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The lattice dynamics in harmonic approximation of ionic crystals with very light substitutional impurities
is studied in the framework of rigid-ion and shell models. A vibrational model for the lattice defect which
takes into account not only the change of mass, but also the changes of the overlap force constant, electronic
polarizability and shell charge, is considered and applied for the evaluation of the local-mode frequencies of
the U center in NaCl, KCIl, and KI crystals. It is shown that changes of electronic polarizability and shell
charge give rise to a further local change of force constant for the core motion in the shell model. A simple
local change of mass is found to be quite inadequate for accounting for the influence of the U center on the
lattice dynamics. Instead, fairly good agreement with the experimental results on the impurity-induced in-
frared absorption is found if the hydrogen ion in alkali halides is considered as belonging to the halogen
family with regard to the overlap potential and electronic polarizability.

1. INTRODUCTION

HE early papers''? dealing with the influence of
single defects on the lattice dynamics of ionic
crystals are based on the Einstein model or on the Born—
von Kirmann model in diatomic simple cubic lattices
with nearest neighbor (n.n.) interaction. Satisfactory
agreement has been found between the theoretical and
experimental data on the local-mode frequency of U cen-
ters (H~ substitutional ions) in alkali halides, by con-
sidering the impurity as a pure mass defect. However,
Zavt® noted that this agreement becomes quite un-
satisfactory if the lattice dynamics of such ionic crystals
is accounted for by the rigid-ion*5 model.

In the present paper,® this disagreement is inter-
preted in terms of a more general vibrational model for
the U center (see Sec. 2), which takes into account both
the change of mass and the change of coupling between
the defect and its nearest neighbors. The secular equa-
tion of the imperfect crystal is analyzed in the symmetry
coordinates relative to the impurity and its nearest
neighbors: it is shown that for local modes of very high
frequency only the change of force constant at the im-
purity site may be taken into account. Moreover, not
only the rigid ion but also the shell model” have been
considered for the lattice dynamics.

In the framework of the rigid-ion model (Sec. 2a),
the impurity is thought to cause, besides the change of
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mass, a change in its n.n. overlap force constant; in the
shell model (Sec. 2b), the changes of electronic polariza-
bility, shell charge, and n.n. overlap force constant due
to the impurity are considered, and the effects caused
by the electronic polarizability of the ions on the im-
perfect lattice dynamics are accounted for. For the sake
of simplicity only the negative ions are allowed to be-
come polarized during the lattice vibrations. Actually,
the shell model with polarizable negative ions may be
used for a few alkali-halide crystals; but it has the ad-
vantage that it involves only two more parameters
than the rigid-ion model.

The above theoretical frameworks are applied to the
U center (Sec. 3); the numerical computations are per-
formed for NaCl, KCl, and KI host crystals at room
temperature, and the local-mode frequency is evalu-
ated in both models as a function of the parameters
entering the vibrational definition of the center itself.
Kellermann’s® tabulation is used for the Coulomb
coupling coefficients and the overlap interaction is con-
sidered in the n.n. approximation.

In the same section, the H™ ionic radius in alkali-
halide crystals is evaluated on the basis of the Huggins-
Mayer® form for the overlap potential.

Finally, the theoretical results and the limitations
inherent in the present approach are discussed in Sec. 4.

2. LATTICE VIBRATION THEORY IN THE PRESENCE
OF A SUBSTITUTIONAL IMPURITY

In the framework of the adiabatic and harmonic
approximation, let A(w?) be the perturbation on the
dynamical matrix L of the perfect crystal, representing
the change of coupling coefficients and the change of
ionic mass due to the substituted impurity ion. The
normal modes equation for the vibrational amplitudes
¥ in the perturbed lattice reads

[L+A(w)—w* T =0, (1a)
and the frequencies w of the local modes are the roots of

8 F. G. Fumi and M. P. Tosi, Phys. Chem. Solids 25, 31 (1964).
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the secular equation®-10

det{I+(L—w?)~A(w?)} =0. (1b)

In the present work, we are interested in the vibra-
tional frequencies due to a very light substitutional im-
purity. Therefore, the above secular equation is studied
in a frequency region far higher than the maximum
frequency wy, of the perfect lattice.
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If the impurity has the same charge as the substituted
ion, we consider that the perturbation on the force
constants involve only the impurity and its six nearest
neighbors. Denoting the dimensionless change of force
constant at the impurity site by A and the fractional
change of mass due to the impurity (m’) with respect
to the regular ion (m) by —e=(m'—m)/m, in NaCl
crystal structure the nonvanishing elements of A(w?) in
the lattice vectors representation are

®) @ ®) ©)
00 000 0 0 0 000
_%X1120 0_%)(1/20 0 0 0 00 0 (0)
0 0 0O 0 O 0 0 —1x12 0 0—112
0 0 0 0 (1
0 0 0 0 )
0 0
ix 0 0 0 0 3)
0 0
0 0 0
0 0 3x 0 0 0 @)
0 0 0
0 0 0
0 0 0 0 0 0 (5)
0 0 3x
000
0 0 0 000 (6)
0 0 3x J
) (C)) ®) ()
0 ©)
1
(2)
@3), (2a)
0
@
(5)
(6)

J

9 I. M. Lifschitz, Suppl. Nuovo Cimento 4, 716 (1956); G. F. Nardelli, Rendiconti Scuola Intern. di Fisica “E. Fermi,” XVIII

Corso (Pergamon Press Ltd., Oxford, 1963).
1 E. W. Montroll and P. B. Potts, Phys. Rev. 100, 525 (1955).
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where v is the volume of the unit cell and ¢ the modulus
of the electron charge; x denotes the ratio between m
and the mass of the other ion in the unit cell. Index 0
labels the impurity site, and indices 1-6 the six nearest
neighbors (ions labeled by 1, 3, and 5 lie, respectively,
on the positive #, ¥, and 2z crystallographic axis). The
perturbation on the potential energy matrix considered
in this model is consistent with the condition' which
follows from the invariance of the force on an atom
against a rigid-body translational of the crystal.

When expression (2a) is analyzed into the irreducible
representation of the full cubic point group, the dis-
placements of the impurity ion are found to be involved
only in the I'y5 representation, which is contained three
times in A(w?). If by j=1, 2, 3 we label the oriented
symmetry coordinate corresponding to every one of
these representations, in this three dimensional sub-
space, expression (2a) becomes

2 [ 1 —(X/2)12 0
AT (o) = —(Sc/z)m i)c/z 0
0
100
+ew2[0 0 0], (2b)
000

and the local-mode frequencies due to very light sub-
stitutional impurities will be the roots of the projection
of the secular equation (1b) in the same space.

For defects involving a strong change of mass and
moderate change of force constant, the local-mode fre-
quency wio is expected to fall well outside the vibra-
tional continuum of the perfect crystal; then, if only
expressions which behave like 1/w? are retained in the
terms involving the change of force constant, the pro-
jected secular equation can be written

14+ [(L—w?) ], " ew?— (1/w?)(e?/mo)A=0, (3a)

which, to terms of the order (e2/m2) (wr/wio)? is equiva-
lent to

14+[(L—w?) 1], TO((e2/mo)A+ew?)=0.  (3b)

Since T'j5 is a three-dimensional representation, the root
of (3b) is threefold degenerate.

Let x;,; be the equilibrium position of the &-type ion
in Jth unit cell (we take k=1 to denote the positive
ion), and let the substitutional negative impurity be
placed in the cell /=0. Since in this paper applications
are made to the U center, in what follows the impurity
is placed at the negative site; the theory, however, can
be developed in a quite analogous way for very light
substitutional positive impurities. The (1,1) element of
(L—w?)!in the subspace of the symmetry coordinates
defined above turns out to be the (x,x) Cartesian com-
ponent of the (0,2;0,2) element of the same matrix in
the lattice-vector representation; therefore the secular
equation (3b) is found to be exactly equivalent to the

11 R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, Oxford, 1956), p. 15.
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third-order determinantal equation
det{1+ (L—w2)oz,05 ((e2/mav)A+ew?)} =0, (4)

when one bears in mind that the cubic point symmetries
of the lattice require (L—w?)oz,02™" to be proportional
to the unit tensor, here denoted by 1.

The approximation involved in deducing (4) is
equivalent to disregarding matrix elements of A(w?)
which do not correspond to the impurity lattice site,
ie., to the assumption

A(w?) = ((e2/mw)\+ ew?) A (2¢)

for the perturbation A(w?). Here A is the 6N X6N
matrix whose elements are those of the unit tensor if the
lattice indices both correspond to the impurity site, and
zero otherwise.

In what follows, A(w?) has the expression (2c) even if
the frequency-independent part of this expression does
not satisfy the condition which follows from the in-
variance of the force on an atom against a rigid-body
translation of the crystal. From the above considera-
tions, it appears that the farther away the local-mode
frequency lies, the more the lack of the above transla-
tional symmetry can be ignored in the expression (2c)
for the perturbation.

The roots of the secular equation (4) or (3b) are
easily found once we know the values which are assumed
by (L—w?)g2,0:" as a function of w?.

The dimensionless change of force constant \ is a
function of the parameters characterizing the physical
properties of the impurity (the mass apart); the choice
of such parameters will be discussed in the following
sections.

a. Rigid-Ion Model

The dynamical matrix Lo of the perfect rigid-ion
lattice is®7

Lo(1,1)= (1/m)Ro+2%(1/m1)C(1,1) , (52)
Lo(2,2) = (1/ma)Ro+22(1/m2)C(2,2) (Sb)
LO(laz) = LO(Zyl)f

= (1/myms) "R+ Z2(1/mims)*C(1,2) , (5c)

where Ro=R(1,1)=R(2,2), R=R(1,2)=R(2,1); C(1,1)
=C(2,2) and C(1,2)=C(2,1). C(%,%") and R(%,k’) are
3N X 3N real matrices (N being the number of unit cells)
corresponding, respectively, to the electrostatic and the
overlap interactions between % and %’-type ions in the
lattice. m; and m. are the masses of the regular ions and
Ze is the charge of the positive ion.

In the wave vectors representation of wave vector q,
the coupling coefficients of the electrostatic interaction

C(q; 1,1)=C(q; 2,2) = (¢*/v)Cs(a),
—C(q; 1,2)=(e2/v)Ca(q) ,

have been evaluated by Kellermann,® and the coupling
coefficients of the overlap interaction in the n.n.
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approximation are

Ro(q)=(e*/v)(4+2B)1,
R.,(q)=0, etc., (6)
R.(q) = (e2/v)[ A cosrog.~+ B(cosrogy+cosreg.)], etc.

The dimensionless constants 4 and B are defined as

follows:
ird e?
12| ().
rol-dr rerg \20

o] G

and are fixed by the static equilibrium condition of the
lattice!? and by one of the elastic constants.

¢(r) is the overlap potential between the halogen ion
and a neighboring alkali ion at the distance 7 in the
crystal, and 7y is the equilibrium n.n. distance in the
perfect crystal.

Since the substitutional impurity has the same charge
as the regular ion, the frequency-independent term of
A(w?) [in the rigid-ion model this term will be indicated
by Ao= (¢2/ms)\oA] represents the change of the over-
lap forces at the negative lattice site I=0, k=2, i.e.,
the change 6R; of R,. It is worthwhile to note that an
elastic relaxation around the impurity makes no other
contributions to Ao through the Coulomb interaction,
owing to the cubic symmetry of the relaxation itself.
If new constants 4 and B corresponding to the impurity
are defined by (7) at =7, (the new n.n. distance from
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the defect) by merely substituting ¢(r) for @(r) (the
new overlap potential), then Ao turns out to be

N=[A—A+2(B—B)]=8(4+2B), (8)

when only n.n. interactions are taken into account.

In finding the roots of the secular equation (4), the
main difficulty lies in the evaluation of the 3X3 sub-
matrix (Lo—w2)02,02_1 of (Lg—wz)_l.

By writing this submatrix as the Brillouin-zone

integral:
21! /
q
( ) B.Z.

(Lo—w?)oz,0871=
{[Lo(q; L)—w?  Li(g;1,2) ]—1} ©
Lo(a;21)  Lo(g;22)—etd Jss
the inversion of the matrix in the integrand and the
Brillouin-zone integration can be easily performed by

means of an electronic computer, and (Lo—w?)o2,05"
can be tabulated for a suitable range of w? values.

b. Shell Model

Cochran’s’? shell model includes central short-range
forces between nearest neighbors and Coulomb forces
between all the ions, and allows the negative ion to be-
come polarized during the lattice vibrations. According
to Cochran, the dynamical matrix L of the perfect
lattice, having eliminated the shell motion from
the coupled core-shell system of equations, may be
written as

L(1,1)= (1/m){[Ro+2%(e?/v)C]— [R+ZY (e*/v) C: ][ Ro+ K+ Y*(e2/2) G, I [R+ZY (¢%/2) C2 T} ,
L(2,2) = (1/m2){[Ro+Z%(e?/) Ci]— [Ro— ZY (¢*/2) C; [ Ro+K+Y*(¢2/v) G, 17 [Ro— ZY (e?/2) C1 ]}

L(1,2) =L(2,1)"= (1/myma) *{[R— Z*(¢*/v) Cs ]

(10)

—[R+2Y(e?/v)Co[Ro+K+-Y2(e2/v)Ci I [Ro— ZY (e?/v)C ]} .

Here Ye=1yel and K= (¢2/2)«I, where ye, (y<0), is the
shell charge of the negative ion and (e?/v)x is the
force constant isotropically coupling the shell to the
core of the negative ion. The other symbols have the
same meaning as in the previous section: Ry and R here
represent the matrices of the coupling coefficients for
the overlap interaction between the shells of negative
and the cores of positive ions; I is the unit 3N X3N
matrix.

The new parameters y and « appearing in (10) are
determined by the dielectric constants ¢ and e,.” The
polarizability of the negative ions in the lattice is re-
lated to the above three parameters by

a=vy%/(A+2B+«).

12 For the static lattice to be in equilibrium B=— (2/3)ay2?
= —1.16522, where ay is the Madelung constant.

Note that the value of «, when deduced from the
above crystal constants, actually represents the sum
artas of the polarizabilities of both ions in the unit cell
(see Table II). For consistency, in the scheme of
polarizable negative ions, it is understood that y in-
cludes a contribution from the positive ion; the relation
between y and the true shell charge y» of the negative
ions turns out to be y=1ya(a/as)'/2.

In the shell model, the substitutional impurity affects
not only the overlap forces but also the shell charge ye
and the core-shell force-constant (e2/v)k at the impurity
lattice site. Then, the frequency-independent term of
A(w?) splits into two terms, the first having the same
meaning as that in Sec. 2a, and the second arising from
the change of electronic polarizability of the substituted
ion. One finds

A(w?) =AoFAport-ew?A. (11)



IMPURITIES IN ALKALI-HALIDE CRYSTALS

Owing to the approximation made in (2c), one needs
to know only the 3X3 submatrix A,01(0,2;0,2) at the
impurity lattice site. The 3N X 3N matrix A,01(2,2) can
be deduced from the second term in the expression (10)
of L(2,2) by replacing Ry, Y, and K, respectively, with
Ro+6Ro, Y+6Y, and K+ 6K and then subtracting the
unperturbed term. Disregarding any effect due to the
change in the state of polarization which arises from the
elastic relaxation around the impurity, if we let

n=(v/¢®)Ry— ZYC,=(4+42B)I—Zy(C,,
v=(v/e2)(Ro+K)+Y2C;=[(4+2B)+« JI+2C;,

= (v/e?)6Ry—Z2C:0Y=06(4+2B)A—Z5yC;A,  (12)
=[8(4+2B)+ok]A+y dy(ACH+C;A),
we obtain
Apo1(2,2) = —(e®/mw)[ (n+6n) (y+6v)?
X(+on)'—ny~q']. (13)

The main difficulty for the evaluation of the above
expression lies in the inversion of the 3NVX3N matrix
(y+0v). One may use a series expansion in power of dy:

(y+oy)t=y—y"'Gayy 2, (14a)
where
Giy=2 (= Droy[ytoy = Zo (=1)"Gs, ™. (14D)
n=0 n=

Taking into account expression (12) for §v, the sum
of the infinite series (14b) can be carried out working
with the wave vectors representation. Defining two
dimensionless parameters A\; and \; by

M=08(4+42B)+ dk=2(y+8y)%/ (a+da) —vy/a,

15)
A=y 3y, (
the matrix elements of év are

8v(q1,92) = G5, (q1,92) = (1/N) exp[i(g2—q1) *Xo2 ]
XAMI+2[Ci(q1)+Ci(g2) ]}  (16a)

and those of Gs,™(q1,q2) for 7520 are
Gy ™ (q1,92) = (1/NV) exp[i(q2—q1) * Xoz]

4
X2 B (A\,h)bi(q,q2) . (16b)
=1

b;(q1,92), (=1, 2, 3, 4), are the four 3)X3 matrices

bi(q1,92)=1, bs(q1,92)=Ci(qy),
bs(a1,92)=C1(q2), ba(q1,92)=Ci(q1)- Ci(q2)

and for any value of the index #, the four coefficients
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ki depend only on A; and \; and are related by

4
By (Nphe) = 2 Fi(A, )i (\)hg)  (17a)

=1

to the four coefficients corresponding to (n—2). Fj,
h;i® and &;V may be easily deduced from the explicit
expression of the first three terms of the expansion
(14b); one finds

fifs fE
fofs  fofs].
fifs fofsl’
f2 fsfs fafs fé?

hl(O) = )\1 s h2(0) = hg(o) =>\2 y and h4(0) =0, (17‘3)
b =)\1f1+>\2f2 , hoV=h3(V = >\?.fl ) and MW= )\2f3-
Here

H? o fife
| 1fs fifs
fifs  faofs

fi=(\JotATy),
sz ()\1]0‘|')\2]2) s
fa=NaJo,
fa=NoJ 1,

where Jy, J1, and J, are the following Brillouin-zone
integrals:

and (18)

Jol=(v/(27)%) / day~(q) ,

Ti1=(o/(20)) / daCy(a)-y~1(a)

(19)
=y [1—(4+2B+«)Jo]l,

Tol=(o/(20)9) / d4C1H(@)-v~1(a)- Cs(a)

=y2(4A+2B+«k)J1.

In (19) we have borne in mind that the cubic point
symmetries of the lattice force the above integrals to be
proportional to the unit tensor.

Inserting the solution of the recurrent equation (17a)
in the right-hand member of (16b), the sum of the
infinite series (14b) can be then performed and the
result is

G, (q1,q2) = (1/N) exp[i(q2a—0q1) - Xoz ]

X 3 (1O hO) [ T—Flibylanas). (20)

1,J=1

In the right-hand member of the above expression,
I is the 4X4 unit matrix.

Use of (20) and (14a) in (13) gives finally the wanted
expression for the polarization term in (11); in the
lattice-vectors representation, the (0,2;0,2) element of
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Ao turns out to be

Apoi(0,2; 0,2) = (€2/mav)y No®T o— 2Nop1+

= (32/7”2”))\17011 )

where p; and p. have the following expressions:

p1= (A+ZB+)\0)]0“ZyJ1 5
pa=(A~4-2B+-No)J1—ZyJ 2.

The main result of this section is contained in expres-
sion (21). This expression allows us to account for all
the effects arising from the change of shell charge and
electronic polarizability due to the substituted ion in
terms of the further change Apo1 of force constant, which
is still a function of \,.

Expression (21) can be evaluated by means of an
electronic computer; Figs. 5, 6, and 7 show the behavior
of Ayo1 as a function of the impurity shell charge and
polarizability. It may be interesting to note that a de-
crease of electronic polarizability and shell charge of the
substituted ion can give rise to a weakening or to a
small stiffening in the force constant for the core motion;
in the case \y=08(4+2B)=0, ie., when the overlap
force constant remains unchanged, the greatest effect
is a weakening.

(22)

3. APPLICATION TO THE U CENTER

The previous theoretical results were applied to the U
center in NaCl, KCl, and KI crystals at room tempera-
ture. These crystals were chosen in view of the following

.1)

13
(10 sec
N
-

Nacl KCl

@

15
Kl

=

..(a{ (NaCy)
0] lee

—&f (KCH)

oc
"Ql)oc(m)
5.
_ Aofar28)

-1 —0’-5 0‘.5

Fi1c. 1. Rigid-ion model. Theoretical U center local mode
frequency as a function of Ao, the local change of the overlap
force constants. The upper curve corresponds to a U center in
NacCl. the lower to one in KT.
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Jy O — O 1 p1?
D1 — J, (D) .
b | =rTe P
h4(0)_h4(1) Pzz
(21)
considerations:

(i) The electronic polarizability of the positive ions is
considerably smaller than the polarizability of the nega-
tive and substituted H~ ions (see Table I). Then the
shell model with polarizable negative ions can be safely
applied.

(ii) The U-center infrared absorption occurs at fre-
quencies so far from the fundamental infrared absorp-
tion, that only the perturbation at the impurity lattice
site may be considered in the secular equation, as ex-
plained in Sec. 2.

(iii) Experimental data are available for such
crystals.1®

The constants used in the calculations are reported in
Table I and the most characteristic quantities involved
in the rigid-ion and shell models are reported in Table
II; Ci(q) and Ci(q) were taken from Kellermann’s
tabulation.

In order to check the reliability of the models for
accounting for the lattice dynamics, the normal mode
frequencies for the above three crystals without im-
perfections were evaluated at Kellermann’s points in

NacCl

. Ns/cas2m)

ax =19 R°
by =2.4 &°

| o3
0% =22 A

Fi1G. 2. Shell model. The local change of overlap force constant
Nos versus 3 (the shell charge of the imperfect unit cell), or ¥ (the
true shell charge of the impurity) for three values of & (the elec-
tronic polarizability of the imperfect unit cell) : NaClL.

18 G. Schaefer, Phys. Chem. Solids 12, 233 (1960). See also
A. Mitsuishi and H. Yoshinaga, J. Phys. Soc. Japan 18, 321
(1963) ; Progr. Theoret. Phys. (Kyoto) 23, 241 (1963).
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TaBLE L Values of constants used in calculations (room temperature).

roX 108 e X102 € e miX 108 maX 108 a a
(cm) (dyne cm™) ® @® (&%) (&%)
NaCl 2.820» 0.494b 2.25¢ 5.62° 3.8156 5.8845 0.28° 2.92°
KCl 3.147s 0.407> 2.13¢ 4.68° 6.4891 5.8845 113 2.92°
K1 3.533» 0.274 2.69¢ 4.94° 6.4891 21.0624 113 6.41°

a D, Cubicciotti, J. Chem. Phys. 31, 1646 (1959).

b G, Leibfried and W. Ludwig, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1961), Vol. 12, p. 368.
° M. Born and K. Huang, Dyramical Theory of Crystal Laitices (Oxford University Press, New York, 1954), p. 85.

TasLE IL. Values of the most characteristic quantities involved in rigid-ion and shell models.

(€2/v) X104 y (4+42B) K a/v=3*/(A+2B+«) « Jo

(dyne cm™) (A3) [see expression (19)7]
NaCl 0.513695 —2.15 8.21 57.79 0.070 3.15 1.61X102
KCl 0.369626 —2.73 9.72 104.15 0.065 4.07 0.93X1072
KI 0.261229 —2.60 10.20 68.68 0.086 7.59 1.39X102

the Brillouin zone!* and good agreement with the ex-
perimental data about the fundamental infrared ab-
sorption was found, as it appears from Table ITI. How-
ever, the shell model with polarizable negative ions, and
even less the rigid-ion model, do not so well account for
the effective shape of the dispersion curves of the vibra-
tional frequencies.’® Nevertheless, in a frequency region
well away from the maximum of the vibrational con-
tinuum, the elements of (L—«w?)~! which are involved in
the secular equation (4) are quite insensitive to the de-
tailed structure of the dispersion curves, so the models
here adopted are though to allow in principle a good
evaluation of the U center local-mode frequency. The
roots of Eq. (4) can be then directly compared with the
experimental frequencies.

The expression (9) for the rigid-ion model and the
analogous expression for the shell model were evaluated
by means of a Remington USCC90 electronic computer
by choosing suitable sets of w values; then the roots of
the secular equation (4) were determined in both models,
once having fixed the parameters!® Ao, [see (8)] or Ags,

TasLE III. Experimental results for the fundamental infrared
dispersion frequency and theoretical transverse optical frequencies
at q=0.

wr.0. (101 sec™)
Experimental Rigid-ionmodel Shell model

NaCl 3.092 2.99 2.98
KCl 2.67s 2.57 2.56
KI 1.852 1.78 1.78

a M. Born and K., Huang, Ref. a, Table I. S, S, Mitra, in Sol:d State
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New
York, 1962), Vol. 13, p. 55.

14 The rigid-ion normal-mode frequencies were found the same
as those evaluated by A. Karo, J. Chem. Phys. 31, 1489 (1959);
33, 7 (1960).

A D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.
Cochran, Phys. Rev. 131, 1025 (1963); 131 1030 (1963).

16 Here and in the followmg a subscript 7 or s will be added to
Ao in order to emphasize that Ao, in the shell model does not take,
generally, the same values as does Ao- in the rigid-ion model.

Aand \; [see (15)] characterizing the defect, by looking
for the values w for which expression (4) vanishes.

The theoretical values of the local-mode frequencies
obtained in the framework of the rigid-ion model for U
centers in NaCl, KCl, and KT are reported in Fig. 1 as
a function of the dimensionless change Ao, of force
constant; the experimental values!® of wi are also
indicated.

Owing to the large number of parameters characteriz-
ing the defect in the shell model, it is difficult to report
similar plots in this case. The curves in Figs. 2, 3, and 4
show, as a function of the shell charge 3¢ and for three
different values of the electronic polarizability & of the
imperfect unit cell, the change of force constant Ao,
that must be assumed in order to fit the experimental
local-mode frequencies to the theoretical ones. 5’¢ and
& represent the shell charge and electronic polarizability
of the imperfect unit cell (see Sec. 2a), i.e., the sum of

)
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Fic. 3. Same caption as Fig. 2 for KCl.
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Fi1G. 4. Same caption as Fig. 2 for KI.

Je or respectively & (the shell charge and electronic
polarizability of the impurity) and the corresponding
contribution coming from the neighboring positive
ions.

Curves (c) in Figs. 2, 3, and 4 correspond to the value
of @ due to Calder, Cochran et al.,'" plus the alkali-ion
polarizability. In the same figures the shell charge of the
impurity is reported on the ¥ axis.

In order to give an idea of the role that the polariza-
bility of the ions plays in the lattice dynamics of
U center-doped alkali-halide crystals, Figs. 5, 6, and 7
show Apo1 as a function of the impurity shell charge and
polarizability.

In Table IV the values of wio, deduced in both models
from (4) are reported, when only the change of mass is
taken into account in the perturbation, i.e., when U
centers are considered as pure mass defects; for com-
parison, the experimental values of the induced in-
frared absorption are also reported. The fourth and
fifth columns of the same table give the values of A, and
\, which represent the result of the best fit between
wioe as measured and as calculated in both models. The
last column shows the values of \os at = —1.1 on the
curves (c) in Figs. 2, 3, and 4.

It should be possible to deduce the correct values of
Nor OF A=DNgs+Npo1 from the knowledge of the crystal
properties of the impurity. Unfortunately the properties
of the substitutional H~ in alkali halides are not well
enough known, so a large uncertainty exists in attribut-
ing the values of Ao, or Nos, @ and ¥ adequate for the U
center. When we have some information about & and %,
the present results can be used, in turn, to give an insight
into the H-alkali-ion overlap potential, and in particu-

17 R. S. Calder, W. Cochran, D. Griffiths, and R. D. Lowde,
Phys. Chem. Solids 23, 621 (1962).
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F1c. 5. Shell model. The values of Apor (the change of local force
constant arising from the changes of electronic polarizability
and shell charge) versus the impurity shell charge 7 or ¥, for two
values of & (the electronic polarizability of the imperfect unit
cell) and for two values of Ags: NaCL

lar to estimate the crystal radius of H~ ions substitu-
tional in alkali-halide crystals.

Experimental and theoretical information!® about the
electronic structure of U centers suggests that we
assume y=yg=—1, i.e., assume that not much more
than a single electron contributes to the H~ shell charge.
Moreover, the H~ electronic polarizability was esti-
mated by Calder et ¢/.'" in lithium hydride crystals,
where the bonding is generally regarded as preponder-
antly ionic: they found ag-=1.9 A3, so this value can be
assumed for &.

However, no information exists, so far as we know,
about the H—-alkali ion overlap potential in crystals.
Nevertheless, there is a general feeling that in alkali-
halide crystals the H™-alkali bonds display a remarkable
ionic character, so the Huggins-Mayer® form

3(r) =Fz_ + exp[(ru-—+7+)/o] exp(—7/p)

seems appropriate to describe this overlap potential.
In this case, assuming Pauling’s value 0.625 for ¢_;
and the Fumi and Tosi8 values for 7, the uncertainty
concerns the values of 5 and 7u-, p being fixed as
0.3394 A. Lacking careful knowledge of b, the more re-
liable value can be thought to be close to 0.4X 10~

erg/molecule for the H~—Nat, and to 0.34X10-12

(23)

18 B. S. Gourary and F. J. Adrian, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1960), Vol. 10.
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TasLE IV. The local-mode frequencies wio of the U centers, thought of as a pure mass defect, compared with the experimental ones.
The 5th, 6th, and 7th columns show the change of force constants from the best fit between wio, as measured and as calculated in the
rigid-ion and in the shell model, with yg~=1.07 and ag—=1.9 A3.

@100 (10 sec™?) Nor/(A+2B) N (4+2B) Nos/ (4+2B)
Mma—my Theoretical Theoretical Best-fit
€= — Experimental pure mass pure mass shell model
me defect in rigid- defect in shell ~ Best-fit rigid- Best-fit yr~=1.07_
ion model model ion model shell model ag~=1.9 A3
NaCl 0.9718 10.46° 16.1 14.5 —0.43 =0
KCl 0.9718 9.28 14.8 13.8 —0.52 =~0
K1 0.9921 7.31» 12.7 11.8 —0.52 —0.44
» G. Schaefer, see Ref. 13,
empirical methods, as explained in a previous paper.!®
ri- turns out to be 1.3 or 1.7 A when evaluated by the
rigid-ion or the shell model, respectively.

erg/molecule for the H-—XK™* bonds, as is suggested
from the sequence of b values® relative to sodium and
4. DISCUSSION

potassium halides, respectively. ru- is regarded as a
free parameter. With this choice of &, by (6), (7), and
(23), ra- is related to Ao, in the rigid-ion or to A, in the

shell model, once we know the elastic relaxation of the The vibrational model we employed for the U center

takes into account the change of coupling between the

n.n. around the defect. rg- is then deduced from the
values of Ao, or A, in Table IV. The lack of knowledge
about the elastic relaxation can be overcome by Apot
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Fic. 7. Same caption as Fig. 5 for K1

©R. Fieschi, G. F. Nardelli, and N. Terzi, Phys. Letters 12,

290 (1964).

F1G. 6. Same caption as Fig. 5 for KCl
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impurity and its nearest neighbors only to terms of the
order (e2/mv)/wio and neglects the polarization effects
which arise from elastic relaxation around the defect.
In our opinion, however, it is not worth carrying out a
more sophisticated approximation, since the evaluation
of (9) may be already affected by some lack of precision,
owing to Kellermann’s coarse net of points in the
Brillouin zone. In spite of this, according to us this
model accounts for the value of the U center local-mode
frequency, owing to the high relative position of the U
frequency with respect to the maximum of the vibra-
tional continuum. It accounts for the isotopic effect
within the inverse-square-root law of the masses also,
but it does not allow a detailed analysis of the deviations
from this law. The effects here disregarded could play
some role in the U center-induced resonant scattering
or in determining the structure of an eventual smooth
local mode a little above the vibrational continuum.

Our results yield the following information about the
influence of U centers on the lattice dynamics of alkali
halides.

First of all, it appears from Table IV that the U
center cannot be described as a pure mass defect when
the lattice dynamics is considered in a less simplified
scheme then previous ones.!? The change of mass alone
gives rise to local modes at frequencies much higher than
the real ones; about 50 to 709, or 40 to 60% higher, in
rigid-ion or shell model, respectively. In the framework
of the rigid-ion model, this fact was pointed out by
Zavt,? who suggested that this discrepancy could be re-
moved if one assumes that the high positive root of
Eq. (1b) represents the frequency of a single local
vibration arising only from the longitudinal optic modes
of the perfect crystal and that the frequency observed
in the impurity absorption spectrum corresponds to two
local vibrations arising from the transverse optic
modes. In Zavt’s explanation, it is implicitly assumed
that the perturbation arising from the local change of
mass does not mix transverse and longitudinal modes of
the perfect lattice. According to the present theoretical
results, however, a defect which affects only its lattice
site gives rise to a relevant coupling between the trans-
verse and longitudinal modes (only at zero wave vector
does the coupling vanish) so that the local mode fre-
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quency turns out to be threefold degenerate, owing to
the cubic symmetries of the lattice.

The above discrepancy is here explained in terms of a
change of force constants. In the shell model, this change
can arise not only from the modifications on the over-
lap potential, as it occurs in the rigid-ion model, but, in
a relevant way, it arises from the change of electronic
polarizability and shell charge due to the substituted
ion (see Figs. 5, 6, and 7) also. Some uncertainty, how-
ever, concerns the choice of values for Ao, or Ags, &,
and ¥ in order to account for the dynamics of the im-
purity in the lattice. &=1.9 A317 for the electronic
polarizability and je=!—e for the shell charge of H™ in
alkali-halide crystals seem to be quite reliable values,
while the generalized Huggins-Mayer?® potential with
an appropriate value for p might be a better approxima-
tion for the overlap potential?! than the Huggins-
Mayer, here employed.

The next remark concerns the ionic crystal radius of
H-in alkali halides: the value 1.7 A, found on the basis
of the shell model, agrees with Puling’s prediction??
which sets the radius of this ion between those of Br~
and I-; on the contrary the value g-=¢1.3 A found in
the rigid-ion model?® seems to agree with Goldschmidt’s
prediction.22 The inconsistency between these two
values of the H— crystal radius could be ascribed to the
poorness of the rigid-ion model.

As a final remark, it is worthwhile to note that the
frequencies of the local modes deviate from the inverse-
square-root law of the mass of the impurity (only at the
asymptotic limit wie,— e and for pure mass defect
does this law occur) owing to the peculiar structure of
the secular equation (1b). The anharmonicity effect
might further affect the mass dependence.
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20 M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 25, 45 (1964).
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% Due to a trivial printing error in a previous paper, the value
of {i'olA appeared for the H™ crystal radius estimated in rigid-ion
model.



