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Temperature Dependence of ac Hopping Conductivity*
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Previous work on ac hopping conductivity in semiconductors has shown that when the impurity concen-
tration is relatively high, the temperature dependence of the conductivity is considerably more pronounced
than the theory accounts for. At the same time, the frequency dependence becomes weakened at the higher
temperatures. It is proposed that multiple hops can account for these phenomena. An approximate analysis
of the effect of multiple hops on the conductivity is presented. The results of this analysis are compared with
some experimental results and are found to be capable of explaining the observed deviations from previous
theories.

HE conductivity due to hopping processes in
germanium and silicon under nonsteady-state

conditions has been the topic of several recent theoret-
ical and experimental investigations. ' 5 These investiga-
tions were concerned with the frequency, temperature,
and concentration dependences of the conductivity.
On the whole, the theories based on the Conwell-Mott"
model adequately explained the various dependencies of
the conductivity and its magnitude. However, these
theories do not adequately explain the temperature
dependence of the conductivity for many samples. The
characteristic of such samples is a relatively high-
majority impurity concentration ( 10" cm ' in
silicon). The actual temperature dependence in such
samples is always more pronounced than the tempera-
ture dependence suggested by theory )see, e.g. , Eqs.
(18a) and (18b) of Ref. 4 or Eq. (22) of Ref. 3j.
Tanaka and Fan' attempted to explain the increased
temperature dependence by pointing out that whenever
two majority impurities are sufFiciently close, the
existence of the resonance energy between them will
introduce traps. A different explanation of the tempera-
ture dependence is suggested here which is, for many
cases, in better agreement with experimental data.
Specifically, it is experimentally observed that the more
pronounced temperature dependence is always assoc-
iated with a weakened frequency dependence at higher
temperatures. This is demonstrated in Fig. l0, Ref. 3,
and in Figs. 5, 6, and, less distinctly, in Fig. 7, Ref. 1.
The traps described by Tanaka and Fan do not explain
this dependence between the variables T (temperature)
and ~ (frequency). As they point out, the frequency
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dependence should hardly be affected by the presence
of traps. The explanation presented here, on the other
hand, implies that an increased temperature dependence
and a decreased frequency dependence always occur
together. It is pointed out that the proposed mechanism
does not explain the decrease of conductivity with
majority concentration at very low temperatures (see
Fig. 8, Ref. 3). The latter could be due either to con-
figurations with r&(-,'r„(see Fig. 4, Ref. 4) or to the
Tanaka-Fan traps. This paper thus does not exclude
the existence of the traps. In fact, strong evidence for
these can be found in the results of experiments with
lithium-doped silicon.

Previous theories' ' were based on the assumption
that the ac current is restricted to hops between pairs of
impurities only. It is suggested here that the un-
explained temperature dependence is due to the break-
down of this assumption. Criteria had been established
to decide whether single hops suKce to describe the
conductivity at a given frequency. This was done on the
following basis: Consider, in a random distribution of
impurity atoms, all pairs which have a spatial separation
of r„and an energy separation smaller than kT. There is
a possibility that a third atom is so situated that its
separations from both atoms are less than r„and less
than kT. If this event is a very unlikely one, then the
pair approximation is good and vice versa. The reason
for this is that the presence of such an atom would
shorten the time required for relaxation of the system
and thus completely change the contribution to the
conductivity at a given frequency. This criterion does
not encompass the much more likely event that a
third atom has a separation less than kT from both
atoms, but less than r„ from either atom. In such a case,
the relaxation time of the system is very nearly un-
aRected by the third atom. Nevertheless, the conduc. -

tance is increased because the charge transfer may be
more extended. Furthermore, the probability of such
configurations occurring increases with increasing kT.
This is schematically illustrated in Fig. 1. Thus it is
clear that this con6guration will have an enhanced
temperature dependence of the conductivity and that
this effect will increase with increasing concentration.
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Furthermore, it is apparent that the likelihood of such
multiplets will increase with increasing r„. Since an
increased dependence of the conductivity on r„means
a decreased dependence' —4 on co, the multiple hops will

result in a decreased frequency dependence in addition
to the increased temperature dependence. It may be
noted that such a behavior is in qualitative agreement
with the similarity relation described in Ref. 4, while
these relations are not applicable to the behavior caused
by Tanaka-Fan traps.

In order to analyse approximately the e8ect of
multiple-hop configurations we must estimate the con-
ductance of any such configuration at a given frequency
and the probability of its occurrence. (The notation
used in the following analysis is the same as in Ref. 4.)
We will assume that the conductance of the configura-
tion can be described by means of a single relaxation
time r . This assumption is good in the situation de-
scribed below. Consider the various pairs that can be
formed by the members of a configuration. There is
a time r (as defined on p. 1750, Ref. 1) corresponding
to each such pair. If these times differ considerably
from each other for the various pairs, then the configura-
tion may be described approximately by a single
relaxation time. Since the times r for the pairs are
exponential functions of the pair separations, ' the
conditions should apply with a high probability. The
relaxation time which characterizes the whole configura-
tion is the one given by the largest hop (say r') that the
carrier must make to get from one end of the configura-
tion to the other. "If now do. in Eq. (1), Ref. 4 stands
for the conductivity of a given Inultiple-hop configura-
tion and dP for its probability of occurence, the fre-
quency-dependent term remains unchanged except that
v' replaces v as specified above. Indeed, the only
change necessary is to reinterpret r to mean the spatial
extent of the configuration. This length will be denoted
by r. The function cosh—' will be replaced by a step
function, unity for hZ& 2.8kT and zero for hE& 2,8kT.
The number 2.8 is determined by the point of steepest
descent of the function cosh '. Equation (1), Ref. 4
can now be written in the following form:

do (r,hE,u) = ,',dp(r, DE&2.8kT)—
XN~r'co-', mal (r' r„)4~1ir r . (1)—

Use has been made here of the equation following Eq.
(4), Ref. 4 and of the definition of rr. The probability
dp(r, DE&2.8kT) now represents the probability of
finding a configuration with a spatial extent P, with a
relaxation time r' given by r' and with all the atoms of
the configuration being within an energy separation of
2.8kT. The condition on the energy separation presents
no analytical difhculty. For a configuration where

' A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).' A similar approach has been used for the calculation of steady-
state conductivity in Ref. 9.

FiG. 1. An illustration of the suggested cause for the enhanced
temperature dependence. The points represent a random arrange-
ment of majority atoms, including the one nearest (at a distance
r&) to the minority impurity. The circles are equipotentials, with
energy separations kT from the equipotential at r1, T& &T&& T3.
At the temperature T1 the carrier is restricted to a single hop.
The hopping is gradually extended with increasing temperature.

the minority impurity has the nearest majority im-
purity at a distance r& from the latter, the condition
DE&2.8kT corresponds to a spherical shell between ri
and ri(1+2.8ri/rr) around the minority impurity atom.
We thus restrict our attention to atoms within this
shell. Since r~//ry((1, the shell will be a very thin one
and we may replace it by a surface with a "surface
impurity concentration" v,

v= 2.8(rP/rr)Xg). (2)

The problem of 6nding p(r, ~&2.8kT) is still of a
rather complicated nature. We shall resort to simplify-
ing assumptions which, however, will still maintain
the qualitative features of the problem. The assump-
tions made are as follows:

(1) The spherical shell is made planar. This assump-
tion will be partially relaxed later.

(2) The question of finding the probability for a
configuration with the longest jump r' will be simplified
to the following problem.

Configurations with various numbers of atoms are
considered. Bonds, between the atoms from left to
right, are formed in such a way that every atom is
connected with its nearest neighbor to the right. It is
assumed that all configurations have the same spread
in both dimensions. The number of bonds thus formed
is counted and called n'. The configuration is divided
into I (or the next larger integer) equal parts from left
to right. The procedure is illustrated in Fig. 2. A cut is
made through each part and the number of bonds thus
intersected is counted. For sufficiently large configura-
tions this number is approximately n. It should be
noted, however, that not all bonds will be necessarily
intersected. Some bonds may escape intersection while
others may be intersected by two cuts. Since neither
possibility will occur frequently they are excluded from
consideration. The shortest intersected bond is located
on each cut. The longest of these (bond A in Fig. 2) is
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FIG. 2. An example of the bond-generating scheme. Thc points
represent atoms of a configuration. Each atom is connected to its
nearest right neighbor. The total number of bonds n' is counted
I'j.5 in this case). Since 4 is the integer closest to e from above,
four cuts arc made through the conlguration (intermittent lines).
Of all the bonds intersecting one cut, the shortest is selected
I',marked by crosses). The longest of the crossed bonds is bond A.

required to have the length r', since in most cases it is
the longest bond which it mill be necessary to cross in
order to get from one end of the conaguration to the
other. Note that bond A is not necessarily a part of a
continuous line of bonds which crosses the entire
configuration (as, for example, in Fig. 2). However,
the bonds indicated in Fig. 2 are not the only ones to
be taken into account. While Fig. 2 contains only the
shortest bond to the right of each site, all bonds which
are shorter than r' may be included. These are shown in
Fig. 3 fol thc saIQc con6guratlon as pI'cscntcd ln Flg. 2.
In this scheme of bonds it is quite bkely that bond A
is a part of a continuous path of bonds which spans
the configuration.

(3) Consistent witll tllc pi'cvious assliiliptloll 'tliat
the configurations have a similar spread in both dimen-
sions, it is assumed that all configurations of a given e
contribute to the conductivity with the same t. This
average r is taken to be equal to er'. The probability
p, (r', n)dr' that the bond A is r'& ,'dr' long is calculate-d
in two steps. At first the probability p'(r, e)dr that the
shortest bond in one cut is of length r+~dr is found.
From p'(r, e) the probability p, (r',e)dr' that this is
the longest such bond among all cuts is calculated:

p (r)dr = 27{vr e-xp (—pr vr')dr.

By substituting Eq. (5) into Eq. (3), Eq. (3) into Eq.
(4) and integrating, we obtain

p, (r',e)dr'=2m tPvr' exp( —s ver")

XLl —c~(—e"')].—d'.
For p) evr" & 1, Eq. (6) can be approxiinated by

p„(r',e)dr' 2n(p—rnvr") "dr'/r'.

The logical connection between the probability
p.(r',n)dr' and the required probability d p(p, hE &2.

SENT)

ls Rs follows: Wc sclcct a gl'oup of Q~ ma]ority lIDpurltlcsp
as close as possible to the impurity at r3, all of which lie
on the spherical shell determined by DE&2.8)):T. Such a
configuration has (within the above approximations)
the probability p, (r',e)dr' that the "bond" which
determines 7' has the length r'. Next, an additional
impurity atom, the one nearest to the configuration,
is included. If the new con6guration (of e'+1 bonds)
still has the characteristic bond of length r', it is
couiltcd 1n 'tile lal'gcl' co116gul'atloll (l.e.

p of size e +1
or larger) since it will contribute to the conductivity
with the largest possible r'. Thus the probability that a
con6guration will have the size e' is given by p, (r',e)
multiplied by a conditional probability p(e). The
latter is the probability that the configuration of size
e'+1 is characterized by an r' different from the one
which characterized the configuration e'. This condi-
tional probability is equivalent to the probability that
the added impurity atom is farther than r' from any
atom present in the configuration and is approximately
equal to exp (—2nvr"). A similar factor has been already
assumed to be unity in Eq. (7) and will be again
approximated by unity. Thus, if rj would be fixed,

dp(r, BE&2.8kT) could be replaced by p, (r',e)dr'.
Since ri is not fixed and p, (r',e) depends on ri through

00 ~m
—1

p'(r, e)dr=np(r) p(p)dp i
dr,

r
(3)

I

p, {r',e)dr'=Np'{d, e)( p'{p,w)dp) dd. {d)

InEq(3) the probabihtyp(r)dr is the probsbilityof Fto. B. The conagnrationof atoms is identical to that of FiK. 2.
Herc a bond is formed whenever the spacing between the atoms

finding a nearest neighbor within —,dr of the distance r.
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0 (&u) =
(2r1/re)

—',lVnm'r nz(2. 8zrnrPr ' V /nr )"r
nm=o

X rraKMrP exp( ——,zrrz'Nn)dri. (10)

It is interesting to apply Eq. (10) to the single-hop
approximation, i.e., to permit e' to equal only zero or 1,
and to compare the result with the more accurate
theory for single hops of Ref. 4. To do this, we follow
Ref. 4 and substitute rD ——(-', zrNn) '" and xi——ri '.
Equation (10) thus becomes

o (a)) = 1.05m Ngrzz
—'r„'a)&(o si exp( —sirz&) dÃi.

The last equation should be compared with Eq. (14)
of Ref. 4. Since both the tanh term and (1+-,'r„xz) are
close to unity, the two equations differ by about 30%.
More important, the functional dependence on the
different variables agrees very well.

Using Kq. (10) it is possible to estimate when

multiple hops will become important in the conductiv-
ity. This will happen when terms with e&1 become
comparable to the term with v=1. Taking v=2 this
yields the condition ND 0.07r&/rizr„'. Since the value
of r& is most likely to be approximately r& this condition
is equivalent to the condition N& 0.007rr'/r„'. This
corresponds, for the case of silicon at 10'K, to E~

4)&10" cm ', which compares well with the exper-
imentally found onset of the eBect discussed Lsee, e.g. ,
Fig. 10(a) and 10(b) in Ref. 3].Since the concentration
where the onset of the effect should begin is proportional
to rp', the effect around 1'K should disappear for all

Eq. (2), then

dp(r, ~(2,8kT) =p, (r', n)p(n)dr'dp(ri)

=p (r'»)« "p(ri) (8)

where dp(ri) is given by Eq. (3a), Ref. 4. By substitut-
ing Eq. (2) into Kq. (7), Eq. (7) into Eq. (8), and

Kq. (8) into Eq. (1), we obtain

do (r,AE, s)) = zn NgNlzn'(2. 8zrnNzzri'r"/r r)"
Xr'8(r' r„)ri—'rr exp( zzrrz'N—~)dr'dr&. (9)

To find the total conductivity from all possible
configurations, Eq. (9) must be integrated over ri and
r' and summed over e. The limits of integration over ri
are discussed in Ref. 4. The variable r' can vary from
zero to infinity, and thus the point where h(r' r„) is-
different from zero is in the region of integration. In
principle, e could vary from zero to infinity. However,
we shall restrict e to rather small values in order to
correct for the major exaggeration of assumption 1
above. The sphericity of the shell AF &2.8kT is taken
into account by restricting the carrier to a maximum
excursion of 2r~ around the minority impurity. This puts
an upper limit on n: n,„=2ri/r' This p. rocedure also
makes the transition from Eq. (6) to Kq. (7) more
justihable. Ke now obtain for the conductivity

nl
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practical cases. This is well borne out by Fig. 10(b),
Ref. 3 and by Fig. 6, Ref. 1. The following observations
will ascertain that the functional dependence of Eq. (10)
agrees qualitatively with the observations. As the
concentration becomes higher, terms with e) 1 become
important. Those terms differ from the term with e= 1

by the factor n'+"(2.8zrrPr 'Nzz/rr)". Since rr appears in
negative powers and hence T appears in positive
powers (rz =e'/4~re 7) they will account for an increased
temperature dependence. Likewise, the frequency
dependence will be decreased since r„appears in
positive powers and r„ is a decreasing function of
frequency.

It is possible to integrate Eq. (10) if we change the
order of summation and integration. Some care is
required in this procedure since the upper limit of the
summation depends on the variable of integration.
The procedure is indicated in Fig. 4. The result of this
operation is as follows

a(ru) = zzr'Xnr„rram P n'(2.8zrnr "Vo/rr)"
~~=o

ri "+ exp( —zzrri Nn)dri.

The integral is expressible by means of an incomplete
F function. With the notation

we obtain

x&e—dx,

0 ((o) = —,'zr'Nz)r„rra~(a Q n'(2 3zr'"Vn"nr„'/rz)"
nmM

XD'( '; +1n) I'(--'zrn'iVn—r„', —,n+1)]. (11)

PxG. 4. A graphical indication of the change of the order of
integration and summation between Eqs. (10) and (11}.The
volume under the steps can be written either as an integral over
the differential sums or as a sum over the integrals.
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Fzo. 5. A compar-
ison between Eq.
(11) and experimen-
tal results. The points
are taken from
Tanaka and Fan's
(Ref. 3) Fig. 10(b)
and the solid lines
are an approxima-
tion to Eq. (11). In
this approximation,
the summation was
carried to n'=9, and
the square brackets
were approximated
by unity. A more
complete summation
would improve the
agreement. The
curves were normal-
ized to coincide with
the value of the con-
ductivity measured
at 7X104 cps and
4.2'K. The intermit-
tent line represents
the pair approxima-
tion.

The term in the square bracket goes rapidly to zero
with increasing n and is responsible for the convergence
of the sum. It represents the statistical condition that
it is very improbable for r j to become very large. To see
somewhat more quantitatively whether the proposed
explanation accounts for the observed behavior, Eq.
(11) was used to evaluate o (co) for Tanaka and Fan's'
sample 84 at 104 cps and 7&(104 cps. The summation
was carried out to n'=9. For all these values of n, the
brackets in Kq. (11) were approximated by unity. For
the radius a we used 20 A, according to the value

suggested in Ref. 3. Since the minority impurity con-
centration is not known, and since we are interested
primarily in the functional dependence, the calculations
were normalized with respect to the experimental data
at 7X 10' cps and 4.2'K. The results of the comparison
are shown in Fig. 5. Since with increasing temperature
and decreasing frequency terms with larger n become
more important, the agreement would improve if n'
would not have been cut off at the value 9.It is apparent
that in view of the rather severe approximation made
in this treatment the results indicate that the multiple
hops of the type suggested can certainly be responsible
for the observed frequency and temperature depend-
encies in the more heavily doped samples.

It is interesting to inquire whether this effect of
multiple hops is consistent with the similarity relations
of Ref. 4. This may be answered by comparing Kq. (11)
with Eq. (41) of Ref. 4, the latter being a consequence
of the similarity relation. According to this, an increased
power of r„must be associated with a decreased power of
r&. While this happens in Eq. (11)for every term e) 1 in
principle, the similarity relations are not obeyed exactly
since every two increased powers in r„are associated
with only one decreased power in r&. It is possible that
this imperfect obedience of the similarity conditions is
responsible for the imperfections indicated in Fig. 9
of Ref. 4.
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