp By

APPENDIX C: INTERACTIONS BETWEEN THE BANDS
AT THE CUBIC ZONE BOUNDARY

It was stated at the end of Sec. II that the d orbitals
could not give rise to a band gap at the erst cubic zone

boundary; the proof will now be given though it should

be noticed that even if such a gap did exist a filled

valence band could still not be formed from doubly
ionized Pt since the s band would now be partially
filled.

Consider the behavior of the bands near the inter-
section of the x axis with the zone boundary; at k
= (ir/2, 0,0) both Ho and Hs are equal and diagonal,
the diagonal elements being B„B„,—A„. The energies,
B„are those which correspond to doubly ionized Pt,
being approached from below by IIO and from above

by IJ3 as the wave vector increases toward the zone

boundary; since these eigenvalues are those of the
states

~ 1) and
~
2), it is at first expected that a band gap

will arise from the interactions of these states through

d3, which links Ho and P3. However, for values of k
close to (ir/2, 0,0), the relevant part of dq is

—n(C—D)ka

0
0

~(C—D)k,

which is zero along the line ki=7r/2, k3=0. A finite
interaction on this line must come from a mixing of the
state ~3& with the states

~
1) and

~ 2), since the elements

By $p

8„

p zp

where V=—
( )

and I is the 2&(2 unit matrix. We then find

B,+p,

5 'MS=

p

The eigenvalues 8„—p, are exact; the degeneracy at
the zone edge cannot be split by any interaction that
has so far been invoked. The eigenfunctions corre-

A„

unmarked elements being zero, and the states being
w»tten in the»d« IP1» l~2&, la1» IP2&, I~3» IP3&.

M can be simplified by a similarity transformation
with the matrix S
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sponding to the energies 8„—IJ, are

1—[oil)+iIP2H, —[—ilail)+ 1~2)3.
V2 v2

Corresponding eigenfunctions can be found on the other
zone boundaries; they are

1
at k= (O,s/2, 0); —[I«)—I@3)) —[Ill)+ I ~3)3

V2 K2

1
k= (0,0,~/2); —[iI~2)+ I~3)j —[I&2)+il &3)j.

v2 v2

The functions in this set are both eigenfunctions of
the spin-orbit coupling and are invariant under the
symmetry operations of the crystal. There is, therefore,
no way in which the crystal potential can remove the
degeneracy at the zone boundary.

AE'PENDIX D: INTERACTION BETWEEN THE
VALENCE AND CONDUCTION BANDS

We here find the term
I T»l'+

I T88I', the elements
T;; being defined in (26); the spherical approximation
[preceding Eq. (26)j will be assumed valid.

The quantities needed to determine the matrix U
defined in (24) are:

E,—a = -', C (k22+ka'),
1

ce"=—C[(k2' —k ') 2i—kik2$,
2v3

de'&= ——Cka(ki —ik2),
W3

'She elements of X;„defined in (20), are:

6'= -', C'k'(k22+ k p) .

1— 1
C[(kp —k22) —jkik2], Xmg —— C[3ki2—k' —3ikik2),

6 3v2

1
Xi6——— Ck3[ki+2ik2j,

6

1
X26————Ckika,

v2

35 +26 X36— %25 ) X46—X]t)

Only T» and T36 are needed; their evaluation proceeds most readily by first using the form for U given in (24)
and the above relationships between the 3C; before substituting the explicit forms of the matrix elements. One
then Gnds

T»=p U 8*X g= [X+iYe '&'+&&j

where

T3g ——Q U 3*X 6
—— [—Y~+ix*e '&'+&ij

X= —(+i—8)Xig—ce' X26+ice'~X2g

Then

C2k [(k22+k32} jklk2),
3+6

Y= (Ei—a)Xi6*—ce"X'28+de'&X25

2
C'k'k 3[ki—2ikg .

I
T»I2+

I
T„I2=—(xx*y YY+)

Q2

= (2/9) (;2k4.


