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I

The theory of stimulated Raman scattering using the coupled-wave approach is extended to include the
case of polar media, with and without inversion center. Mixed eBects of parametric down-conversion and
Raman emission may occur. The threshold of the stimulated Raman effect in these media should not be
much higher than that in a nonpolar system. The mixed eBects of parametric down-conversion and stimu-
lated Raman emission are also considered in purely electronic systems. They may be observable if the Raman
transitions have a narrow linewidth.

I. INTRODUCTION medium is nonpolar, and a strong optical vibration of
the medium is connected with the Raman transitions.
The same effect has not been reported for polar and for
pure electronic systems, although spontaneous Raman
scattering has been detected in both cases."The re-
sults of our calculation, however, indicate the possibility
of observing stimulated Raman scattering in these
systems. If the damping constants for various cases are
the same, the gain coeKcient for the Stokes generation
in polar or in pure electronic systems should be at least
of the same order of magnitude as those in the nonpolar
molecular systems. The stimulated Raman eGect has not
been observed in many systems. It is likely that these
systems have larger damping constants.

In Sec. II, the general formalism of coupled waves is
given. In Secs. III and IV, various cases of a polar
medium are considered. It is shown that if the medium
lacks an inversion center, mixed effects of parametric
down-conversion and stimulated Raman emission may
occur, and under certain conditions, may enhance the
pure Stokes gain. Finally, in Sec. V, parametric down-
conversion and stimulated Raman emission in purely
electronic systems are discussed.

'HE theory of stimulated Raman scattering has
been discussed by many authors from different

points of view. ' In a previous paper, ' the coupled-wave
approach' was used to describe the effect. The incident
and the coherently scattered light waves are coupled to
the optical phonon waves via the electronic system of the
medium. With this approach, many details observed in
the experiments on stimulated Raman radiation can be
explained. However, by assuming the absence of an
infrared electromagnetic (em) wave at the vibrational
frequency, we excluded the case of polar media. As a
natural extension of the previous paper, the formalism
is extended to include the infrared em wave. We shall
discuss the generation of Stokes radiation only. In addi-
tion, we shall consider possible stimulated Raman
effect in a pure electronic system (electronic Raman
transitions).

Loudon' has investigated stimulated Raman scat-
tering in homopolar and polar crystals from the view-

point of quantized photon and phonon 6elds. In par-
ticular, he has discussed the scattering mechanism in
great detail. For coherent scattering, however, the
phases of the fields are generally important. In specify-
ing the number of phonons, information about phases is
completely lost. We believe that, with the classical
coupled-wave approach, the problem can be solved more
generally and more thoroughly. The equivalent ap-
proach in quantum theory is by using Glauber's co-
herent states. ' We shall not discuss the scattering
~t=chanism in this paper.

The stimulated Raman effect has been observed in
m~ny liquids, ' solids, ' and gases. ~ In all cases, the

' Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787
(1965), and the references therein.' J. A. Armstrong, N. Bloembergen, J.Ducuing, and P. Pershan,
Phys. Rev. 127, 1918 (1962).

'R. Loudon, Proc. Phys. Soc. (London), A82, 393 (1963);
A275, 218 (1963).

4 R. Glauber, Phys. Rev. 130, 2329 (1963); 131, 2766 (1963).
5 G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz,

D. Weiner, and E.J.Woodbury, Phys. Rev. Letters 9, 455 (1962);
M. Geller, D. P. Bortfeld, and W. R. Sooy, Appl. Phys. Letters
3, 36 (1963).

'G. Eckhardt, D. P. Bortfeld, and M. GeOer, Appl. Ph s.
Letters 3, 137 (1963).' R. W. Minck, R. W. Terhune, and W. G. Rado, Appl. Ph
Letters, 3, 181 (1963).

II. GENERAL FORMULATION

When the number of photons or phonons present is
large, the classical wave description of the photon or
phonon fields can be well justi6ed. "'Let us assume for
the Stokes generation the presence of four waves, three
light waves E~, E„and E, at ~g, ~„and ~, ,and a vibra-

0
kss

Fn. 1. General relationship between the wave vectors of the
laser, the Stokes, and the composite vibrational and infrared
electromagnetic waves as stated in Eq. (4).

' M. V. Hobden and J. P. Russell, Phys. Letters 13, 39 (1964).
ys. 9 J.T. Hougen and S. Singh, Phys. Rev. Letters 10, 406 (1963)."E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).
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tional wave Q„at ar„with frequencies satisfying the re-
lation ~~ ——co,+~„.These four waves are coupled and
governed by the wave equations

82
V'E(—(ci/c') Ei

Bt2
82

= (4 /c') p Q„E,+).2E,E,],
Bt2

82
V'E, —(e,/c') E

Bt2
82

= (kr/c') PyQ, *E(+X2E„*E
R2

82
QQE 4 (~ 4/g2)

Bt2
g2

=- (4x/c') p,2*E,E~*+X,*Q„~],
Btm

8 8
+2Q 4+ ~ 2Q 4+2/~ 8+ Q

Bt Bt2

= (1/p) p.gE)*E,+USE„*].

F is the phenomenological damping constant for the
vibrational wave. All waves are assumed to be linearly
polarized so that the coupling constants are scalar. The
coupling constant X» for the nonlinear coupling between

light and vibrational waves can be described classically
in terms of the Placzek model"

xg ——$(Bn/BQ. )0

where S is the number of atoms (or molecules) per unit
volume, and (Bn/BQ„)0 is the rate of change of the opti-
cal polarizability with respect to the normal coordinate
Q, . The coupling constant X2 is the nonlinear suscepti-
bility of the medium which couples the three light waves.
It is nonvanishing only in media lacking an inversion
center. The quantum-mechanical expressions for both
X» and 'A2 can be derived in the usual way with the elec-
tronic system quantized. '". The light wave and the
vibrational wave at co, are coupled directly. The strength
of their coupling, or the magnitude of X3, depends on
the properties of the normal vibration, such as the de-
gree of ionization, etc. For a strictly infrared-inactive
vibration, the coupling constant X3 vanishes.

We assume that the laser power remains more or less
a constant in the medium. Then the equation for E&

can be eliminated. . The remaining set of equations is
linearized, and the solution takes the form

with

E, expLi(k, r—s),t)],
E.-expLi(k„r —o)„t)],

Q. exp(i(k„r —s)„t)], (2)

E(= h( exp[i(k( r—&o(t)],

k( ——k,'+k„',
k /I k Il .

k' and k" being the real and the imaginary parts of k.
The propagation constant k, is obtained from the
determinant

—k '+s& 'e,/c' (4~~,'/c')XgBg
—).qh~*/p —(k~—k,*)'+(~o'—~,'+i2&o„r)/p

(4m) '/c') 4*8&~ (4m(u„2/c2) Xa+

(4m', '/c') Xmh(—X,/p =0,
(k( k o)2+~ 2~ 4/~2

where the Stokes frequency cu„and the transverse com-

ponent of its wavevector, (k„'+k,„')'~', are regarded as
independent variables; the boundary of the medium is
assumed to be perpendicular to the s axis.

With k, determined, the problem is essentially solved.
If all the coupling terms (o8-.diagonal terms) were zero,
the six roots of Eq, (3) would simply be the propagation
constants for the free E,„E„,and Q„waves, travelling

forward and backward in the medium. However, owing

to coupling between waves, these propagation constants
are no longer the same as those for the free waves,

the amount of change depending on the coupling
strength. Also the eigenwaves are now composite waves

with mixed character.
In all practical cases, the coupling between the Stokes

» G Placzek Marx EIandbuch der Radiologic edited by E Marx
(Academische Verlagsgesellschaft, Leipzig, Germany, j.934), 2nd
ed. , Vol. VI, Part II, pp. 209-374.

I
kg+ Q keg g kg~, y —kg~, y (4)

k,.=k,.'+6K= k(,' k.,*, —
k„,*=k„o—AE,
k,."=k„".

The corresponding vector relations are shown in Fig. 1.

~ N. Bloembergen and Y, R. Shen, Phys. Rev. 133, A37 (1964).

wave L", and the vibrational and infrared waves Q,
and E, is small. Consequently, all the Stokes waves have
propagation constants only slightly diferent from that
of the free Stokes wave, k,o= (cu 'e.'/c')'~' If one of the
Stokes waves has a negative k,", we have the result of
stimulated Stokes generation. Let

k, '=k),—k.,',
k,„'=k)„—k,y',
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We are interested in the solution with

~

AK
~
&&k..',k,.'.

Substituting Eq. (4) into Eq. (3), and neglecting (AK)2
in the diagonal terms, we find

( AK—+i 42,)(6K+D/2k„, P) (AK+ Ii/2k„, ' in„—)
+A, (AK+Is/2kvzo 204v) A2(AK—+D/2k 0P)

+A2( A—K+i42,) A—222 0——, (6)
where

Cklo

k, I) (-ks)

~
n.
ko) k' " 'k' k l

42s=40420s /2ksz 0

42v=40v 0v /2kvz &

D= 000 pk„00„—+$2(d—sf
P (0I 2 kv0 4.2/0v )(0v /g2)

Ak ——(2r40 '/c'k .'k.,'p) [4R i

'
(42r200 240 2/04ksz0k 0)

(
$2Z

, /. k..o*P) (~, (',
A„,= (42r'0Is'0Iv'/C'ksz'kvz"P)4(X2*X2+4&2*) (R ~

'.
Among the three roots of Eq. (6), only those satisfying
Eq. (5) are of interest. Further approximation can be
made for the physical problems encountered. We
assume that the vibrational wave is highly damped
such that

(D/2k. .0Pi»A, '12, n, .

This assumption is often well satisfied for optical
phonon waves, and consequently a perturbation ap-
proach can be used. A complete solution of the problem
requires of course the solution of all roots in Eq. (3). In
addition, the waves must satisfy various boundary

442 p

O2k, II I-k, l

n

) k +—"'k ~ k
c

R2%

FIG. 2. Dispersion relations illustrating coupling between Stokes,
vibrational, and infrared em waves for Case A. The coupling
between E„and Q, is weak. The momentum matching condition
Eq. (8) is given by the dashed lines ( ——) (1) and (2) for
the Stokes beams parallel and antiparallel to the laser beam, re-
spectively. The lines intersect the dispersion curve ( ) for
E„and Q, waves at the resonant points Rj, R2, and R3, where the
Stokes gain is close to a maximum. At R2, the Stokes wave is
coupled to a purely vibrational wave; the coupling to the infrared
em wave can be ignored. At Rl, the Stokes wave is coupled to a
purely infrared em wave; the coupling to the vibrational wave
can be ignored.

k„

FiG. 3.Dispersion relations illustrating coupling between Stokes,
vibrational, and infrared em waves for case B. The coupling
between B„and Q„ is strong and gives rise to a forbidden gap co~.
Assume ng&n, . The Stokes wave parallel to the laser beam is
coupled to a composite E,—Q, wave as shown by the resonant
point Rj. For resonant points R2 and Rg, the Stokes wave is
coupled to a purely vibrational wave and to a purely infrared
em wave, respectively.

conditions. In this paper, however, we are only inter-
ested in the gain coeScient of the Stokes wave.

The coupling between E„E„,and E, can be illustrated
-by the dispersion curves in Figs. 2 and 3. They show,
respectively, the cases where the coupling between E,
and Q, is less and comparable or larger than the line-
widths of the coupled modes. In Fig. 2, the X3 coupling
is effective in admixing E, and Q, waves only in the
immediate vicinity of the intersection of the two
branches. In Fig. 3, a forbidden gap appears as a result
of strong coupling between E„and Q„."The two waves
are thoroughly mixed in the curved region of the two
branches. For each direction of the wave vector k„ the
relation between k„and co. is a straight line given by
the requirements of energy conservation or. =co&—co,

and the momentum conservation

k.'= (k2—k, '( = (0I2/c)(22~k~' —N, k,0)

k.0+40.(N, k.' k„%), (8)

where e~ and e, are the indices of refraction for the em
waves at co& and co„and k's are unit vectors. By specify-
ing the frequency M„or ~„we specify a point on the
line. The effective coupling between the Stokes wave E,
and the infrared and vibrational waves 8, and Q„ is ex-
pected to be the strongest at the resonant points R
where the line intersects the dispersion curve, i.e., the
frequency co, coincides with a resonant mode. The
Stokes gain would then be a maximum. If the inter-
secting point is in the region where the admixing be-
tween E„and Q„ is negligible, the Stokes gain would
come essentially from coupling between E, and pure
E, or Q„waves.

In the following sections, we shall discuss quantita-
tively the two special cases corresponding to Figs. 2

and 3.

"M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954).
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Iii, CASE A. A.g OR/AND A.s&As

The small X3 coupling means that I'ig. 2 applies.
Consider 6rst the case where co, is close to the vibra-
tional mode, but the phase mismatch from the infrared
em mode is large ( I k,"—(&o.'e, /c') I))0), so that
IFI/2k„, '»A 'I' As'~' With the approximations sug-
gested by this inequality and by Eq. (7), the root of
Eq. (6) for the positive Stokes gain is

AE, =in, +)2k„'jPAr/D$ )2k,—gsAs/(F i2k„—'n. )j
[4pk—„'A»3/D(F i 2k„—'n, )]. (9)

In a medium with an inversion center, '" the constant
)j.s vanishes so that As ——A»s ——0. Equation (9) reduces to
that with coupling of Stokes and pure vibrational
waves only':

AE.=in, +2k„,'PAr/D.

The maximum Stokes gain appears at ReD=O (cor-
responding to the resonant point R on the vibrational
branch), and takes the form

—I AE.= —,+k.,opA, / „r.
Even in a medium with no inversion center, the A2

term is still negligible if the frequency co„ is sufficiently
far away from the infrared mode such that

I
F

I
&re„'/c'.

This can be seen as follows. The nonlinear suscepti-
bility X2 is of the order of 10 ' to 10 ' from data on
second harmonic generation. It may become anoma-
lously large only when one or more of the frequency com-
ponents approaches an electronic resonance. The con-
stant 'A& is related to the resonant Raman susceptibility
I,"by X&'——2', I'I," ' which is typically X&'= 10 "or,l .
Take X2= 5)&10 ', co„=10"sec ', and I'= 5&&10"sec '.
The ratio of the Ai term to the Ar term in Eq. (9) turns
out to be

I (D/2k„, 'P)As/DF/2k. ,') in„]ArI—
=6X10 'ID/c'I/IF I. (12)

Usually, we have P(10 'c'. The ratio is much smaller
than 1 if

I
F

I

&
I
D/c'I . This is true for resonant points

R on the vibrational branch, but suKciently away from
the branch crossing point so that IDI =2&v„i' and

IF I
&&a,'/cs. There, even the A»s term in Eq. (9) is

negligible. The coupling constant X3 is related to the for-
bidden gap rv, by 4rrkss=I (res+&a,)'—&os'j. For the pres-
ent case, since ID/2k„, 'pI'&)As, we have Xs«(~,I')'I'.
The ratio of the Ai term to the Az term in Eq. (9) is

I A»s/I (F/2k. .')—~&Ar I

=4(ArAsAs)' '/I (F/2k. g') in.
I
Ar-

=0.08(ro, '/c'
I
F

I ) I
)I,s/(ro. I')"']. (13)

Therefore, for
I
F

I
&&o.'/c', the A»s term is also negligi-

'"Note ad'ded ie proof. In a medium with an inversion center,
a transverse vibrational mode is Raman-inactive from symmetry
consideration. This means that Ai also vanishes. In general, how-
ever, we can have A»0 if the mode is not purely transverse.

ble. The amplitude ratio of F.„F.„, and Q, for the com-
posite wave corresponding to the eigenvalue hE, of Eq.
(9) can easily be found, but is too lengthy to be repro-
duced here. The wave has mostly Stokes character, but
has a slight admixture of vibrational character, and a
much smaller portion of infrared em character.

%'hen R on the vibrational branch moves towards the
branch crossing point, the factor

I
F

I gets smaller, and
the A»3 term 6rst becomes relatively more important.
It helps the Stokes gain whenever F is negative. If

I
F

I

becomes so small that IF I(AP', or if the resonant
point R is on the infrared em branch, the assumption
for deriving Eq. (9) no longer holds. There are now two
eigenvalues from Eq. (6), both of which may give posi-
tive Stokes gain

AE. = —(-,' )+-,'L '—4bj' ', (14)

a= i(n.+n—,)+(F/2k„') (Ar A—s Ai)—/(D/—2k,.'p),
b = in, f(F/2—k„,') i n, j+A—s

—(A Ir(F/2k. ,') —in„j+in,As —A»)s/( D/ 2k„'P) .

If the frequency co, is far away from the vibrational
mode, such that

I Ar/(D/2k„, 'P)
I
«

I
(F/2k„, ') in„ I, —

we have essentially the case of parametric down-
converters. "The problem reduces to one with coupling
between E, and E, only since the coupling to the vibra-
tional mode can be neglected. Kith previous numerical
values for the variables, the gain coe%cient for this case
is comparable with the Stokes gain given by Eq. (11).
The gain can be higher if co, is in the immediate vicinity
of the branch crossing point because then the coupling
between E, and Q, also affects the gain. However, for
the resonant point R in this region, we must have an
anisotropic medium with e~&e, because of the dispersion
in the index of refraction. In a cubic crystal, we have
n&=n„' the point R always appears to the right of the
branch crossing point.

IV. CASE B. A.g»A. I, A.2

Figure 3 applies when As&
I
or, /Ik. .PI '. Again we are

interested in ending the Stokes gain near resonant
points. For IF I/2k»', IDI/2k»'p»A '~' rAi'" the root
of Eq. (6) corresponding to the positive Stokes gain is

AK, =in.+(1/gpss ) (A I(Fr/2k„, ') —in„$
As(D/2k, p p)—A»3), (15)—

where

y~ ——f —I D+pF —i2k„,'pn, j
+DD—PF+i 2k..'Pn. )'

—16k. 'P'As]'Is)/4Pk. ,'
gpss = (D$F i2k„'n.)+4k„—g"PAs)/4Pk„, "
Equation (13) shows that the maximum Stokes gain

'4 R. H. Kingston, Proc. I. R. E. (Inst. Radio Engrs. ) 50, 472
(1962), N. M. Kroll, Phys. Rev. 127, 1207 (1962).
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occurs near the points where

Re(y+y ) =Re(D[F i2—k„Pn„j+4k„"PAp}=0. (16)

This is just the dispersion equation (~„versus k, ) for
the two branches of the dispersion curve in Fig. 3. The
solutions of Eqs. (8) and (16) therefore correspond to
the resonant points R. The gain at these resonant points
is given by

—ImAK. „=—n,+(k,.PPAg

+[(pp, I'n.+k,.'PA p) (4k „g'Ap/F') j 2A»p—Pk„g"/F }
X 1/[pp. I'+(o.«.+k.,PPAp)(4k. ."n./F') j. (17)

The true maximum gain for a fixed direction of Stokes
waves is of course obtained by maximizing the imaginary
part of AK, in Eq. (15) subject to Eq. (8), but is ex-
pected to be close to that of Eq. (17). Because of the
strong dispersion of the F.„Q,wav—e (Fig. 3), both the
Stokes frequency and the Stokes gain change with the
propagating direction of the Stokes wave. Unfor-
tunately, there is no simple analytic expression for the
phenomenological damping constant I'(pp, ) as a function
of the frequency M, . It is therefore de.cult to predict
quantitatively how the gain varies with the Stokes
direction.

In a medium with an inversion center, Eq. (17)
becomes

ImAK„= n+—(k PPA

[ „I'+(4k.,'n„/F')( .I' .+Pk.,'A )j (18)

I.oudon has discussed this case using the quantized-
field picture. ' He has obtained essentially the same re-
sult as Eq. (18), which shows that the Stokes gain is re-
duced by coupling between vibrational and infrared
em waves. Assume resonant points R on the lower
branch of Fig. 3. For Stokes waves in the backward
direction (antiparallel to the laser beam), the point E
always appears on the part of the dispersion curve
which has nearly pure vibrational character. We have

~
F/2k. .'~ '))Ap, n„, and Eq. (18) reduces to the form of

Eq. (11).As the Stokes wave gradually approaches the
forward direction, the resonant point R now cor-
responds to a wave with more and more infrared em
character. The factor ~F

~
gets smaller, and hence the

A3 coupling term becomes relatively more important in
reducing the Stokes gain. The Stokes frequency u,
also increases accordingly, while the damping constant
I'(ra, ) often increases with decrease of co„. Therefore,
the Stokes gain close to the forward direction would

appear to be smaller than that in the backward direc-
tion. For Stokes waves very close to the forward direc-
tion, the straight line of Eq. (18) may even fail to inter-
sect the dispersion curve to give a resonant point if

si sg('sy(1+4pl'Xp /(op py )

as in the case of cubic crystals. In noncubic crystals, the
line may still intersect the dispersion curve as long as e&

is su%ciently di6'erent from e,.' It would intersect the
upper branch in Fig. 3 if n~& e„and the lower branch if
e~&e, . To see how strongly the A.a-coupling aGects the
gain in this case, we assume a forbidden gap ~,=ppp/10.
Assume also e~&e„and for a resonant point
~F

~

=-',pp. '/c', pp, =2cop/3, a)„/I'=200, and n„=10 Pop./c.
We find from Eq. (18)

—ImAK„= —n.+[k„.'PAz/o)„1'(1+0.005)],

which shows that the effect of the Ap term in Eq. (18) is
small. It becomes more important for smaller ~F~,
larger co„and larger o,

In a medium which lacks an inversion center, the
Stokes gain at the resonan, t points is given by Eq. (17).
Assuming the same numerical values for the variables
) ~, ) 2, co„and F as in Sec. III, we And that the ratios
of the Ap and the A»p terms to the A& term in Eq. (17)
are still given by Eqs. (12) and (13). For ~F

~

&&p, '/c',
the A2 term is again negligible. For Stokes waves
travelling in the backward direction, the A.~23 term
would also be negligible if ~F

~
~op„'/400c' for a reso-

nant point R on the lower branch of the dispersion
curve. The Stokes gain reduces essentially to that of
Eq. (11), since physically the Stokes wave is now
coupled to a nearly pure vibrational wave. For Stokes
waves in the forward direction, the Ay23 term may be-
come comparable to the A~ term. The ratio of the two
terms is —', if we assume ~F~ =xpa&„'/c', ~p=~p/10, and
~,=2&op/3. The denominator of Eq. (17) is still approxi-
mately equal to co,F as has been shown earlier. When the
resonant point R is on the lower branch of the dispersion
curve, we have a negative Ii, and hence a positive con-
tribution to the Stokes gain from the A»3 term in Kq.
(17). For R on the upper branch, the Aqpp term con-
tributes negatively. In the above cases, the correspond-
ing exponentially growing eigenwave has mostly Stokes
character, a small portion of mixed E, and Q, waves
being dragged along. The amount of E„and Q„admix-
ture in the eigenwave can be calculated easily. How-
ever, a qualitative estimate can readily be obtained
from the position of E on the dispersion curve.

We have assumed ~F/2k„'~))Aq'". If the resonant
point E. on the dispersion curve corresponds to a nearly
pure infrared em mode, the quantity F becomes so small
that ~F/2k„p~ &Aq'I'. Equation (14) and the related
discussion in the previous section again apply to the case.
In particular, the vibration wave can be neglected if co.
is far away from the vibrational mode such that
ID/2k *PPI»I2k *PAp/Fl We then have the case of
parametric down-converters. If o.,=e„ the exponen-
tially growing eigenwave contains nearly equal amounts
of E, and E, waves. The gain coefficient is a function of
the nonlinear susceptibility X& coupling the E, and E,
waves. It increases anomalously when the infrared fre-
quency co, approaches a narrow electronic resonance as
we shall now discuss.
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82
= (4s-/c') [XsE&E„*+X,

I
E&

I
'E 7

Bt2

82
V2E *-(.*/")

gt2

82
= (4n/c') P,2*E&*K+x.*~R

~

'Eo*7
Bt2

(19)

where we have included the third-order nonlinear
susceptibilities X, and X„.The quantum-mechanical ex-
pression of these nonlinear susceptibilities can also be
derived in the usual way. "Because of the typical reso-
nance dispersion, X, and X2 become complex and anoma-
lously large as the frequency co, approaches an elec-
tronic resonance. Exactly on resonance, the magnitudes
of their imaginary parts are inversely proportional to
the half width F of the resonance transitions.

Equation (19) shows that the E. and E„waves are
coupled by the P 2 terms. In a medium with an inversion
center, we have )2=0, and hence the two waves are not
coupled. The pure Stokes wave is given by

where
E, exp[i(k, .r —co,t)7,

X =X o+~K k o=(~ ".'/")'I'
gK'—p,—= ((o,'/2k, .'c') [ie,"+4sX.(@~'7.

(20)

The Stokes gain is

g,
—=—Imp, =((o,'/2k„'c')(ie, "—47r&,"~R~'), (21)

where X,"=I', is a negative quantity, which has its
absolute maximum inversely proportional to I' when

or, is at the electronic resonance.
Crystals doped with rare-earth ions may possess

narrow electronic states in the infrared range. Elliot
and Loudon" have shown that for spontaneous Raman
scattering, the probability of electronic Raman transi-
tions in these systems can be equal to or better than that
of vibrational Raman transitions in a molecular system.
Then, for stimulated Raman eGect, the Stokes gain in
an electronic system can also be equal to or larger than
that in a molecular system if the corresponding attenua-
tion or damping factors are the same.

In systems lacking an inversion center, the nonlinear
susceptibility X2 does not vanish. Assuming wave solu-

~5 R. J. Elliot and R. Loudon, Phys. Letters 3, 189 (1964).

V. PARAMETRIC DOWN-CONVERSION AND
STIMULATED ELECTRONIC RAMAN EFFECT

Consider the case of coupling of three waves E&, E„
and E„ the vibrational wave being neglected. The
medium can be regarded as a pure electronic system.
Assuming E& constant, we obtain the coupled equations,
for E, and E. as follows:
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V'E, —(e,/c') E,

Bt2

tions with wave-vector rela, tions Eq. (4), we And

(~~)'+b. v.)(~-~) b.~.—~ )=o,
where

(22)

[g.~(g.'+—4~ ) ~ 7.
I& ~2))g, ', Eq. (26) becomes

(26)

~&+=--'[(~v'& +-,'g, )~(g, /4g~, )7.
This is the case of parametric down-conversion where
the gain is mostly due to direct coupling between E,
and 8,. Since the gain is larger than g„ the process is
also likely to take place.

VI. CONCLUSION

Spontaneous Raman t&ans&talons in polar systems
(GaP)' and in electronic systems (Pr CI3)' have been re-
ported. They involve some sharp, intense peaks of half
widths of several cm ', denoting a value of I' nearly the
same as that of a pure vibrational wave in some non-
polar systems in which the stimulated Raman eGect
has been detected. It is concluded that if the laser and
the Stokes waves have sufhcient transparency in such
media, the stimulated Raman eGect is likely to be
observed.
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(~Z)«k.:,
& = (~ '/2k-'~') [~.*—(k."~'/M. ')+4 x.*

~
E~ )

'7.
The solutions are

~&+=2((v —7 )~[(v.+T.)'—4~27}'", (23)

with the corresponding amplitude ratio

E,/E. = (2m', '/k„'c')XgE)/(y, —hE'~) .

If the waves are linearly mismatched such that

k "=(k(—k ')'Ace 'e '/c' and (y. ~))A2'"

Eq. (23) can be approximated by

~&~=&;~L~ /(v. +v.)7 (25)

The eigenwave corresponding to 3E+ has mostly Stokes
character with a gain coeKcient (—ImhE~). This gain
reduces to Eq. (21) when the linear mismatch is so
large that the A2 term in Eq. (25) can be neglected, as is
the case where E, and Ji, are essentially decoupled.

For a fixed Stokes frequency, the waves can be
linearly matched for a special Stokes direction. If, in
addition, the infrared frequency I, is exactly on a nar-
row electronic resonance, both X, and X2 attain their
resonant values and X, can be neglected. Equation (23)
then reduces to


