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An energy band of a diamond lattice at X (k= (27/a) (1,0,0)) on the zone boundary is two-fold degenerate
because of the presence of glide-reflection symmetries. The degeneracy of the conduction band A; and Ay
at X in silicon was lifted by applying a compressive uniaxial stress along the [011] direction, the effect of
which has been observed by measuring a shift of the cyclotron resonance line for the [100] electrons. An
expression for the line shift has been obtained in terms of a perturbation series. By evaluating the series
using the orthogonal-plane-wave (OPW) results of Kleinman and Phillips, the A;-Az, band mixing ratio
Hyu/AE is determined to be E../AE=11.421.1. This result when combined with OPW estimate for AE,
the energy separation between A; and Ay, at the conduction band edge, yields the value Z,,~5.7 €V for the
deformation potential responsible for the band splitting at X. The lifting of the special degeneracy of the X
states is interpreted from the viewpoint of the tetrahedral covalent bond responding to an applied me-
chanical force. The sign of the cyclotron-resonance line shift indicates that two nonbonding orbitals of a
valence electron connecting two neighboring Si atoms are hybridized to make the energy of the bonding
orbital lower than that of the antibonding orbital when the bond is compressed. Also from the experi-
mental work, the following values of the electron effective masses have been determined: nz;/m=0.1905

=+0.0001, 724;/m =0.9163+0.0004.

I. INTRODUCTION

IN our previous papers we have presented some theo-
retical! and experimental? results of cyclotron reso-
nances on holes in uniaxially stressed silicon crystals.
There it has been shown that external uniaxial stresses
applied to the crystals bring to light important new
features in the microwave resonance spectrum. The
present paper is a continuation of the above studies.
Here we investigate, both theoretically and experi-
mentally, effects of external stresses on cyclotron reso-
nance eleciron lines in silicon.

The conduction band edge in silicon has been known
from various types of experiments to be located on the
[100] and equivalent axes (denoted by A), very close
to the Brillouin zone boundary (the X point). The
nature of the conduction band edge is regarded in many
respects to be simpler than that of the valence band
edge at k=0. There exists, however, one special feature
of the conduction band edge which is attributable to the
difference between the face-centered cubic and the
diamond structures. It is well known that the x-ray
scattering factor corresponding to the (200) component
in a diamond lattice is forbidden, and that this fact is
closely related to the ‘‘sticking together” of certain
energy bands at the X point.? In this paper, we discuss
the effect of lattice deformation on the conduction bands
in Si. Specifically we consider here the removal of the
twofold-band degeneracy of the A; and Ay bands at X
by an application of external uniaxial stresses which
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cause electron effective-mass shifts due to strain mixing
of the electronic wave functions. The resulting effective-
mass shifts are detected by cyclotron resonance. A
change of optical spectra under strain, perhaps the most
direct experimental verification of the effect, has been
sought with unsuccessful results.* An important ad-
vantage of the present method is that by observing
cyclotron resonance lines one is able to see the behavior
of electrons in each ‘“valley” of the conduction band
independently. This enables one to verify the effect by
measuring the line shift for a valley chosen at one’s
option under suitable geometries of stress and magnetic
field.

The effect of lifting the band degeneracy has previ-
ously been evidenced in the spin-resonance experiments®
on donors under the [1117] stress and also in the
theoretical®? and experimental’ investigations of spin-
lattice relaxation mechanisms which were not fully
understood in the earlier studies.®? The present work
was motivated by these investigations and was under-
taken in an attempt to obtain an estimate of the
splitting parameter, a new shear deformation potential,
. The cyclotron resonance technique is perhaps better
suited to this problem inasmuch as the response to the
applied microwave field is through electric dipoles in
which electron spins and spin-orbit interactions are not
primarily involved. This fact simplifies theoretical cal-
culations and permits a more direct and accurate

4 H. R. Philipp, W. C. Dash, and H. Ehrenreich, Phys. Rev. 127,
762 (1962) and U. Gerhardt, Phys. Letters 9, 117 (1964).

8D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).

6 L. M. Roth, Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960 (Czechoslovak Academy of
Sciences, Prague, 1961), é) 592.
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9 L. M. Roth, Phys. Rev. 118, 1534 (1960).
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analysis of the experimental results than would be
possible for the spin-resonance results.

Our theoretical process to deduce &, from the present
experiments is the following: We first make a group-
theoretical analysis of symmetry relevant to the X point
of the diamond structure, which gives us a way of
characterizing the sign of E,, without recourse to very
detailed aspects of energy-band calculations. We next
utilize results of the current band theory' to evaluate a
perturbation series that is involved in a theoretical
formula for the observed mass shift. We shall be aided
by the well-known Phillips ‘“‘cancellation” between
crystal potential and core-orthogonalization terms that
makes a nearly free-electron picture suited particularly
for electrons in Si. Thus, from the measured cyclotron-
resonance line shifts, a ratio =,./AE which represents a
degree of the strain-induced A;-Ay band mixing has
been determined. This is combined with a band-theo-
retical value for AE (the A;-Ay separation at the con-
duction band edge) to give an estimate of =, which, in
turn, may be compared with the direct calculation of
Goroff and Kleinman.!2

From the sign of &, determined experimentally, a
significant conclusion can be drawn. The conduction-
band states, when interpreted in terms of tetrahedral,
covalent bonds, split under uniaxial stress into a bonding
orbital and an antibonding orbital, each characterized
by a definite parity. From the orthogonalized-plane-
wave (OPW) theory we identify the bonding orbital
with the state whose energy is lowered by the compres-
sive stress which tends to reduce the internuclear dis-
tance. The OPW calculations further reveal that for the
conduction electron the major contributions to the
deformation potentials are kinetic in origin.

II. BAND STRUCTURE NEAR Xi(k= (2=/a)(1,0,0))
A. Symmetries and Selection Rules

Irreducible representations (IR) of the group G¥* of
k= (2r/a)(1,0,0), for the diamond structure have been
determined by several authors.!® There are four in-
equivalent IR’s denoted by X, X., X3, and X4 each
doubly degenerate (without spin) as crystal eigenstates.
This degeneracy is characteristic of a diamond-type
crystal whose unit cell contains two equivalent atoms.
It is possible to lift this degeneracy by subjecting the
crystal to a large, external uniaxial stress along ap-
propriate crystallographic directions. The conduction
band edge in silicon is known to be close to one of the

VL. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

1 For a review on this subject, see P. W. Anderson, Concepts in
Solids (W. A. Benjamin, Inc., New York, 1963), p. 61.

2. Goroff and L. Kleinman, Phys. Rev. 132, 1080 (1963).

13 C. Herring, J. Franklin Inst. 233, 525 (1942). See another
related paper, T. Sugita and E. Yamaka, Rept. Elec. Commun.
I(Jfbbé‘,l) Nippon Telegraph and Telephone Corp. (Japan) 2, 24

14 G. F. Koster, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 173.
The notations of the group elements used in the present paper
follow this article.
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representations X;. Therefore, the effect of lifting the
degeneracy at this point may be observable in a shift of
cyclotron-resonance electron line with stresses. We ex-
amine this possibility by selecting necessary matrix
elements.

Let us define a unit cell in the usual way by intro-
ducing three vectors;

a a a a a a
t1=(—,—,0), tZ:(O:":_); t3=(_707_>y
22 2 2 2 2

where @ is the lattice constant, and assume one of the
two equivalent atoms to be located at the origin. The
position of the other atom is then == (a/4, a/4, a/4).
Because of this structure the symmetry operations perti-
nent to the point (27/a)(1,0,0) contain the inversion
followed by a nonprimitive translation =, which is de-
noted by {I|=}. This operation must multiply each of
the eight point-symmetry operations which makes the
k vector invariant, viz., the point group D2q, to obtain
an extended group whose IR’s yield all the X’s. The
process is not simply a direct product, because the =
vector is nonprimitive and the k vector is located at a
zone boundary. For every point operation {8]0} of Dsg
the operation {I |z} satisfies the following:

{I|=}{610} ={BI|=}
{B10}{I|=}={61|p=}
={BI[7}{E|8 " =—=}. ¢y

In the last equality {E|8~'s—«} is a primitive transla-
tion which can be represented by a single phase factor

exp(tk- (B7'e—=))==+1 for k=(2x/a)(1,0,0), (2)

where 4 and — signs correspond, respectively, to
whether

ﬂk:k: (27"/(1) (1)0’0) ’ (3)
or

gk=k+K= (2r/a)(—1,0,0). 3"

The former relation (3) is satisfied by the four point
operations of Dsgi.e., by E, Cs4, 0 ayz, and o 4z., while the
latter relation (3") by the other four i.e., by Cay, Cssy Stz
and S48 with which {Z|«} does not commute. There-
fore, a new operation denoted by 7 is incorporated into
the extended group when % represents the translation
{E|B'x—=} corresponding to the value —1. This
process closes to form a complete group, the resulting
group, G, now containing 32 elements. In G, {I|r}?
=n?=E, and n commutes with all the elements, whereas

{I[=}{B10}={B|0}{I[=} or {B|O}{I]<}n,

according to whether the phase factor in (2) takes the
value +1 or —1, respectively. Because of this noncom-
muting nature new representations arise that are differ-
ent from those of Dsq. They are identified in Table I
where representation matrices of some selected elements
are given for all the X,;’s pertinent to the present work.
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TaBLE I. A unitary representation of some operations of the
group G¥, k= (27/a) (1,0,0), for the diamond structure. The nota-
tions {C.,|0}, {S|0} and {I|z} are according to Koster. (See
Ref. 14.) The last element » represents the primitive translation
{E|t} for which exp (tk-t)=—1.

X X X3 X4
X1 X'l. X, Xz‘ X3 Xa. X4 X{
e (0 2 (0 (¢
s (200 (29 (595 Y
an () (Y (Y (Y0
(R G| o i G O |

First, we give a preliminary account concerning the
compatibility relations and time reversal for subsequent
discussions. In the representation X; in Table I two
independent basis vectors denoted by X; and X, are the
limit of A, and Ay, respectively, when k approaches the
X point along the A axis from the left. In the representa-
tions X3 or X, which cannot split into different one-
dimensional representations when going from X along
the A axis, the most convenient choice will be the one by
which each of two basis vectors has a direction of
polarization along each of two orthogonal crystal axes,
i.e., the 9[0107] and 3[001] axes. For this purpose we
choose appropriate linear combinations in the following
way:

(X.‘ilplllXO:(XflpleD:O, j=3)4, (4)

where p is a polar-vector operator such as electron mo-
mentum. It can be shown that the representations X;
and X4 in Table I satisfy the above relations. The
compatibility relations that are implied in Table I are
therefore

Al—)Xl, Az'——)Xli Ay—>Xz, Ag-‘—)_Xg;
A — X3 or X4, A— X3 or X4, (5)
as k,— (2r/a)(1,0,0)—.

Another point in writing IR as in Table I is the form of
the inversion : The matrix for {7|+} in Table I represents
the equalities

{II=}X;=X;, {I|=}X;=X;, (6)

which fix the relative phase of the two vectors X; and
X ;. Tt is also convenient to choose the basis vectors such
that every matrix element of momentum between them
is a real quantity. This can be achieved, as a conse-
quence of the connection between the operation {I|=}
and the time reversal, by requiring the following
relations:

XJ'*:{I|"}X]'1 Xj*:{I]“}Xfr .7:17 2, 374 (7)
All the above requirements fix the phase of the basis
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vectors of each IR, apart from a common factor =1,
in a unique form. We shall assume in the following that
the phase conforms with Table I and Eq. (7),and discuss
effects of elastic deformation on crystal wave functions
as well as on energy bands near the X point.

It is customary to describe deformation of energy
bands in terms of an elastic strain tensor s,, and a set of
deformation potential operators, D,,(u, v=2%, ¥, 2),'* in
which one assumes one-electron-Hamiltonian perturba-
tion approach. When it is applied in combination with
symmetry analysis, one faces a problem concerning the
difference between deformed and undeformed lattices or
deformed and undeformed reciprocal lattices. Thus, in
order for the perturbation theory to work consistently
one scales a coordinate system in the deformed lattice so
that it conforms with that in the undeformed lattice.
Likewise, one scales a coordinate system in the de-
formed reciprocal lattice contragredienily. With this as-
sumption one can discuss precisely the symmetry of the
deformed structure in terms of that of the undeformed
structure. Specifically, for the present purpose, the
deformation potential operators are classified according
to IR’s of the group G under the assumption that the
scaled coordinates are being taken. Thus, to first order
in the conventional strains, e, (see Ref. 2, hereafter
referred to as H-F) the degenerate levels of each X ; may
be modified as indicated by the following equation:

0 .

(, Q-0 ®

& €/ \& ¢
5i0=Ed(Xj)(exx+euy+ezz)+zu(Xi)exn (9)

€="Euw (Xj)eys, (10

in which 24(X;), 2.(X;) and E., (X;) are constants
(deformation potential constants). The solutions of (8)
are clearly e=ef4e; for E=z£¢: Namely, the one-
electron level shifts by an amount ¢;°, and the twofold
degeneracy is lifted with a splitting 2¢;. It can be seen
that an orthorhombic distortion by a yz-type stress is
necessary for producing the level splitting.
Each eigenstate of such a split level is of the form

Xjo= (V) (X4X;) for e= et e= e +Ew (Xj)eys

where

(11a)
and
X,‘u= (1/\/21) (Xj—Xj) for e= ejo- €j= EjO—Eur (Xj)eyz.
(11b)

These eigenstates can be characterized, in view of
Table I or the relations in Eq. (6), by a parity with
respect to the inversion operation {I|z}, since it is still
allowed as a symmetry operation in the deformed
crystal, when considered in the scaled coordinate.
Therefore, the symmelric eigenstate (11a) has the parity

15 G. D. Whitfield, Phys. Rev. 121, 720 (1961).
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+1, and the antisymmelric eigensiate (11b) has the parity
— 1 regarding the inversion operation {I|<}. This gives a
definition of the sign of the deformation potential
Ew(X;), and will be used later for interpreting our ex-
perimental results. To discuss the deformation effects on
cyclotron resonance lines, the above considerations, con-
fined to the X point, are extended to include dispersion
of the one-electron energies with wave vector k, i.e., the
energy band, in the vicinity of the X point. The details
are presented next.

B. Effect of Deformation on the Conduction
Bands A; and A,

In the absence of distortion, the two bands A; and Ay
intersect at the point X, ie., k= (27r/a)(1,0,0). The
tangents of the intersection are equal in magnitude but
with opposite signs, because the following relation is
shown to hold:

w=(1/m){X1|p| X0)=— (1/m){X:| p| X1). (12)

Here, p, represents the electron momentum along the
A axis, whose diagonal matrix element measures the
tangent of the respective band. The equality (12) is a
consequence of Cy, (votation 7 about the [010] axis) so
that the momentum p, changes sign by this rotation
while the bases X; and X; transform according to IR
given in Table I. The curvatures of both bands (the
inverse effective mass) at the intersection point, on the
other hand, are also equal since these relate only to the
squares of the off-diagonal matrix elements of p,. There-
fore, either A; or Ay may have a minimum on the A axis
near the X point depending on the sign of the tangent,
provided its magnitude is small. We shall put aside for
the moment the question of the sign of the tangent but
merely assume its magnitude to be small, which ap-
proximates the case for Si.'¢ The minimum point, whose

X (K=2L (100))

F16. 1. Structure of the energy bands A; and A/ near the crossing
point X at the zone boundary, k= (27/a) (1,0,0), for a diamond
lattice. The dotted lines indicate a splitting of the bands due to an
orthorhombic deformation of the lattice. [See Eq. (17).]

16 Kleinman and Phillips’s results (Ref. 10) indicate #:>0 so
that the A; band is located lower than Asr as shown in Fig. 1.
Experimentally, there has been no evidence on this. One con-
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position we denote by k¢ (about 0.15X2x/¢ distant
from X),7 gives the conduction band edge where
thermal electrons are populated. The energy-band
ellipsoid centered at k¢ is then

ko—ko)? kj2HE2
E(k)=( 0) t ’

Zm” Zml

(13)

where units in which #Z=1 are used. In the presence of
orthorhombic distortion produced by a strain e,, the
crossing of the two bands will be resolved according to
the argument given previously in Sec. ITA resulting in
two separated bands, as indicated in Fig. 1. The
ellipsoid in Eq. (13) under such a condition will be
distorted to become!®

[hmh(@F  Bi+hs

Ee (k) = 6e I T
2my; (e) 2m, (e)

(14)

Faey.kyk.,

Here, 6, represents a shift of the band edge, and the
strain dependences of &y and the masses are explicitly
indicated.

In our experiments the two masses m,; and m,, their
changes with strain to first order, and the additional
parameter « in Eq. (14) can be measured accurately. In
particular, the presence of the « term in Eq. (14) can be
identified because of its anisotropic character which re-
flects the effect of lifting the band degeneracy at the X
point. Its experimental identification may be aided, if
advantage is taken of the following two theoretical
predictions:

(1) The symmetry of the strain involved is the same
as the one predicted in Sec. ITA, ie., Egs. (8) and
(10): any strain of another symmetry cannot produce
such a term.

(2) The magnitude of « is expected to be large com-
pared to other strain-induced effective-mass shifts ob-
servable in resonances by virtue of the proximity of A,
to Agr.

A precise theoretical expression for my, m,, and « may
be established by making use of perturbation theory in
second order for the undeformed and deformed lattices.
The perturbation analysis is made at the band edge %o
regarding the crystal momentum deviation as a pertur-
bation expansion parameter (the k-p perturbation). For

sidegation based on spin-orbit effects can be made which favors
21 >0.

17 G, Feher, Phys. Rev. 114, 1219 (1959).

18 The ellipsoidal form in Eqs. (13) and (14) is unique. This can
be understood from the fact that the group of k on the A axis
consists of (1) E, Cszy 204, 204, 2Cs, without distortion, and
(2) E, Caz, 204 with the orthorhombic distortion e, .. The allowance
of the kyk, term in Eq. (14) is a consequence of the lack of the
symmetry operations 2o, and 2Cy. in the latter case.
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undeformed Si this gives'

1 1 2 1
(_) =T (Mgl AP, (1)

M m m? 1 Egy

1 1 2 1
(=) ——+Sz—@inlaser. a9
A1k E()l

my m m? 1l

We note that similar formulas hold for the Ay band. In
these expressions the Ey; represent term differences be-
tween the conduction band and other relevant bands at
the point &, and the matrix elements are those between
the respective states at the same point.

A similar perturbation formula can be constructed for
a. We defer this for a moment in order to estimate ain a
conventional way using an expansion about X for the
deformed band shape in terms of the tangents and
curvatures of the unstrained bands. This can be done by
solving a secular equation similar to Eq. (8):

(ro()- o

(Hereafter, we take X to be the origin of the k
vector.) Thus we can write « as a function of %, as

‘Z)lkz

1
€ 1+—,kyk z
m

—‘lez

1
€l+_—,kykz
m

ZEu’(Xl) 1
k)= —

AE(k,) 1’ AE (k) =2 vk i+ e2)?,
- z) M

(18)

where v; is defined in Eq. (12) and ¢ is the strain-
splitting energy introduced in Eq. (10) for j=1 so that
e1="E. (X1)ey.. To evaluate this for the conduction band
minimum of silicon located at k,=ko, we note that
2|viko| gives the Ai-Ay band separation (unstrained)
which is ~0.5 eV."* For attainable strains ¢ will be of
the order of millielectron volts, consequently |v1%o|>>e1.
Therefore, if we tentatively assume m'~m,; which will
be considered more carefully later, we very roughly
estimate the inverse mass shift ae,, [the last term in Eq.
(14)] to be (1/my) X (e1/ | viko| )~ (1/m) X 5X 102, This
suggests that an anisotropic mass shift of several
percent may be expected which is certainly measurable
in our experiments.

For a more precise estimate we must set up a band-
theoretical expression for & which takes into account the
actual distance between the X point and the band-edge
point, k. A way of treating such a problem has been

19 The value of AE, the A;— Ay (unstrained) band separation at
ko, has been estimated for Si to be 0.5040.05 eV from the value
0.45 eV for the analogous gap in Ge calculated by M. L. Cohen
(private communication). This value supercedes the earlier esti-
mate of 0.35 eV by L. Liu, Phys. Rev. 126, 1317 (1962). We are
indebted to J. C. Phillips for bringing this point to our attention.
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indicated in several papers.? Essentially, one uses the
k-p perturbation method modified by the presence of
additional perturbing terms due to deformation. As
mentioned previously, one is working with scaled
coordinates to obtain a deformed energy band E.,(k)
which has the same periodicity as the undeformed
reciprocal lattice different from the deformed one. One
therefore needs to restore the original coordinates in
terms of the strain tensor s,, through the relation

E.(k)=E.((1+s) k),

where E,(k) represents the irue energy band for the
deformed lattice.

Performing these steps, we have derived the expres-
sion for @ which is exact within one-particle band theory
as follows:

(19)

4Eu’(k0) 1 Z 1 Al [A W
- —AE E01< 1{Py| A5 )

m2 1

xww[p,|A2,>_f”;((£)m_1). (20)

Here, the first term is a result of the combined perturba-
tions of the k+p’s and the deformation potentials D,,’s to
third order. We retain only those terms of perturbation
which connect A; and Ay through D, as the energy
interval AE between them at %o is an order of magnitude
smaller than all the other E,;’s involved in the pertur-
bation terms. This term is represented by the ratio
E. (ko)/AE, where

a

B (k()):(AllDVZIA?’)ko; (21)
the only allowed matrix element of D,, between these
two bands, is in the order of magnitude of several
electron volts. The second term in (20) is the remaining
contribution which results from the process of scaling
and restoring the original coordinate system according
to the above prescription.?! This term is expected, how-
ever, to give only a small correction, inasmuch as the
ratio =, (ko)/AE enhances the first term by a factor of
10 or so. It is clear now that only the first term is taken
into account in the approximation used in Eq. (18) for
which AE=2]|vk,|>>€;. In our experiments the ratio
. (ko) /AE will be determined from the measured value
of o and an appropriate estimate of the perturbation
sum in (20).

Let us consider now in more detail the perturbation
sums that appear in the expressions for the transverse

2 G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela 1, 1642 (1959)
[English transl.: Soviet Phys.—Solid State 1, 1502 (1960)].
Reference 15 and M. Nakayama, J. Phys. Soc. Japan (to be
published).

2t M. Nakayama (to be published).
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mass (16) and « (20)

1 1 1/m
z<kz>=—z——<A1|py1asv<l>>2=~(~—1) . (@)
2m 1 01 4\m, kz

1
Ey,

1
Z (ka)=——2 —(A1| py | A PNA# P | | Ag).  (23)
2m 1

The perturbation sum Z (ko) for the effective mass m, of
undeformed Si has been obtained by Kleinman and
Phillips® from their calculations of Si energy bands by
the OPW method. The calculations can also be extended
to Z' (k) for a, both results being given by?

Z(ko)=1.07,
7' (ko) = —1.00.

(24)
(25)

Here we pass by the details of these calculations, which
are summarized in Appendix A, and discuss some
general points of the theory that underlie the above
results.

The first question concerns the signs. While Z (ko) is
known to have a positive sign (m/m,~S5 from previous
experiments), the sign of Z’(ko) is @ priori uncertain.
The sign of such a perturbation connecting different
eigenstates has no absolute meaning but rather depends
on the phase of the eigenfunctions. It is, however, re-
lated to how we have introduced the phase to define the
sign of . (ko). To see the relation we take advantage of
the closeness of k¢ to X, and replace Z (k) and Z’ (k) by
their limits as £,— O (the X point), where the sym-
metries of the wave functions are twofold greater than
those for a general A point. From the compatibility rela-
tion (5) the representation As continues either to X3 or
to X4, the distinction resting on certain special proper-
ties of the representations allowed only at the X point.
The difference is exemplified by the IR’s for Sy,
(rotation /2 about the [100] axis followed by the
reflection through the (100) plane) listed in Table I,
which lead to the following two relations:

(X1] py] Xay=(X1| p:| X3,
(X1|py| Xoy=—(X.| p:| X4).

Therefore, we can write

(26a)
(26b)

1 1
Z(X)=2—Z —(X1] py | X50)?

m 1 Eop

1 1
+—2 —(Xu|p [ XiPp  (27a)

2m 1 Eoz

22 These values are based on the term difference £ (A1) — £ (A5)
=4.1 eV at ko estimated from the experimentally determined
energy gap at X of E(X;)—E(X,)=4.3 eV. For the latter value
see D. Brust, Phys. Rev. 134A, 1337 (1964). It is interesting to
note that the result for Z (ko) so obtained predicts [see Eq. (22)]
an effective mass, m1/m=0.19 in good agreement with the experi-
mental value [Eq. (31)].
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and

1 1
Z'(X)=—2 —(Xu| py | Xz
2m 1 Eg
1

1
—— 2 ——(Xu|p, | X400

2m 1 Eoz

(27b)
Combining these equations we see

1 1
Z(X)=—Z(X)+—% E—(Xll?les”))z, (28)

m 1

so [recalling that Z(X)>0] the problem of sign of
Z'(X) reduces essentially to the relative ordering of the
one-electron levels X;3(¥. In Table IT results from the
current band theory for the X point in Si are listed in
order of increasing energy. Clearly, the only positive
contribution to Z’(X) comes from the 2p-core X state,
which, however, is entirely negligible in view of the
large energy denominator and small matrix element for
this term. In fact, numerical calculations show that
more than 959, of the sums in Egs. (27a) and (27b)
come from the single valence X4 level from which the
results in Eqgs. (24) and (25) are deduced with some
additional corrections due to the difference between k,
and X as well as other minor corrections. It should be
emphasized that the conclusion Z’ <0 cannot be affected
by the detailed structure of the conduction bands above
X, or the fact that the foregoing arguments were con-
structed at X rather than k.

In the above connection another question concerns
the theoretical accuracy. Although considerable progress
has been made in the band theory of valence semicon-
ductors especially for Si, actual computations are still
in an incomplete state. Perhaps one of the most serious
problems is the uncertainty of the exchange potential
which yields numerical ambiguities sometimes of order
of an eV for calculated term values and, thus, for the
energy denominators in the perturbation formulas. For-
tunately, for the present purpose the important term
difference E(Xi cona) —E(X4va1) is known experimen-
tally. There remains, however, some uncertainty in the
value of the energy gap E(A;)—E(As) at ko which is
expected to be about 5%, smaller than the gap at X.
(See Ref. 22.) Another source of inaccuracy is the core-
core contribution to momentum matrix elements in the
use of the OPW functions (oscillatory part). In general,

TasLE IL. One-electron energy levels in Ry at X after Kleinman
and Phillips (Ref. 10) (with £-independent exchange potential).
The conduction band A; continues to the second valence X level
denoted by X:®. For comparison the measured term difference
E(X,®)—E(X,) is 0.32 Ry (Ref. 22).

1s-Core = 2s-Core 2p-Core Valence
X, X1 Xy X5 X4 X X, Xi® X
—131.4 —12.0 —8.72 —-2.01 —-1.77 —138 ~04




CYCLOTRON RESONANCE IN UNIAXIALLY STRESSED Si

however, momentum matrix elements are more reliable
than term differences.?

In view of these facts we shall not use the value of
Eq. (25) directly to deduce . (ko)/AE. Instead, we use
the theoretical value of the ratio

=2 (ko)/Z (ko)=—0.9410.02 (29)

in combination with a value for Z(ky) derived from
measurements of m,. It is expected that the estimate
(29) is more reliable than those in (24) and (25), be-
cause by taking the ratio the inaccuracy of the term
difference E(A;)—E(As) can be eliminated and ab-
sorbed in the experimental quantity ;. Furthermore,
the uncertainty in the matrix elements themselves will
be largely canceled out. Thus, the uncertainty quoted
in Eq. (29) is shown to arise mainly from the first-order
correction of the momentum matrix elements involved
in Z and Z’ due to the difference between ko and X (see
Appendix A).

In summary, then, we see that the above result for f
permits us to evaluate the band-mixing ratio E./AE of
Eq. (20) from the experimental values for 7, and a.
This will be carried out explicitly in Sec. IVB.

III. EXPERIMENTAL DETAILS

The experimental apparatus and techniques used here
are the same as described previously in (H-F).2 The
cyclotron resonance measurements were made at 1.26°K
on a superheterodyne X band (~8900Mc/sec) micro-
wave spectrometer. The magnetic field strength was
measured by proton nuclear magnetic resonance. The
microwave frequency was monitored by heterodyning
techniques using an HP 540A transfer oscillator—
HP 524 frequency counter combination. Under the
optimum conditions—the microwave power held to low
levels (~10~8 W) and the intensity of the (white) light
for carrier production minimized using “grey” filters—
the electron linewidths were characterized by wr~160.
The samples [ the same as used in (H-F)] were cut from
a single crystal of 50002 cm p-type silicon, whose
dimensions were approximately 7X3.5X0.7 mm. Before
each measurement the crystallographic orientation of
the mounted samples was checked by noting the sym-
metry of the electron cyclotron resonance lines as the
direction of the magnetic field was changed.

The resonance signals were observed and their line
shifts with strain were measured for the electrons of all
six ‘““valleys” (the [1007] and its equivalent directions).
The strain apparatus, the perpendicular squeezor, has
been described earlier? in detail. Table IIT shows the
strain-stress relations reproduced from (H-F)? which
are also pertinent here for the present experimental
arrangements. The strain was applied to the sample by

2 7. C. Phillips, Phys. Rev. 125, 1931 (1962). See also J. C.
Phillips, D. Brust, and F. Bassani, in Proceedings of the Inter-
national Conference on the Physics of Semiconductors, Exeter, 1962.
(The Institute of Physics and the Physical Society, London,
1962), p. 564.
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TaBLE III. The “conventional” strain components [see (H-F)]
for orientations of stress along each of the three principal crystal-
lographic axes. The cubic compliance constants for silicon are
s11=7.48X1077 cm?/kg, sie=—2.10X1077 cm?/kg, and s44=12.24
X 1077 cm?/kg at 0°K.

Tl[111]

ezz=sul ezz =s12T ezz =eyy =ezz = (s11+s12) (T/3)
eyy =€z =512T  eyy=¢as=(s11+512)(T/2) ezy=ezs=6ys=514(T/3)

ezy =€zz =0

ey:=s54u(T/2)

T|[100] T|ifo11]

ezy =€gz =€y =0

compressing the two halves of a split TE;q; rectangular
cavity. A force was thus transmitted to the sample
which lay inside just above the cavity bottom (near
maximum H; field). The compression was controlled by
a spring balance external to the cryostat permitting a
working range of stresses from 0 to 2500 kg/cm?. Thus,
the geometry was such that the direction of the stress
was perpendicular to both the Dewar axis and the
microwave electric field. The Varian magnet rotating
about the Dewar axis could reach all directions from
H||T to HeLT. The orientation of the uniaxial stress
was determined from the symmetry of the split-band
hole line. In all cases the stress axis coincided with the
desired principal crystallographic direction to within 1°.
It was found that as the stress was applied the sample
sometimes shifted by perhaps <0.1°, which is small but
sufficient to cause considerable inaccuracy if the effec-
tive mass depends strongly on angle. Most of the
measurements, therefore, were made with H, either
parallel or perpendicular to the major axis of the
electron ellipsoid, for which the cyclotron effective
masses are extrema.

It is predicted from Table IV that the band-mixing

TasLE IV. The shifts, Am*/m* of the cyclotron-resonance
effective mass calculated from Eq. (14) in the text for T||[100],
T||[011], and T|[[1117. The directions chosen for the magnetic
field, H,, correspond to the present experimental situations shown
in Fig. 2. Corrections due to other small effects discussed in the
text are not included.

T|[100] T)[011] T|C111]
Direction
of magnetic Any (100) Plane (011 Plane)
field, Hy
0 H,||[100]
my my?
[100] ellipsoids 0 —aey,c082¢p ————ae,. Hol|[111]
2 mu-+2my
my
—aey: Ho||[011]
0 Ho||[100]
mﬁ
[0107 [001] 0 0 ————aey. Hol[[111]
ellipsoids mu~-2my
0 Ho||[011]
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Fic. 2. Schematic representation of the geometries used in the
stress experiments. The three cases studied are: (a) T||[100],
(b) T||[011], and (c) T||I[111]. For these three situations the
magnetic field, Hy is rotated as shown in the (010), (100), and
(011) planes, respectively, with the angles of Ho, measured, re-
spectively, from the [100], [011], and [100] axes.

parameter « introduced in Sec. IIB can be best de-
termined by observing the line shift of the [100] valley
resonance under the particular experimental arrange-
ment, 7|[011] and H, 1 [100]. For the sake of com-
pleteness, however, measurements for 7|[100] and
T|I[111] were also made. These geometries are all
depicted in Fig. 2. Inasmuch as the electron effective
mass shifts are extrema for T7|[100] and T|[011],
misorientations of stress as small as 1° are expected to
have a negligible effect (<1 part in 10%) on the measure-
ments. For T||[111], however, the effective-mass shifts
depend upon the stress direction to first order so even
small misorientations can contribute substantial errors.
In the former two conditions, i.e., TJ|[100] and
T||[011], marked change in the relative intensities of
the different valley resonances are observed which result

HENSEL, HASEGAWA, AND NAKAYAMA

from valley splitting: Each band edge shifts by an
amount §, indicated in Eq. (14), which is different for
valleys differently situated with respect to the stress.*
For T|[011] the intensity of the [100] valley resonance
from which « is to be determined decreases with in-
creasing compression 7, showing that this is an as-
cending ellipsoid.?® It was found that accurate measure-
ment for this ellipsoid is possible only if the microwave
electric field E; is applied in directions perpendicular to
the major axis of the ellipsoid, i.e., the direction for
which the signal intensity is optimized.

IV. EXPERIMENTAL RESULTS
A. Electron Effective Mass

Early in the course of the present work it became
apparent that the values of the electron-effective mass
(for T=0) disagreed considerably with the results of
some of the earlier measurements. This disagreement
has been noted previously.?6:*7 Since the sharpness of the
electron lines here (wr~160) has made possible a
measurement of the effective masses to an accuracy
substantially greater than given hitherto, it seemed
worthwhile to include these results.

Determinations of the two components #y; and m,
were made from an over-all fit of the anisotropy of the
cyclotron mass m*, assuring exact orientation of the
magnetic field direction with respect to the crystal axes.
Figure 3 shows such a fit for H, in the (011) plane with
a set of values

)/ m=0.91630.0004 , (30)
my/m=0.1905-0.0001 . (31)

The uncertainties represent the maximum deviation
from the quoted average values from a number of inde-
pendent runs. The small deviations from run to run are
believed to be due primarily to uncertainties of the order
0f 0.1° in determining the sample orientation after it has
been mounted in the cryostat. Measurements were also
made at 54 kMc/sec (5.6 mm), the results of which
coincide with the X band values in (30) and (31).

The electron effective masses in Egs. (30) and (31)
are overlapped by the previous values m,/m=0.192
+0.001 and m;/m=0.9040.02 obtained by Rauch
et al?® at 2.1 mm and m,/m=0.19 and m;/m=0.92

2 In principle, one ought to be able to determine the value of
the deformation potential =, [see Eq. (9) in Sec. ITA] by meas-
uring the relative amplitudes of the electron resonances with
uniaxial stress applied [see A. C. Rose-Innes, Proc. Phys. Soc.
(London) 72, 514 (1958)]. However, the results in silicon [J. C.
Hensel and G. Feher (unpublished)] seem to be seriously at odds
with values obtained by other techniques, the difficulty perhaps
being due to the light generated carriers not achieving thermal
equilibrium before recombination.

26 This is consistent with Wilson-Feher’s result (Ref. 5) indi-
cating that =, >0.

26 G. J. Rauch, J. J. Stickler, G. S. Heller, and H. J. Zeiger,
Phys. Rev. Letters 4, 64 (1960).

27D. M. S. Bagguley, R. A. Stradling, and J. J. Whiting, Proc.
Royal Soc. (London) A262, 365 (1961).
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F16. 3. Anisotropy of the cyclotron resonance effective mass for
electrons in unstrained silicon. The magnetic field, H, is rotated in
the (011) plane and the angles are measured from the (100) axis
[see Fig. 2¢)]. The curves were calculated for ellipsoidal energy
surfaces using the effective-mass values; m;=0.19057 and
my= 0.9163m.

obtained by Bagguley ef al.> at 8.8 mm. There is, how-
ever, a significant disagreement with the values of the
longitudinal mass m,;/m~0.97 obtained in the early
measurements®® at X and K band. The reason for the
high values of m,, in the old measurements is at present
not understood.”

B. Mass Shifts Due to Uniaxial Stress

Table III indicates that in each orientation of stress
there always appear strain components of the type
€zzy €yy, €2z Which cause “symmetry preserving” shifts

(32)

In addition, for TJ|[[111] off-diagonal strain com-
ponents may also give rise to small terms of the type
o' (ezyk ok yFe..k k,) which must be included in the ex-

m..(e)zm.,—{—Am,, s m1(6)=m1+Am1-

28 From the early cyclotron resonance measurements in silicon
the effective mass values reported were m1/mo=0.1940.01 and
mu/mo=0.97+£0.02 [G. Dresselhaus, A. F. Kip, and C. Kittel,
Phys. Rev. 98, 368 (1955)], and mi1/mo=0.19-£0.01 and m1/mo
=0.984-0.04 [R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev.
104, 637 (1956)].

2 The possibility has occurred to us that the high values of my
in the early measurements may have resulted from the effects of
strain. However, for several reasons this appears unlikely. From
considerations of the geometries of these experiments one cannot,
from the vantage point of the present work, account for either the
sign of the shift or its magnitude. Furthermore, a uniaxial stress
of sufficient magnitude to shift the electron mass significantly
would certainly have decoupled the valence bands and, thus, pre-
vented observation of the usual “light’” and “heavy” hole
resonances.
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Fi16. 4. Dependence of the electron effective mass (Ho|[[011])
for the (001) ellipsoid on a uniaxial stress applied in turn to the
[001] and [1117 axes. In reference to Fig. 2 these measurements
correspond, respectively, to case (b) with ¢=0° and case (c) with
0=90°. The zero-stress effective mass is (mym)¥2=(0.4178
+0.0002)7s.

pression (14) for the [100] ellipsoid. Experimentally,
both of these secondary shifts must be separated from
that due to A;-Ay mixing in order to determine the
parameter, c.

Figure 4 shows the observed stress dependence of the
cyclotron effective mass of the [100] ellipsoid under the
two conditions 7T, H,||[[011] and T|[111], H||[011].
Under the same conditions the other ellipsoids [010]
and [001] exhibited a shift which was at least an order
of magnitude smaller than that of the [100] ellipsoids.
For T||[011], the anisotropy of the [100] ellipsoid line
was measured varying the angle ¢ of H, [see Fig. 2(b)]
at a fixed value of stress. From Fig. 5 we thus obtain

Am*/m*=a+b cos2e. (33)
where

a=14X10"%, b=—(9.120.4)X10~3,  (34)

for T=1800 kg/cm?.

This angular variation coincides with that predicted
in Table IV. The anisotropic shift & is considerably
larger than the isotropic shift @, indicating the presence
of the expected mixing parameter «. This view was
further checked by several supplementary measure-
ments as follows:

(1) TC200]
(a) [100] (descending) ellipsoid: (Am/miy)~—1
X1073,
(b) [010] and [001] (ascending) ellipsoids:
(Amy/m)~ (Amy/m)~—+1X10"3 for T=2500kg/cm?.

No mass shifts other than these were detected; in par-
ticular, there was no change in the axial symmetry of
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F16. 5. The anisotropy of the cyclotron resonance effective mass
of the (100) ellipsoid for zero stress and for T||[011] (7'=1800
kg/cm?). The magnetic field, H, is rotated in the (100) plane [see
Fig. 2(b)] by angle ¢ measured from the (011) axis. For zero
stress the anisotropy vanishes by virtue of the axial symmetry of
the ellipsoid about the [100] axis. For 7'=1800 kg/cm? the
anisotropy is fitted by a curve derived from the equation Am*/m
=a+b cosp, where ¢=1.4X1073 and b= — (9.12£0.4) X 1073,

the [010] (and [001]) ellipsoid. The symmetry was
checked by measuring the cyclotron effective mass,
m*= (mym,)"2, for the [010] ellipsoid as H was rotated
in the (010) plane. The effective mass was found to be
constant to ~1074

(2) T||Co11]

The anisotropic shift of Egs. (33) and (34) was ob-
tained only for the [100] (ascending) ellipsoid: The
[010] and [001] (descending) ellipsoids exhibited
(Amy/m)~ (Amy/m)~—1X10"% for T=2500 kg/cm?
with no angular variation.

(3 TlC111]

In this case, all valleys are equivalent with respect to
the stress direction, and no relative changes of intensi-
ties are expected. The difference between the two types
of ellipsoids, [1007] and [010] (or [001]), arises only
with regard to the direction of H,.

(a) Ho||[100]: |Am*/m*| <10-% for both types of
ellipsoids.

(b) H||[011]: The [100] Ellipsoid exhibited a de-
crease of m* with increasing stress. This is shown in Fig.
4 in comparison with the case 7|[011]. From Table IV
the ratio of the shifts for these two cases are expected to
involve only the ratio of the respective strains:

Am*(T|[111]) e,.(111) 2
Am*(T||[011]) e,.(011) 3

(35)

The two linear shifts in Fig. 4 are seen to be in quali-
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tative accord with this ratio. When the mass shifts are
corrected by extracting the isotropic parts, we find

Am*(T|[111])

—— |  =0.63+0.05
Am*(T||[011]) | xp

(36)

in"good agreement with Eq. (35).

(c) Ho||[111]: A sizeable decrease in effective mass
for all ellipsoids with increasing stress was observed.
This geometry is the one that might have revealed the
second anisotropic term &’ (e, kky+ €.k k.). This was
not observed, however, since the cyclotron effective
mass was not an extremum for H||[[111] which made
the measurements inaccurate.

It is concluded from all the above-stated results, first,
that the expected anisotropic shift due to A;-Ay band
mixing is verified indicating the correctness of the model
(14), and second, that this is essentially the only
significant mass shift in the measurements.

The measured anisotropic shift & in Eq. (34) corre-
sponds to a value of « as follows:

(9.140.4)X10% 86.84-5.0
(my/m) (m/2)e,. m

The uncertainties in this number reflect mainly the
estimated uncertainties (approximately 59%,) involved
in determining the magnitude of the stress, 7" from which
the strain e,, is calculated. From the argument in Sec.
IIB [Egs. (20), (22), (23), (29)] the band-mixing ratio
. (ko)/AE is expressed in the form

Ej Zz):%(wz,;;:_}_'}) ’

(37

(38)

where f is given by Eq. (29). Inserting the measured
values of m, and a [Egs. (31) and (37), respectively ]
and using the theoretical value of f, we obtain

Eu (ko)/AE=11.441.1, (39)

where the quoted uncertainty now includes both the
experimental and theoretical ones. Also, the OPW
calculations provide an estimate AE=0.50 eV*® from
which

Ew (ko)™ 5.7€V. (40)

For this result an uncertainty is difficult to assign but a
value of =1 eV may not be unreasonable.

V. DISCUSSION
A. Interpretation of the Sign of =,/

Our result that the deformation potential E, (ko) is
positive depends of course upon our initial choice of the
relative phase of the Ay and Ay functions at kg and by
itself has no absolute meaning. Nevertheless, the pro-
cedure we adopted so far to characterize the sign should
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yield a physically significant conclusion which is in-
variant under alterations of the phases. Here we seek
such an interpretation. For this purpose, let us consider
the limky— 0, i.e., the X point, where the effect of ¢.-
type strain produces a decoupling of the degenerate
bands, and recall the result of Sec. ITA concerning the
parity of the corresponding eigenfunctions. There, we
have defined the sign of X, (X;) such that the sym-
metric combination X4 X whose parity regarding the
operation {I|x} is even, has a perturbation energy
e="E. (X1)ey, and that the antisymmetric combination
X;—X, whose parity regarding {I|«} is odd has an
energy —e=—=w(X1)ey.. The positive sign of E.
with a negative strain e,, implies, therefore, that the
even eigenstate has a lower perturbation energy than
the odd eigenstate. We assume that because of the
proximity of the band edge %, to X, the matrix element
Ew (ks) varies for ko<k.<(2r/a)(1,0,0) only slightly
without sign change, which is, indeed, the case for the
effective-mass perturbation sum. We can summarize the
foregoing in the following statement:

The splitting of the doubly degenerate X, states of the
conduction band in Si by an orthorhombic distortion is
such, that under a uniaxial compression of the crystal
along the twofold axis [011] one of the split eigenstates
with an even parity has a lower energy than the other
eigenstate with an odd parity with respect to an interchange
of the two atoms (0,0,0) and == (a/4, a/4, a/4) in the unit
cell.

Such a property must certainly be connected with
some nature of covalent bonds of electrons in the crystal,
the understanding of which requires more explicit
presentation of valence-electron orbitals. In the spirijt
of the OPW method as well as the tight-binding theory?°
one can write the two basis function X; and X; in a form

X1=X1* cosd+ X7 sind, X=X, cosd+ X7 sing, (41)

where the superscripts s and p indicate atomic “s-like”
and ‘‘p-like” functions. More precisely

X#(n)=Cls()+is@—r)],

X7 (r)=Cpla(r)+in(r—=)],
X =cc. of X:*, Xi?(t)=cc. of X,?.

(42)

Here we do not mean to imply that these are the Bloch
sums of pure atomic functions. The OPW functions can
also be shown under certain restrictions to allow such a
representation. For the present, s(r) and x(r) are defined
only as satisfying

s(=1)=s(1),

in addition to the translation and the point symmetries.
In this sense, these resemble atomic s- and p.-like
orbitals, respectively, just in the vicinity of the Si
nucleus. The constants C, and C, must be suitably
chosen so that X;(r) (a) is normalized (e.g., in the unit
cell), and (b) satisfies the reality conditions (7).

x(—1)=—x(r) (43)
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F1G. 6. A unit tetrahedron in the diamond structure. Four bonds
connecting the center atom and the vertex atoms are indicated by
bond straight lines and dotted lines. These two types of bonds have
projections on the (100) plane parallel and perpendicular to the
external uniaxial stress applied along the [011] direction, so that
their response to the stress can be different.

Invoking the relations

{I|x}s()=s(—rt+x)=5(r—"),
{I|=}x(r)=2(—r+7)=—2(r—x),

we can see that the reality conditions (7) are satisfied by
the choice
Cy=N,eitrld

Cp=Npeitri | (44)

where N, and N, are real and assumed to be positive.

The split eigenfunctions are now given in a form such
that their parity with respect to the operation {I|«} is
clearly evident

1
X1p=—(X1+X1)= (s(1)+s(r—=))N, cosd

+ (x(r)—x(r—=x) )N, sing, (45a)
1
Xru= —— (X1 X1) = — ((s(x) —s(r— %)), cosd
+ (x()+x(r—=x))N,sind. (45b)

Thus, the even (X1,) and odd (X,,) parity eigenfunc-
tions are essentially the bonding and antibonding orbitals,
respectively, regarding the two nearest neighbor atoms
in the unit cell both for s and $, functions, as would be
expected. It is, however, important to note that the
concepts of the “bonding” and “antibonding” are to be
reversed when one considers a pair of nearest-neighbor
atoms in certain other directions. It can be visualized
most easily by looking at a unit tetrahedron (Fig. 6).
For the atom located at the origin the four nearest
neighbor atoms at the vertices

11:0(%! %7 %): '!2:(1(%, '—'%7 _%)’ 73:“(——%7 _%) %)J
and

74=a(_%’ %7 _i*)
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are grouped, regarding the symmetry operations for
X (k= (27/a)(1,0,0)), into two sets: the first two atoms
whose coordinate vectors =1, 72 have projections on the
(100) plane (yz plane) parallel to the [011] direction,
and the second two atoms whose coordinate vectors
«3, ©4 have projections parallel to the [011] direction.
The bonding orbital, X;+X,; regarding the pair of
atoms connected by the vector z; or =, is in fact an
“antibonding orbital” regarding the pair connected by
w3 or 74, and vice versa. In a group-theoretical termi-
nology introduced in Sec. ITA, this distinction is ex-
pressed through the relation

{I|=}={I|=}n, where = represents =; or =

and % represents z; or =4. (46)

Since the irreducible representations of {I|+} and
{I|=}n are different just in sign (from the argument of
Sec. ITA), the stated reversal of the bonding and
antibonding natures follows from the relations

{3 Xy,=X1,, {I|*}Xw=—Xuw,

{I|7}X1,=—X1,, {I|7}X1u=X1a.

(47a)
(47b)

In the absence of orthorhombic distortions of a unit
tetrahedron there is nothing to distinguish any one of
four bonds from the others, which is just the reason for
the double degeneracy of the X states. In the sense of
Bloch sums [linear combination of atomic orbitals
(LCAO)], as a consequence, two s-like orbitals or two
p-like orbitals centered at two neighboring nuclei cannot
be hybridized.® [On the other hand, an “s-p hybridiza-
tion”” does occur between the two neighboring atoms, as
is expressed by the factors cosd, and sind in (41).] When
the tetrahedron is squeezed along either one of the
twofold axes [011] and [011] which are perpendicular to
the [100] axis, the two types of bonds become distinct:
The one is parallel and the other is perpendicular to the
direction of squeeze, when projected on the (100) plane.
Under these circumstances the two similar orbitals
centered at the neighboring nuclei will be hybridized to
form bonding and antibonding orbitals, the double
degeneracy being now lifted so that one type of bond
favors the applied distortion more than the other.

From this consideration we now arrive at our final
interpretation of the experimental result: When a unit
tetrahedron in Si crystal is compressed along a twofold
symmetry axis, the four bonds connecting the center
atom and the vertex atoms, which are otherwise equiva-
lent, become distinct. The (conduction-) electron state
corresponding to the bonding orbitals of those bonds
which have components parallel to the direction of
compression (and hence which tend to become shorter
by the compression) has a lower energy than the state
corresponding to the bonding orbitals of those bonds
having no parallel components.

The distinction between the two types of bonds under

® J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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orthorhombic distortions has indeed been observed,
though indirectly, in the cyclotron-resonance line shift
under the condition T|[011], when the dc field is
rotated from the [011] to the [011] direction (Fig. 5).

B. The Covalent Bonds in Terms of
the OPW Theory

With the aid of the OPW calculations of Kleinman-
Phillips we shall now attempt to put the foregoing
interpretation on a more rigorous basis. The convergence
diagram in (K-P)¥ indicates that 22 plane waves gives
nearly convergent term values for X;® (conduction)
and X, (valence), suggesting that the cancelation be-
tween the crystal potential Fourier components and the
core-orthogonalization terms for these two levels is
very satisfactory. As evidence of this a comparison can
be made between the two sets of term values and the
coefficients of the first few symmetrized OPW’s in
Table V which are obtained, first, by the perturbation
method of Bassani-Celli®* (which is the more sensitive
of the two to a lack of cancellation) and, second, by
solving a truncated secular equation. The energy eigen-
values obtained by these two methods agree within a
few percent, although there are some differences be-
tween the amplitudes.

From the OPW’s in Table V* (truncated secular equa-
tion) the squares of the amplitude of the eigenfunctions
X1,® and X;,® (the smooth part only) are plotted in
Fig. 7 along the [111] axis from the position of one
atom at (000) towards that of the other atom at
(a/4, a/4, a/4). This plot of the electron probability
density shows clearly that the wave function X1,(r) has
no node along the axis, while X.(r) has one node
midway between the two neighboring atoms, i.e., at the
point /2= (a/8, ¢/8, a/8). This property in addition to
the “even’” and “odd” character establishes the con-
siderations of the previous section that the two eigen-
functions Xi, and X, have the symmetry character,
bonding and antibonding, respectively, with respect to
the interchange of the two atoms. A clearer under-
standing of the response of the X electron to an applied

TaBLE V. Calculated eigenvalues and coefficients (unnormal-
ized) of OPW’s for X;® and X, obtained from the crystal po-
tential Fourier components (k-independent exchange) and the
orthogonalization coefficients of Kleinman-Phillips (see Refs. 10
and 32) from solution of a truncated secular equation using 22
plane waves. Numbers in brackets are the corresponding solution
using Bassani-Celli’s method.

Symme-
trized Eigenvalues
OPW  (100) {011) (120) 211)4 (211)_ (Ry)
X1 —0.251 1.000 —0.152 —0.185 —0.092 —1.416
(—0.432) (1.000) (—0.083) (—0.138) (0) (—1.38)
X4 1.000 0.358 —0.079 —1.731
(1.000) (0.340) (0) (—=1.77)

3LF. Bassani and V. Celli, Phys. Chem. Solids 20, 64 (1961).
32;I‘hese were provided by L. Kleinman (private communica-
tion).
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force of the type yz may be grasped by considering the
connection between the energy eigenvalues and the
number of nodes of the wave function. In the present
situation the experimental result is consistent with the
idea that when a crystal is compressed, the kinetic
energy gain is larger for the plane wave having the
greater number of nodes along the direction of
compression.

In Table V both eigenfunctions X, and X, have
their largest coefficient on the symmetrized (011) OPW
admixed to which are a few other waves with rather
small amplitudes. This means that except in the core
region the solutions for X;® and X, are very nearly
free-electron like®? consistent with Phillips’ pseudo-
potential results.* The energy gap between these two
levels, which vanishes in the free-electron limit, there-
fore, is very sensitive to the small mixing effects.

If the largest plane wave (011) alone were taken into
account, the amplitude |X;,®|? in Fig. 7 would be
constant along the [1117] axis, while the amplitude
| X1.@|? would be of sinusoidal character with a single
nodal plane midway between the two atoms [see Egs.
(50) and (51)]. The mixing of the adjacent plane wave
(100) with the (011) plane wave modifies this in an
interesting way: The matrix element of the potential
between the (011) and (100) waves is V2V 111, the Fourier
component which Phillips has shown to be incompletely
cancelled by the orthogonalization and responsible for
the bonding action.3 In fact, the effect of this potential
component on the (011) and (100) waves makes their
unperturbed energy separation larger (by raising the
{011) level and depressing the (100) level) and, at the
same time, imparts to the resulting two levels bonding
and antibonding characters. This is clearly seen in
Fig. 7 where |X1,®(r)|? decreases in the region be-
tween the two atoms rather than increases, indicating
that the upper level X;® has over-all antibonding
character in regards to the s-p hybridization mentioned
in Sec. VA [sind cosd<0 in Eqgs. (45a) and (45b)]. This
leads to the conclusion that the energy interval E(X,®)
—E(X,) is determined largely by the uncancelled V.

Finally, it is interesting to compare the deformation
potential E,, (and the other two constants Fg, =.)
calculated directly from the knowledge of the wave
function with the experimental results in Eq. (40). Such
calculations have been undertaken by Goroff and

3 An additional argument supporting the approximate validity
of the “free-electron’ limit for X;® and X, (at least as far as the
eigenfunctions are concerned) is the fact that this picture is
roughly consistent with the observed effective-mass values, Egs.
(30) and (31), for the conduction band edge. The use of the first
plane wave (011) alone gives (X1?| .| X1¥)~0 and (X1 | p, | X4)
= (2m/a), which according to Egs. (15) and (16) yield the effective
mass values (m;;/mo)=1 and (my/mo)=~0.20. The latter value, it
should be mentioned, depends rather critically on the value of the
energy gap (Ref. 22), E(X,®)—E(X,)~4.3 eV.

4 7. C. Phillips, Phys. Rev. 112, 685 (1958).

38 J. C. Phillips, Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960 (Czechoslovak Academy of
Sciences, Prague, 1961), p. 41.
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F1c. 7. The square of the conduction electron wave functions
| X1,(r) |? (bonding) and | X14(7) |? (antibonding) along the [111]
axis in Si according to the OPW theory of Kleinman and Phillips.
Twenty-two plane waves have been used to solve an OPW secular
equation of 5X5 dimension. The results plotted omit the core
oscillatory part.

Kleinman.? From the definitions in Egs. (9) and (10)
and the form 0H grain (1-electron) = D,,s,, the two shear-
constants can be written

Eu(X1)=(X1|Dzz—Dw|X1>a
Eu’(X1)=<X1|Dzv|X1>-

(48)
(49)

The one-electron operator D,, is a sum of the kinetic
energy part and the potential part.3¢ The kinetic part is
of the form — (1/m)p,p, which arises as a consequence
of the scaling process'®*” p— (1—s)p. The question
which has hitherto been asked?” whether the kinetic part
alone might give a predominant contribution to the
actual deformation potential is tested by taking the first
plane wave (011), its symmetrized form being explicitly

1 27 2r
X{011)= j(cos——- (y+2)+1 cos—(y— z)) . (50)
and ’ ¢ ¢

- -1 2n 27
X1(011)=—E—-(cos—a-(y+z)—i cos—a—(y—z)) . (8

[These satisfy IR’s in Table I and the phase required
in Egs. (6) and (7).] From the first plane wave (011)
alone we obtain

Eu (Xl) kinetic™ Eu’(Xl) kinetic ™ 0.7 Ry (95 eV) . (52)

These are compared with Goroff-Kleinman’s more pre-
cise values? 2, (X1)=9.57 eV, E./(X1)="17.8 eV, in which
all other corrections are included. The closeness be-
tween the kinetic part and the total for both &, and E.-
(especially for &,) is striking and suggests the insignifi-
cance of the potential correction in the case of the

38 For details, see L. Kleinman, Phys. Rev. 128, 2614 (1962).

37 For a review on this subject see R. W. Keys, in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc.,
New York, 1960), Vol. 11, p. 149.
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conduction electron in Si.?® This result might reflect,
again, a nearly free-electron picture of (K-P) theory.

A comparison between the theoretical value and ex-
perimental ones for =, is made in Ref. 12. For 5., the
present estimate E,/(ko)=35.741 eV from the experi-
mental work is somewhat small compared to the
theoretically deduced value, even if the difference be-
tween X and ko is taken into consideration.
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APPENDIX A

The calculations of the two quantities Z(k,) and
Z'(ks) defined by Egs. (22) and (23) have been per-
formed on the basis of the OPW theory discussed in
Sec. VB. In the sense of lowest order perturbation theory
the matrix element (X;1®|p,| X4 may be calculated
from

(X1®[py| X4
= (r/a)[1—3 Leore((0rX )x +{0:X)x) ],

where ¢, and X, represent the symmetrized (011) wave
(not orthogonalized) and a corresponding core function.
Equation (A1) is a consequence of normalization and an
interference between the plane waves and the cores.
Using the orthogonalization coefficients of (K-P),* we
deduce the right-hand side of Eq. (A1) to be (27/a)
X0.94. A more elaborate calculation including the
terms of the next (second) order based on the results in
Table V (Bassani-Celli) leads to a value only 109,
smaller. In such a calculation the terms corresponding to
core-core matrix elements are ignored. The contribution
from these terms are at present not known. Inasmuch as
the ratio f [Eq. (28)] is quite insensitive to the magni-
tude of Z(X)= —Z'(X) (it only depends strongly on the
relative magnitudes of these functions when corrected
at ko), we adopt the estimate (X1®|p,| X = (2r/a)

(A1)

38 L. Kleinman has stated that for the valence band hole this is
not the case. See Ref. 36.
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%0.9 for the present discussion. This gives
Z(X)=—2'(X)=0.96 (A2)

using E(X,®)—E(X,)=4.3 eV.2 In view of the diffi-
culty in accurately determining Z (ko) and Z’ (ko) it is
advantageous for the purpose of analyzing the present
experiments to find instead the best theoretical estimate
of the ratio f=Z'(ko)/Z (ko) whereby uncertainties com-
mon to Z and Z’ tend to cancel. In calculating f the
correction (first order in ko) to the matrix elements
{A1|py| As) and (As|p.|As) due to the difference be-
tween ko and X is most significant. (Other corrections
such as those arising from X7 levels are found to be less
than 29,.)
We have calculated this correction by considering

(A1IP;,|A5>=<X1(2)|[J,,]X4>+6p, (A3)
(As] po| Ag)y=—(X1®| py| X )+35, (A4)
where
5p=f9 = (X1@ [ pa] X1)
ml v E(X,®)—E(X:")

X0 p, | X -
XX | py | X)+22 B —BX)

XX\ @] py | XN XD | py| X}y - (AS)

By inspection the dominant contribution to this expres-
sion is
kn/ m
E(X,®)— E(X,®)

which has been evaluated using the OPW’s discussed
earlier in Sec. VB, yielding

5,~0.03(21/a). (A6)

The theoretical uncertainty of this number stems
mainly from the inaccuracy of the term difference
E(X®)—E(X,®), to which the uncertainty of the ex-
change dependence contributes most significantly.!®
However, since we see that §,&K(X1®|p,|X4), the
uncertainty of §, causes no serious error in the sums in
Egs. (A3) and (A4) used to obtain (A;|p,|As and
(As| p.|Azr). Taking into account this theoretical un-
certainty reasonably we get

(As] pa] A /(A1 py] As)=—0.942:0.02,
which we have quoted in Eq. (29).

<X1(2)|P11X1(l)><X1(I) | Py[X‘i)a

(A7)



