PHYSICAL REVIEW

VOLUME 138,

NUMBER 6A 14 JUNE 1965

Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction
Factors and Partial Quenching of Spin-Orbit Interaction

Frank S. Ham
General Electric Research Laboratory, Schenectady, New York
(Received 25 January 1965)

It is shown that the dynamical Jahn-Teller effect in a complex having orbital degeneracy may partially
quench spin-orbit interaction, the orbital parts of the Zeeman and hyperfine interactions, and other orbital
operators governing response to perturbations such as strain or applied electric fields. Such dynamical
quenching thus decreases the value of orbital reduction factors usually attributed in paramagnetic resonance
studies to covalent bonding, without necessarily causing anisotropy in the spectrum of an individual com-
plex. The dynamical Jahn-Teller effect may also substantially enhance various second-order effects. Such
dynamic effects thus may make important changes in the parameters of the spin Hamiltonian without
changing its symmetry. It is shown that the dynamical Jahn-Teller effect accounts qualitatively for un-
usual features in the spectra of interstitial transition-metal ions Cr?, Mn*, Mn?, and Fe* in silicon and that
it is probably of importance equal to or greater than that of covalent bonding in the interpretation of the
spectrum of Fe?+ in MgO and CaO. A mathematical analysis of the dynamical effects is given for an orbital
triplet state in interaction with a doublet or triplet vibrational mode, and some results are given also when

the coupling is with the phonon continuum.

I. INTRODUCTION

S Jahn and Teller!:? showed, an electronically de-
generate state of a nonlinear complex is unstable
(except in the case of simple Kramers degeneracy) with
respect to some asymmetric nuclear displacement which
lifts the degeneracy. If the coupling between the elec-
trons and such displacements is sufficiently strong rela-
tive to the zero-point energy of the associated vibra-
tional modes, the complex undergoes a static distortion
to a new configuration of minimum energy.’=5 If the
coupling is less strong, or if the zero-point vibrational
energy is comparable with the energy barrier separating
equivalent configurations, no static distortion occurs,
but the complex exhibits a coupled motion of the elec-
trons and the vibrational modes.—8 This latter situation
is referred to as the dynamical Jahn-Teller effect.9-1
The dynamical Jahn-Teller effect has been the object
of a number of studies!>~?¢ in the time since its unusual
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features were first pointed out by Abragam and Pryce,?’
Longuet-Higgins, Opik, Pryce and Sack,® Moffitt and
Liehr,® and Moffitt and Thorson.” However, little atten-
tion has been given within this dynamical regime to the
possibility that the Jahn-Teller coupling may change
the effect of the spin-orbit interaction, as well as other
interactions, in those situations in which spin-orbit
interaction is not quenched by static crystal fields. Such
changes and their effect on paramagnetic resonance
spectra (including several striking effects for which
there is now some experimental evidence) will be the
topic of this paper; we shall be concerned in particular
with the case of a Jahn-Teller interaction that is some-
what stronger than the spin-orbit interaction yet not so
strong as to produce a static distortion. The opposite
situation has been considered by Opik and Pryce,* Van
Vleck,? and Liehr,? who showed that certain complexes
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would be stablized by a strong spin-orbit interaction
against a weak Jahn-Teller distortion.

We consider a complex in a state which, in the sym-
metrical configuration, has orbital degeneracy with an
associated orbital angular momentum, as well as spin
degeneracy. We find that the Jahn-Teller interaction
partially quenches the orbital angular momentum even
though it is insufficiently strong to produce a static
distortion or to introduce anisotropy into the paramag-
netic resonance spectrum. This partial quenching shows
up as a reduction in the magnitude of the spin-orbit
splitting of the state, and in reduced orbital contribu-
tions to the magnetic moment, hyperfine interaction,
etc., of the spin-orbit levels.

Such “orbital reduction factors” in matrix elements of
orbital angular momentum or spin-orbit interaction of a
complex as compared with the appropriate free ion are,
of course, well known experimentally and have been
discussed extensively.?—35 Ordinarily, however, they are
the direct result of the delocalization of the electronic
wave function because of covalent bonding (spin-orbit
interaction may, of course, also be changed by expansion
or contraction of the radial wave function). Their size
has been taken as a measure of the importance of co-
valency. Our first conclusion, therefore, is that in ap-
propriate cases the dynamical Jahn-Teller effect simu-
lates the effect of covalent bonding in reducing the
magnitude of certain parameters of the system. As we
shall see, the Jahn-Teller effect may on occasion produce
very much greater reductions in such parameters than
can reasonably be attributed to covalency.

The possibility that dynamical Jahn-Teller effects
may change the values of these orbital reduction factors
has been for the most part overlooked in past studies of
the Jahn-Teller effect and of such complexes. McConnell
and McLachlan!?:18 have noted, however, in their work
on the negative radical ion of benzene that the dynami-
cal Jahn-Teller effect reduces matrix elements of orbital
angular momentum associated with electronic motion
around the ring. Also, in considering “inversion split-
ting” (dynamical Jahn-Teller effect) of complexes of
transition metal ions with a d' configuration, Bersuker
and Vekhter? have taken account of the reduced over-
lap matrix element between the different equivalent
configurations in calculating matrix elements of orbital
angular momentum and spin-orbit interaction. No
systematic presentation of such dynamical quenching
effects has, however, to the best of our knowledge been
undertaken before the present work.

In partially quenching the orbital angular momentum
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(1;351%%. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549
# W. Low, Paramagnetic Resonance in Solids (Academic Press
Inc., New York, 1960).
3 W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961).

S. HAM

L of a degenerate state, the Jahn-Teller interaction leads
to finite matrix elements of L between the ground state
of the coupled electronic-vibrational (“‘vibronic”) sys-
tem and excited states located higher in energy by an
amount ~nhw (n=1, 2, 3, - - +), where #w is the energy
of the appropriate oscillator (phonon). Accordingly,
there are second-order corrections from these relatively
low-lying excited states to the spin-orbit splitting, g
shifts, etc., in the ground state. Thus second-order
effects may be enhanced by the Jahn-Teller interaction
over what is expected from coupling to excited states
of the electronic system in the symmetrical configura-
tion. In the limit of a static Jahn-Teller distortion these
second-order effects go over into the conventional
g shifts, etc., for the distorted configuration.

There are a number of experimental situations to
which these considerations are relevant, and in several
of these, the dynamical Jahn-Teller effect offers a plausi-
ble explanation for otherwise puzzling data. Most
striking are the cases of the interstitial transition-metal
ions Cr?% Mnt*, Mn and Fe* in silicon, the paramag-
netic resonance spectra of which were studied by Ludwig
and Woodbury.36—38 These ions are at sites of tetra-
hedral symmetry, and the ground state of each is an
orbital triplet (57 for 3d%, 4T’y for 3d7). Their resonance
spectra show a remarkably large quenching of the
orbital contribution to the Zeeman interaction as well
as evidence of a strongly reduced spin-orbit splitting and
enhanced second-order effects, none of which has been
satisfactorily accounted for on the basis of covalent
bonding. We believe that these ions offer the clearest
examples available so far of the effects of dynamical
Jahn-Teller quenching.

Other complexes having orbital triplet ground states
in cubic symmetry are Co?r:MgO,? Fe?t: MgO,* and
Fe?t:Ca0.4 The spin-orbit stabilization of Jahn-Teller
effects in these complexes has been discussed by Van
Vleck,?® and orbital reduction factors less than unity
have been attributed by Low?" % and by Shuskus* to
covalency. We believe that the latter identification is
correct for Co?t:MgO, but that for the two Fe** com-
plexes the dynamical effects may be of at least com-
parable importance to those of covalency and probably
are dominant for Fe?t:CaO. The ions Co?* and Fe*t
are of especial interest in the present connection for the
historical reason that one justification for their study
in octahedral coordination in MgO was the hope that
they might offer examples of the Jahn-Teller effect. No
such effects for either ion were ever identified, however.
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tbid. 120, 2277 (1960).
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It will be clear from this paper that such effects appear
in fact to be present and significant, at least for the
Fe?t) and that their supposed ‘“absence’” stemmed from
a failure to recognize the form such effects would take
in the dynamical Jahn-Teller regime.

The purpose of this paper is to set forth and sub-
stantiate the qualitative features of the expected
dynamical Jahn-Teller effects, using such mathematical
models as permit a rigorous analysis of simplified cases.
From these, the general behavior of the effects in
realistic cases may be inferred. It is not our purpose here
to provide a detailed interpretation for any ion, nor to
calculate orbital reduction factors for any realistic case.
Such realistic calculations are not yet possible, and more
detailed interpretation of existing spectra will be
attempted in a later publication.

The dynamical regime with which we shall be specially
concerned in this paper corresponds to a Jahn-Teller
interaction which is somewhat stronger than the spin-
orbit interaction (so that one is justified in treating the
former first and then dealing with nondiagonal matrix
elements of the latter by perturbation theory). Yet, we
shall assume that the reduced spin-orbit splitting is still
greater than the splitting of each spin-orbit level in an
applied magnetic field. As long as this is the case, each
spin-orbit level responds to a magnetic field (and, simi-
larly, to other perturbations) qualitatively the same as
it would in the absence of the Jahn-Teller interaction—
for example, in cubic symmetry a spin-orbit triplet
(J=1) gives a cubically symmetric spectrum for each
single complex despite the Jahn-Teller interaction. If
the reverse were the case, the spin would couple more
strongly to the magnetic field than to the residual orbital
angular momentum; the spectrum then has g~2 and is
closely related to the superposition of spectra for the
various distorted configurations of the complex.

The treatment given in this paper will be confined to
the case of an orbital triplet (7', or T2)*** in cubic or
tetrahedral symmetry. The effect of partial quenching of
L will, of course, occur, too, in cases of lower symmetry,
if L is not already quenched by crystal fields. The case
of the cubic orbital doublet (E) is of less interest in the
present work because L is already quenched by the
cubic crystal field. The doublet is, of course, the case
that has excited most of the past interest in the dynami-
cal Jahn-Teller effect because of the available spectra
for nearly octahedral Cu?* (3d%) complexes*~; our

2 We use the notation of Mulliken [R. S. Mulliken, Phys. Rev.
43, 279 (1933); or see Ref. 437 for the irreducible representations
of the point-symmetry groups.

4 7, S. Griffith, The Theory of Transition Metal Tons (Cambridge
University Press, Cambridge, 1961).

4 B. Bleaney and D. J. E. Ingram, Proc. Phys. Soc. (London)
A63, 408 (1950).

4 D. Bijl and A. C. Rose-Innes, Proc. Phys. Soc. (London)
A66, 954 (1953).

46 B. Bleaney, K. D. Bowers, and R. S. Trenam, Proc. Roy.
Soc. (London) A228, 157 (1955).
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paper thus has no direct relevance to the interpretation
of these Cu?t or related spectra.

Our analysis is divided into several parts. In Sec. IT
we derive the aforementioned dynamical effects for an
orbital triplet (7'; or T'2) coupled to a doubly degenerate
E vibrational mode. This case is very simple mathe-
matically, as was noted by Moffitt and Thorson.”
Accordingly, complete formulas can be obtained for the
different effects for an arbitrarily strong Jahn-Teller
interaction, and the physical origin of these effects may
be seen readily; this is the only case in which a full
analysis can at present be given rigorously. Thus, while
this case is not a realistic one for quantitative applica-
tion to practical situations, since it neglects, among
other things, all coupling to the T vibrational modes,
it is a good one for setting forth the general features of
the expected effects.

In Sec. III we consider the mathematically more
complicated problem of the orbital triplet coupled to a
triply degenerate T'; mode. We prove that the general
features of the quenching are similar to those found with
E mode coupling, and we suggest approximate formulas,
but we are unable to give rigorous formulas for this case
or for the case of both E and T’y mode coupling.

For a complex in a crystal there is not just a single
set of T and E vibrational modes which is involved in
the dynamical Jahn-Teller effect, but in reality the
entire phonon spectrum. In Sec. IV we formulate this
problem in the simplified case in which the triplet is
assumed to interact only with the £ component of the
phonon spectrum, and we write down without deriva-
tion the expressions for the energy shift and quenching
factor. A more complete treatment of this problem will
be given elsewhere; the present results suggest the
general form and are useful in permitting estimates of
the strength of the Jahn-Teller interaction with the
acoustic branch of the phonon spectrum when data are
available of the effect of static strain on the resonance
spectrum.

The paper is concluded with a discussion and generali-
zation of our results and with a survey of their applica-
bility to cases of experimental interest.

II. ORBITAL TRIPLET (T, OR T;)—E
VIBRATIONAL MODE

A. Vibronic States and Matrix Elements

We consider first an orbital triplet electronic state?’
belonging to the irreducible representation Ty or T of
the cubic point group O or the tetrahedral group T, in

47 Throughout the paper we use as a basis for the triplet state
the real functions ¥, =y, Y2=y,, Ys=y; which are taken to trans-
form, respectively, for T2 (0 or Tg) as yz, 2%, xy, for T, (0) as x, ¥, 2,
or for T1(Ta) as x(y2—22), y(z2—2a?), z(x®—4?), where %, v, 2,
denote Cartesian coordinates with respect to the cubic axes. The
modes g, Q. are chosen to transform as [22—3%(x2+4?%)] and
(V3/2) (x2—?). Accordingly, matrices such as &, & in (2.2) take
the specific form given.
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interaction with a single pair of vibrational modes Qj, Q.
belonging to the representation E. The vibronic Hamil-
tonian (neglecting for the moment all effects associated
with spin) is given’ by

3= Eo9+(1/2u)[Po*+P-+uwX(Qe?+02) 19
+V[Qe8s+Qe8]. (2.1)

Here Py, P, are the momenta conjugate to Qp, Qc; p is
the effective mass of the mode and v its angular fre-
quency; V is the Jahn-Teller coupling coefficient; and
the matrices 9, &, and &. are, respectively, the unit
matrix and

+L 0 0 —V3/2 0 0
&=| 0 +% 0|, &= 0 +V3/2 0
0 0 —1 0 0 0

(2.2)

The energy of the degenerate state in the symmetrical
configuration is Eo. For simplicity we assume that the
electronic states y;(x) are independent of Q, and we
ignore coupling to other electronic states.

The simplicity of this case (as contrasted to the other
Jahn-Teller problems we have to consider) lies in the
fact that the matrices appearing in (2.1) commute and
consequently can be simultaneously brought to diagonal
form. Accordingly, as noted by Moffitt and Thorson,”
the vibronic eigenfunctions ¥,,(Q, ) are products of one
of the electronic functions ¢;i(s) (4=£, », {) and simple
harmonic oscillator wave functions for a displaced two-
dimensional oscillator, the equilibrium position of
which is

Qoi=—Veis/uw?, Qu=—Vei/uw?,  (2.3)

where e;p or e; is the appropriate diagonal component
of the matrix & or &.. The potential energy of the
oscillator at this position of equilibrium is lower than
E, by the “Jahn-Teller energy” E;r, which in this case
is given by Ejr=V?/2uw?. We obtain therefore

V?),(zg

Vei
Y ) L (s
uw? e
(i=§, 9, {) and the corresponding energy
Ein=Ey—(V?*/2u0")+ (no+ne+1) ho
ng, ne=0,1,2,3, -+, (2.5)

where F,(y) is a standard harmonic oscillator function
which may be defined by the generating relation

exp(—S?4-2Say—3a’y?)

w F,
=qllig-12 3 ®
n=0 (m!)1/2

(5v2), (2.6)

with a= (uw/#)/2.

The vibronic spectrum (2.5) in this case remains the
same as in the absence of the Jahn-Teller interaction,
except for the displacement —V?/2uw? common to
all states. In particular, the vibronic ground state

S. HAM

(ne=mn=0) remains a triplet for arbitrary sterngth of
the Jahn-Teller coupling,*® and all excited states remain
separated from the ground state by at least the finite
excitation energy #w.

However, the equilibrium position (2.3) for the dis-
placed oscillators is different for the three different
electronic functions ¥:(x) corresponding to the three
values ¢=§, #, {. As this separation increases in propor-
tion to V/uw? the region of overlap between correspond-
ing oscillator states associated with different electronic
functions is diminished, and matrix elements between
such states fall off accordingly.

Matrix elements of various operators between the
vibronic eigenstates (2.4) may be evaluated explicitly
using the generating relation (2.6) for the harmonic
oscillator functions. Consider an electronic operator O
which is independent of Qg, Q.. Then a vibronic matrix
element of O is simply the product of an electronic
matrix element and the oscillator overlap integrals:

<‘I’iﬂone[ 0 I \I’J'no'n-’>

= (Y| O|¥)(ing| jna'Yo(ine| jne)e, (2.7)

where
(ine| jna’ Yo

® Ve Vejo
=/ onFno(Qe"I“_—;‘)Fno’ <Q0+ .

e M

). e

and similarly for (in| jne)e. In particular, matrix ele-
ments in which one of the states is in the ground-state
triplet involve

Va\»
(10| jnyo=2""12(n )~V 2(—*) (ejo—ein)™
pco®
[ 1 V%2
Xexp| ——
P 4

(eia—ejg){l . (29)
#2w4

An electronic operator 94 that has only off-diagonal
matrix elements among the states ¥z, ¥y, ¥r, accordingly
has matrix elements within the vibronic ground-state
triplet

V2

3 V22
(Wioo| 04] Fjo0)= (i Oa|¥s) exp[—-— ]
4 pwt

= (Y| 04|¢;) exp[—3E 7/ 2hw].

These are diminished from their value in the absence of
the Jahn-Teller coupling by the exponential factor, the
argument of which is proportional to the square of the
difference in the displacement of the oscillators for the
different states or to the ratio of the Jahn-Teller energy

(2.10)

48 The treatment of Ref. 24 errs in concluding that “inversion
splitting” lifts the threefold degeneracy of the T'; ground state
in this case. Such a splitting is impossible in a system having
cubic symmetry.
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Ejr to sw. Thus the direct effect of 04 within the
ground-state triplet of the vibronic system is gradually
quenched as the overlap of the oscillator wave functions
for the different states diminishes as the strength of the
Jahn-Teller interaction is increased. The exponential
factor in (2.10) is the orbital reduction factor caused by
dynamical Jahn-Teller quenching of the operator O4.

On the other hand, an electronic operator Oz having
only diagonal matrix elements (in terms of ¢, ¥y, ¥;) is
in this case unaffected by the Jahn-Teller coupling:

(‘I’inm[ OBI \I’jn’m’>= (‘//zl OB 1¢i>6ijann’6mm’ . (211)

We must also consider second-order perturbation
effects on the ground-state triplet arising from couplings
with the excited vibronic states. Because of (2.11), such
couplings arise in this case only from off-diagonal
operators 94, 04+, which may belong to either of the
representations 7 or 7. We have to evaluate sums of
the form

(Ti00| Oa47| Troo)
, (00| 04| Cinm){Winm| Oar| Wroo)
hw(n+m)

for the two cases j=Fk and j>£k, where the prime on the
summation indicates that states with n=m=0 are
excluded. The relation (2.12) serves to define an opera-
tor ©44+ with matrix elements only within the ground-
state triplet. We find, using (2.7) and (2.9),

(Wioo| 0| Fi00)= — ()™ g Wil 04l 04 [¥5)

——T ¥

i#j,k n,m

(2.12)

3 Vi (3V%?
I

Xexpl:——
2 plwt 2u%wt

) (2.13)
and for the case j% (where i< or k)

(Wjoo| Oa4r | Yroo)=— (hew) (i | O |Ws)(¥i| Oar | i)
3 Va2 3V %2
Xexp[-—— ]G( ) , (2.14)

2 ulwt 420t

where G(x) is defined as

© xn z 1
Cl)=3 —— / (e —)du.  (2.15)
w=1uXn! Jo u
G(x) is equal to the sum
yﬂzm
D — (2.16)
nm (n+m)nlm!
if y-+2z=ux, and it has the asymptotic expansion
e® 1 22 22x3?
G(x) ~ —{14+—+ - } } (2.17)
z>to g x 2% 3hd
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TaBLE I. Values of G (x) and related functions.

X G(x) G (x) e*G (x/2) e /2

0 0 0 0 1.0
0.5 0.570 0.346 0.779
1.0 1.318 0.485 0.210 0.607
1.5 2.319 0.517 0.472
2.0 3.684 0.499 0.178 0.368
3.0 8.26 0.411 0.115 0.223
4.0 17.68 0.324 0.067 0.135

Representative values of G(x) and e~%G(x) are given in
Table I for values of x near unity.

These formulas will suffice to permit calculation in
this case of the energy of states derived from the ground-
state vibronic triplet when spin and spin-orbit inter-
action are included, and also to evaluate the response of
these states to external pertubations.

B. Quenching of Orbital Angular Momentum
and Spin-Orbit Interaction

The electronic orbital angular momentum L is an
operator of the type 94 with only off-diagonal matrix
elements between the states ¥, ¥y, ¥r. Accordingly, its
matrix elements within the vibronic ground-state triplet
are reduced as in (2.10):

3
(00 I Ly l Vjoo)=(¥i| L l ¥i) expl: ";

2(12

4] . (2.18)

Mow

Thus, the orbital angular momentum of the ground-
state triplet is partially quenched by the Jahn-Teller
interaction. This quenching may be essentially complete
if the Jahn-Teller interaction is strong enough, as is, of
course, obviously so for the large static tetragonal dis-
tortion which is the limiting form of a strong Jahn-Teller
interaction in this case. In the dynamical regime, when
the overlap of the oscillator wave functions for the
different states is still appreciable, the quenching is
only partial.

When we include the spin S of the electronic state, we
must add to the Hamiltonian (2.1) the spin-orbit inter-
action, which we assume takes the simple form

Feso=MAS-L. (2.19)

This complicates the solution of the vibronic problem
because JCgo is not diagonal in terms of Yy, ¥n, ¥¢; how-
ever, if JCgo is sufficiently small relative to the Jahn-
Teller interaction, we can treat 3Cso successfully by
perturbation theory using the exact solutions (2.4)—(2.5)
of the vibronic problem without spin.

Of course, if spin-orbit interaction is large compared
with the Jahn-Teller interaction, we should reverse this
procedure, solve the spin-orbit problem first, and then
take account of the Jahn-Teller interaction. This is the
situation considered by Van Vleck?® and Liehr,?® who
showed that in appropriate cases a strong spin-orbit
interaction could stabilize the system against a Jahn-
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Teller distortion. In our present analysis, on the other
hand, we shall be concerned primarily with the former
situation with the Jahn-Teller interaction stronger than
spin-orbit interaction.

Since 3Cgo is linear in L, its direct effect within the
ground-state triplet is reduced by the same exponential
factor as in (2.18). Defining an Hermitian operator
L= (L,,L,,£;) in terms of its nonzero matrix elements

<‘I,50°I oG"l \I’ﬂ00>= <\I'q00| aezi ‘I’g-oo)
=(Yro0| Ly ¥eoo)=—1 (2.20)

[apart from the Hermitian conjugate of these all other
matrix elements of € are defined to be zero], we can
thus express the direct effect of spin-orbit interaction
within the vibronic ground state by the equivalent
operator

5Cso'=)\’S'2, (2.21)
with
f=X\ 3V (2.22)
N=ANgL epr:——~ :| . .
§ 4 plwt

Here g1, is defined in terms of a typical nonzero electronic
matrix element of L

gr=i(We| L |¥) .

There is, however, a second-order effect of 3Cgo within
the ground state, since 3Cgo has matrix elements also
with excited vibronic states. Using (2.13)-(2.14), we
obtain its operator equivalent

3Cso®=-+K1(L-S)?

(2.23)

+Ko( L2524+ £,25,24£.25.2), (2.24)
with
Ki=—(Ngt*/ ) fa,
Ko=—(\g1¥/ h)(fs— fa) (2.25)
where
P [ 3 V2a2:|G (3 Vzozz)
=exp| —— - ,
P 2 ulwt 4 “2“,4
(2.26)

3 Vi? G 3 Vi?
= e — - .
fo Xpl: 2 y2w4l: (2 uzw“)

3Cs0® has the same form as second-order terms arising
from spin-orbit coupling to other states of the electronic
system in a cubic crystal field. However, K and K, as
given by (2.25)-(2.26) may be substantially larger than
corresponding coefficients*? derived from the cubic field
splitting because of the relatively low excitation energy
to the excited vibronic states. This is easily seen from
the values of ¢7#G(x) and e*G(x/2) given in Table I,
and from expected values for the coefficient (\2g.2/%w),
on the assumption that #w is much smaller than the
cubic field splitting 10Dg.

The relative energies of the spin-orbit levels derived
from the ground-state vibronic triplet depend on the
relative magnitudes of \’, K, and K. If N’ is much larger
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than Ki, K, the levels are grouped according to the
eigenvalues |S—1|, S, (S+1), of the effective total
angular momentum operator (where £=1)

and we have
E(J+1)—E(J)=N({J+1). (2.28)

Only the term proportional to (£.25.2+ £,25,2+ £.25.?)
in 3Cs0® (ignoring spin-orbit terms of third order or
higher) splits levels of given J (for J2>2) or couples
states of different J. Thus so long as N>>K;, K, the
levels are much the same as in the absence of Jahn-Teller
coupling, but the Jahn-Teller interaction reduces the
direct spin-orbit splitting in replacing A by A’ and en-
hances the second-order splitting of levels with /2> 2 in
proportion to K. ’
If, however, K; and K, should be comparable with or
greater than \’ ,the spin-orbit levels may be distributed
quite differently from what is found in the conventional
crystal-field model for an ion in cubic symmetry. This
situation will occur if E;r/#w is sufficiently large that
N in (2.22) is suitably quenched. The energy levels in
such a case may usually be worked out fairly simply
once values for N, K1, and K, have been assigned, but
the states will in general no longer be eigenstates of J.
If Eyr/mo>>1, we may use the asymptotic expression
(2.17) for G(x) in evaluating K; and K, from (2.25)-
(2.26). We find then that both K; and N\ decrease
exponentially, but that K, has the asymptotic value

Ka~—2\2uwg12/3V2. (2.29)

In this limit, therefore, the only significant term in
350’ +3Cs0® is Ka(L£2S24£,25,2+L£.25,%), which
has only diagonal matrix elements among the vibronic
states Voo, Woo0, Yro0. We obtain, for example,

(00| 30" +3C50? | ¥00)
2\ uw?gr?

~———5.2—-S(S . (@
o [SA=S( T (2:30)

But (2.30) is simply the second-order spin-orbit term
D[S.2—S(S+1)] which we expect in the electronic
ground state in the presence of a static tetragonal dis-
tortion along the z axis which places ¥ lower than the
electronic doublet ¥, ¥, by the energy difference

AE=3V?/2uw?=3E ;7. (2.31)

Since this AE is precisely the separation of the energy
surfaces obtained from the vibronic Hamiltonian (2.1),
with neglect of the nuclear kinetic energy terms, at the
position (2.3) of the minima in the lowest surface, we
see that our result (2.30) agrees completely with that
appropriate to the static Jahn-Teller distortion, as of
course it should. The fact that in this limit the surviving

, term in 3Cs0’+3Cs0® has only diagonal matrix elements

with respect to Wi, ¥yoo, Yoo is thus the direct re-



DYNAMICAL JAHN-TELLER EFFECT

flection of the fact that these three states describe the
three possible static tetragonal distortions of the com-
plex with their associated zero-point motion and that
the overlap of the zero-point motion about different
distortions diminishes rapidly as the strength of the
Jahn-Teller coupling increases.

Criteria for the applicability of our procedure in using
perturbation theory to find the effect of spin-orbit inter-
action on the vibronic states are of interest, particularly
for contrast to the criteria appropriate to Van Vleck’s
considerations? of spin-orbit stabilization. We evidently
desire that N, K; and K as given by (2.22), (2.25),
and (2.26) be small compared to #w» and that spin-orbit
perturbation corrections higher than second order be
very small or, ideally, negligible. These conditions may
be shown usually to be satisfied if

V2 uw®> |\, (2.32)

that isif the Jahn-Teller energy is much greater than the
spin-orbit splitting in the absence of Jahn-Teller cou-
pling. Van Vleck’s considerations, on the other hand,
require the reverse, namely

V2w << ||, (2.33)

in which case it is legitimate to solve the spin-orbit
problem first and to ignore (or treat as perturbations)
Jahn-Teller matrix elements coupling levels of different
J. In practical examples, of course, one is likely to find
that neither limit (2.32) or (2.33) is applicable, but the
limiting cases are still useful in suggesting qualitatively
the behavior that should be expected.

C. Response to External Perturbations
Magnetic Field

An external magnetic field H gives rise to the Zeeman
interaction

sex=pL-H+gs%8S-H, (2.34)

with B=-e#/2mc, gs®=2.0023. The direct Zeeman effect
on the vibronic ground state is then given, in accordance
with (2.18) and (2.23), by

C‘CH’=g£,32'I’I+g,g°ﬁS'H, (235)
where
3 V?
ge=gr expl:——z M%;I . (2.36)

To this we must add the second-order terms arising as in
(2.13)—(2.14) from the combined effect of the orbital
part of (2.34) and the spin-orbit interaction:

er®=giB[(2-S)(L-H)+(L-H)(E-8)]

+ g8 L3S H o+ £,2S, H A £,25.H, ], (2.37)
where
g1=—(\gr%/ ) fa,
g2=—(2\gr*/ 1) (fo— fa) (2.38)

and f,, f» were given in (2.26).
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In partially quenching the orbital angular momentum
of the vibronic ground state, the Jahn-Teller coupling
thus reduces the direct orbital contribution to the Zee-
man splitting, in accordance with (2.35) and (2.36),
enhances the second-order contributions (2.37) with
respect to the corresponding terms derived from the
cubic-field splitting, and leaves the direct spin contribu-
tion ggB(S+H) unchanged (except possibly for a second-
order correction to gg which in the present case is zero).
The resulting g factors for the various spin-orbit levels
reflect these changes. For example, in the 3d° configura-
tion in cubic symmetry, if N>>K;, K. the lowest spin-
orbit level is the J=1 triplet of 5T, the g factor of
which is given by (if also N>>gB8H)

g(J=1)=%gs—}ge+3g:4(6/5)ga.  (2.39)

Whereas g(J=1)=3.5 for the crystal-field model
using free-ion wave functions [ge=gr=—1; ga=—06g
=-+12\/(10Dq); gs= gs"—8\/(10Dg)], this value is re-
duced toward 3.0 as the partial quenching of L di-
minishes ge toward zero, if g1 and g; remain small. [We
assume, of course, that the quenching is not so nearly
complete that NS gsBHS; if this happens S couples
more strongly to H than to &, and the g factor(s)
approaches the spin-only value of 2.]

In the limit Eyz/fho>>1,3Cx® in (2.37)-(2.38) takes
an asymptotic form consistent with the g shift for a
static Jahn-Teller distortion, for example,

(Proo| 5 ® | Wroo)
~—(2N\Bgr¥/ AE)(S.H.+S,H,), (2.40)

where AE is given by (2.31).

Static Uniform Strain

A uniform strain lifts the degeneracy of the electronic
states ¥, ¥, ¥¢ in accordance with the perturbation

Fes=Va[es8o+ec8c]
+VilenTortea1Tonte12To ],

1 au,- au,-
S LI
2\9x; Ox;

is a component of the strain tensor (referred to the cubic
axes X1=1x, ¥2=79, ¥3=2) and

€= [833—‘ %(611"(‘ 622)] )

(2.41)
where

(2.42)

ee=(V3/2)[en—es]. (2.43)
The matrices 8, 8 are given in (2.2), while
0 0 0 00 —1
Tu=10 0 —1|, Tu=| 0 0 0,
0 —1 0 -1 0 0
(2.44)
0 —1 0
Top= | —1 00
0 00
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The operator of which Vs is the coefficient in (2.41) is
diagonal in terms of ¥, ¥y, ¥ and thus has the form of
03 in (2.11). Accordingly, within the vibronic ground
state it takes the identical form as in (2.41), with the
same coefficient Vs, in terms of matrices 8y, &/ which
are identical in form with (2.2) but couple the vibronic
states W0, Wyo0, Yoo instead of g, ¥y, ¥¢. It has no
matrix elements between the ground state and excited
vibronic states (in this case) and so gives rise to no
higher order terms.

The operator multiplying V3 in (2.41) is of the off-
diagonal type 04, so its effect within the vibronic ground
state is partially quenched as in (2.10), and it moreover
gives rise to second-order terms linear in strain by work-
ing jointly with other type ©4 operators such as the
spin-orbit or orbital Zeeman interactions.

We can, therefore, give the effect of both types of
strain on the vibronic ground state, including the
second-order terms representing the strain-induced
change in the spin-orbit and Zeeman interactions, by
means of the equivalent operator

3Cs' =Vl eo8'+e€c8 1+ Vs'[eas Tor'+ 31Ty +e12T2 ]
—(\g Vs/hw) fol €23(£,S:4£.5,)
+e31(£z52+ eBzSz) +el2(£zsy+ £‘yS:¢)]
—(guVs/Tw)B fal ess(LyH A £.Hy)
+-e31(LoH A L.H o) +e1o( LH,+ £,Ho) ],

where

(2.45)

Vi'=V;exp[—2(V2?/u2w?)]. (2.46)
Since both V3" and f, decrease exponentially for large
E;r/hw, in the limit of the static Jahn-Teller distortion
the only term remaining in (2.45) is the term in V,,
which gives the effect of a uniaxial [100] strain in de-
stroying the equivalence of the three possible tetragonal
distortions. The disappearance of V3’ in this limit, of
course, is a direct reflection of the fact that a uniaxial
[111] strain does not destroy this equivalence.

Other Perturbations

The effect of other perturbations on the vibronic
ground state may be written down from the results for
those considered above, since these are representative of
the three different types of operators, as classified by the
irreducible representation of O or T4 to which they
belong and by whether they are real or imaginary, which
lift the degeneracy of the orbital triplet state. The mag-
netic field belongs to Ty and appears in BL+H associated
with an imaginary Ty operator L, while the [100] and
[111] types of uniaxial strain [the V2 and V3 terms in
(2.41), respectively] belong to E and T, respectively,
and associate with real operators &, Tas; etc. Since the
symmetrized and antisymmetrized direct product of T
or T, with itself (for either O or T'y) contains, respec-
tively, (44, E, T'2) and T, these three exhaust the possi-
ble types (since 4 leads to no splitting).
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Thus, for example, the effect of the term P(L-I) in the
hyperfine interaction?** follows immediately from our
results for the magnetic field, if only we replace 8 by P
and H by I in the appropriate terms of expressions such
as (2.35), (2.37), and (2.45).

The linear effect of an applied electric field E for
tetrahedral symmetry follows from the above results for
the [1117 type of strain, since E belongs to T under T’
(under O it belongs to T and since it is real does not
split the triplet in first order).

III. ORBITAL TRIPLET (T, OR T:)—
T: VIBRATIONAL MODE

A triplet state in interaction with a set of vibrational
modes Q¢, Q,, Q¢ belonging to T gives rise to the
vibronic Hamiltonian’

3e=Eod+ (2u) '[P+ P2+ P+ 20 (Qe* 4002+ Q%) 19
+V[QeTot+0nTontQsTor], (3.1)

where Ta¢, Teq, To are the matrices given in (2.44), in
terms of Y, ¥y, Yr as basis.

In this case the matrices Ta¢, T2q, T2r do not commute,
and it is consequently not possible to find three fixed
linear combinations of ¥, ¥y, ¥¢ which diagonalize the
linear term in (3.1) for all Q¢, Qy, O;. The vibronic eigen-
functions, therefore, do not have a simple form analo-
gous to (2.4), and the energy spectrum is no longer
essentially unchanged by the Jahn-Teller interaction,
as it was in (2.5). The problem is, therefore, very much
more complicated than for the E vibrational mode. We
shall not attempt here to analyze this case thoroughly,
but we shall give enough detail to be able to compare its
general properties with those of the E mode case,
particularly with respect to the quenching of various
operators within the vibronic ground state.

The spectrum of (3.1), to second order in the Jahn-
Teller coupling coefficient ¥, was shown by Moffitt and
Thorson’ to be the same as that of the Hamiltonian ob-
tained from (3.1) by replacing the terms linear in ¥ by

(V*/2u0*)(M+1=2), 3.2)

where M=7#"1(QXP) and [ is an Hermitian electronic
operator defined [in analogy with (2.20)] by

(‘pf[ [zl‘pﬂ): —1 ’ (etc.) .
Defining =M+, we have then

E=Eo+n+3)ho
+(V¥/4uw?)[F(F+1)—M(M+1)—6], (34)
n=0,1,2,3, -,

(3.3)

where F is the eigenvalue of § [F=M—1, M, M1 for
M>1; F=1 for M=0] and M takes the values 7,
n—2, ---, to 0 or 1. The degeneracy of each vibronic
level is (2F+1) in the “spherical” approximation of
(3.2) and (3.4), and the ground state is a triplet with
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n=0, M=0, F=1=1. The Jahn-Teller energy Esr in
this case is (2/3)V?/uw?.

In the limit of a very strong Jahn-Teller coupling,
E ;r>>hw, the ground state is fourfold degenerate corre-
sponding to four equivalent static distortions?+*

(QEO’QﬂO:QIO)i: (2 V/3:uw2) (M1,M2,WL3) )

with the associated electronic states

Yi=(1/V3) (mp+mapyt+-maly) , (3.6)

where for j=1, 2, 3, 4, (mimems) is the set
(+17 +1, +1)7 (_1’ -1, +1), (+1: ""17 —-1),
(—1, 41, —1), respectively. The fourfold vibronic de-
generacy spans the irreducible representations 7s+ 41
if the orbital triplet belongs to T (and T1+4. if the
triplet belongs to T) so that an accidental degeneracy
occurs in this limit. Thus, as the strength of the Jahn-
Teller coupling increases, the triplet ground state of
(3.4) is approached by a singlet state which has the same
limiting energy.® For a finite coupling strength the
ground state is presumably always the triplet, but
whereas in the case of the £ mode the triplet is always
fiw below the nearest excited state, for the 7'» mode the
excitation energy to the singlet may be much less
than 7.

In considering the quenching of operators within the
vibronic ground-state triplet, analogous to that found
in Sec. I, it is convenient to look first at the case of a
very strong Jahn-Teller coupling and to form the wave
functions gy, ¥,0, ¥ro for the triplet and ¥y for the
nearby singlet as linear combinations of the lowest
vibronic eigenfunctions ¥; appropriate to each of the
four distorted configurations (3.5):

Tep= (20) "1 (W3 — Wy W3 — ) ,
V0= 2A)" 1 (¥1— Fo— V3+T,) ,
Vo= (2A) Y (¥1+Wy— V35— Ty),
W o= (20") (W1 Vot Ts+Ty) .

(3.5)

(3.7

Each ¥; is given approximately for E;r>>%w by ¢; in
(3.6) multiplied by the vibrational function correspond-
ing to zero-point motion about the jth extremum; the
nonorthogonality of the ¥; arising from a small overlap
in this motion about different extrema necessitates the
normalization correction factors A, A’ in (3.7). Matrix
elements within the triplet or between the triplet and
singlet may then be expressed in terms of matrix ele-
ments among the ¥;. Obviously those operators are
completely quenched as E;r/fiw increases which can
be shown to depend only on off-diagonal matrix ele-
ments among the ¥;, since their overlap eventually
diminishes exponentially in E;r/fw in analogy to
(2.10). Operators depending on diagonal matrix ele-
ments may remain finite in the limit.

9 The energy difference between the singlet and triplet is the
“inversion splitting” referred to by Bersuker (Ref. 24).

A 1735

Real operators belonging to E or T and imaginary
operators belonging to 7y are the only ones leading to a
first-order splitting of the triplet. We may show from
the general transformation properties of these operators
that when the triplet states have the form (3.7) (the ¥;
are real) matrix elements of E and 7', operators within
the triplet may be given in terms of a single off-diagonal
matrix element among the ¥;; a T operator requires
one diagonal and one off-diagonal matrix element among
the ¥, to be specified completely. Representative matrix
elements for each case are the following:

(¥io| T1z| Wqo) = 2023 | T'1, | W), (3.8a)
(Weo| Ee| Weo) =207 ¥3| E| ¥1), (3.8b)
(Wio| To | Wy0)=A"2{(W1| To¢ | ¥1)— (W1 | To¢ | ¥2)} . (3.8¢)

Thus the electronic orbital angular momentum, which
belongs to T, is strongly quenched within the vibronic
triplet ground state by a strong 7 mode Jahn-Teller
coupling, just as it was in (2.18) for the £ mode. An
operator belonging to E is also strongly quenched this
time [for example, the V, part of the strain interaction
(2.41)7], while one belonging to T [the V3 part of (2.41),
say ] may remain finite in the limit because of the di-
agonal matrix element on the right-hand side of (3.8¢);
for E mode coupling the reverse was true. This behavior
is of course just a reflection of the fact that in the static
limit all four distorted configurations are equivalent
with respect to a [100] uniaxial strain (E) which thus
causes no splitting, while a [1117] strain (7T3) dis-
tinguishes one of the four.

It has so far not been possible to derive a rigorous
quantitative expression for the quenching in this case,
like (2.18) and (2.46) for the E mode, because the over-
lap integrals needed in (3.8) are difficult to evaluate
even if we can make use of the Born-Oppenheimer
approximation over most of the configuration space.
However, it is quite simple to evaluate the quenching
to the accuracy represented by Moffitt and Thorson’s
approximate Hamiltonian (3.2) and the energies (3.4).
We obtain for representative matrix elements of elec-
tronic operators the following:

(Weo| Le| Woo)= (Y| Le| )

X{1-3(Va/pw?)?4---+}, (3.92)
(Wio| Eo| Weo)= (Y& Eo|¥s)
‘ X{1—3(Va/uw?)?+---}, (3.9b)
(Wio| Tog| Wao)= (Wi | Tor| )
X{1—=3(Va/pw?)?~+---}. (3.9c)

As seen from (3.8), the limiting value of the bracketed
functions in (3.9a) and (3.9b) must decrease expo-
nentially to zero Ejr/#w— o, while that in (3.9¢)
may be shown from (3.8¢c) and (3.6) to approach (2/3).
These results suggest the following extrapolation of (3.9):

(Woo| Li| Wjo)= (s| Li |¢;) exp[— 3 (Va/uw?)?], (3.10a)
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(Wio| Ei| Wjo)=(W:| Ex|¥;) exp[—$(Va/uw?)?], (3.10b)

(Wio| Tar | Wjoy= (| Tox[¥5)
X{3+1% exp[—$(Va/uw?)?]}.

These expressions have the correct general behavior, but
they are certainly not correct in detail and may be in
substantial relative error for both intermediate and
large values of Ejr/#w.

Second-order effects on the ground state from per-
turbations coupling to the excited vibronic states, like
those derived in the case of the E mode, will be en-
hanced here too by the Jahn-Teller interaction. In this
case, in fact, all three of the operator types (74, E, and
T,) give rise to second-order effects, since even the T’
operator is partially quenched (for the E mode, an
E operator was not affected at all and, therefore, did not
couple the ground state and excited states). A rigorous
calculation of these effects would, of course, be very
much more difficult than it was for the £ mode, although
expressions may be derived quite simply (we do not give
the results here) for the two limits: (a) the limit corre-
sponding to Moffitt and Thorson’s approximate Hamil-
tonian (3.2), and (b) the static limit. The general form
of the operator equivalents of these second-order effects
on the ground-state triplet is, of course, known on sym-
metry grounds. The second-order spin-orbit and Zeeman
effects take the form (2.24) and (2.37) [additional terms
proportional to .S? and (S-H) may, in general, also ap-
pear]; the relative asymptotic behavior of the coeffi-
cients as Ejr/hw increases must this time be compati-
ble with the limiting trigonal distortion. Similarly, the
second-order effects of strain take the general form given
in (2.45), except that we must now add to this expression
terms arising because the E type of strain also couples
to excited states. These take the form

[60(£zsz‘“%£wgz_%£usy)+eE(\/g/2)(£»gz_ ’BZISZI)]
and
[eo(L.H,—1L,H,—31L,H,)+e(V3/2)(L.H.— L,H,)].

(3.10c)

There is a further source of second-order effects in
this case which was not present for the £ mode, namely
the singlet state which may be quite close to the ground-
state triplet. Since the triplet belongs to 7' and the
singlet to A1, however (or to 7'y and A.), only operators
belonging to T'» can couple the triplet and the singlet.
Thus there is in particular no spin-orbit or Zeeman
coupling between these states and no consequent second-
order effect on the g factor of the triplet. There may,
however, be large second-order (and higher) effects on
the triplet due to a T’ strain coupling with the singlet.

IV. CONTINUOUS PHONON SPECTRUM

A complex in a crystal interacts with the entire
phonon spectrum, not just with a few localized modes,
and it is evident that the phonons collectively must
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produce effects via the Jahn-Teller interaction which are
similar to those obtained in Secs. IT and III for the
simpler cases of single modes. In particular, it is of
interest to know at least qualitatively the effect of the
continuous phonon spectrum in quenching orbital
angular momentum and other operators.

We shall not go into any detail with this problem at
this time but shall simply cite a few results. A more
complete treatment will be reserved for a later publica-
tion. As a guide to the general form of the result for the
continuous phonon case, we may take the analog of the
case of a single £ mode in Sec. II and consider the
orbital triplet in interaction with the phonon spectrum
only through the E part of each mode. In terms of
annihilation and creation operators of the phonon field,
the Hamiltonian analogous to (2.1) then takes the form

Je=Eo+3 ho(gt)[a'(gt)a(gh)+319
+Zt {LVo(gt)a(gt)+Vi*(gt)a’(g£) 1&e
+[Vg)alg)+V*(gat ()16} . (4.1)

Here g denotes the propagation vector of the phonon,
tits mode of polarization, and w(g?) its frequency, while
Vo(qt), Ve(gt) are Jahn-Teller coupling coefficients which
are mutually related so that the Hamiltonian has the
full symmetry of O or Tq.

The spectrum of (4.1) may be easily shown to be
identical with that of the decoupled problem in which
the Jahn-Teller interaction is zero, except for an energy
shift 8E which is common to all states of the full system
and is given by

bE=—} Lo [ho(g) LI Volgt) |+ Vila) |2]. - (4.2)

We may also show in this case that operators with
only diagonal matrix elements with respect to the elec-
tronic states ¥, ¥4, ¥¢ are unaffected by the Jahn-Teller
coupling, just as was true for Oz in Sec. II, while those
like ®4 with only off-diagonal matrix elements are
partially quenched. The quenching factor for 04 in the
ground state of the system may now be shown to be

exp{—% ot [ho(g) 1[I Vo(g) >+ V(gD ]} (4.3)

in place of the exponential factor in (2.10).

When the T'; part of the Jahn-Teller interaction with
each mode is included in the Hamiltonian, the problem
no longer admits a simple rigorous result like (4.3), any
more than it did for the localized modes. Qualitatively,
however, the behavior is similar, except that, of course,
operators of both types ©4 and Op are now partially
quenched. Second-order effects are enhanced by a con-
tinuous phonon spectrum in both cases, just as they
were for the single vibrational modes.

V. DISCUSSION

We have considered several idealized situations in
which the dynamical Jahn-Teller effect has been shown
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to cause a partial quenching of spin-orbit interaction,
orbital angular momentum, and other orbital operators,
within the degenerate ground state of the vibronic
system. This quenching is the result of the coupled
motion of the electrons and the vibrational modes which
characterizes the dynamical Jahn-Teller regime, and it
occurs even though the Jahn-Teller coupling is insuffi-
ciently strong to produce a static distortion of the com-
plex. So long as the residual spin-orbit interaction is
larger than the splitting of the degenerate levels in a
magnetic field, the paramagnetic resonance spectrum
of each complex shows no departure from the symmetry
of the undistorted configuration, but the Jahn-Teller
coupling introduces orbital reduction factors in the
response of the complex to perturbing fields, and it
may enhance the corresponding second-order effects.

The examples we have considered were chosen be-
cause their mathematical simplicity permits a more
complete analysis over the full range of the strength
of the Jahn-Teller interaction than is possible in other
cases. They are, of course, not quantitatively applicable
to actual molecules or complexes. We must now con-
sider how these results may be generalized and to what
extent they may be relevant to actual experimental
cases.

We have shown in the case of an orbital triplet in
interaction with a pair of localized E vibrational modes
that quenching occurs for orbital operators belonging
to both T (orbital angular momentum, spin-orbit and
orbital Zeeman interactions, etc.) and T, [e.g., response
to [1117] uniaxial strain or (in tetrahedral symmetry) to
an applied electric field]. The orbital reduction factors
describing this quenching vary as a function of theJahn-
Teller coupling coefficient ¥ in proportion to a simple
describing this quenching vary as a function of the
Jahn-Teller coupling coefficient V' in proportion to
exp[—3(Va/uw?)*]=exp[—3Esr/fw]. In this case,
operators belonging to E (e.g., response to [100] uniaxial
strain) are unaffected by the Jahn-Teller coupling.
On the other hand, for the triplet in interaction with a
set of Ty vibrational modes, Ty and E operators are
quenched [this time in proportion to a complicated
function of (Vea/uw?)? which we have suggested may be
represented approximately as a descending exponential ],
while T'; operators are only partially quenched, remain-
ing finite in the limit of large E;r/#w with a value 2
their original value.

It is evident from these results that if interaction is
with doth E and T» modes, then all types of orbital
operators Ty, T2 and E are quenched at least partially.
Whether it is the E or the T, operator that has a finite
value in the limit of the static Jahn-Teller distortion
depends on which mode of distortion dominates in
determining the limiting configuration of minimum
energy.*® Since in realistic situations with an orbital
triplet the Jahn-Teller coupling 4s with both types of
modes, we may expect in general in the dynamical
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regime that all types of operators will display orbital
reduction factors less than unity as a consequence of the
Jahn-Teller interaction. Moreover, all types of perturb-
ing operators correspondingly should give rise to en-
hanced second-order effects in the ground state, due to
interaction with excited vibronic states. Similar con-
clusions should apply to other degenerate cases besides
the orbital triplet, including those of lower symmetry;
the relevant operators in each case are those having
nonzero matrix elements between the degenerate states.

The dynamical Jahn-Teller situation for a complex in
a crystal is complicated further by the fact that inter-
action is with the continuum of phonons and not only
with a few localized modes of vibration. We have given
expressions for the Jahn-Teller energy (4.2) and quench-
ing factor (4.3) for a simple example of the continuum
case. These may be evaluated for the acoustic branch
of the phonon spectrum, in the long-wavelength ap-
proximation, using data obtained from the effect of
static strain in splitting the orbital degeneracy of the
complex. It is obvious, from (4.2) and (4.3), however,
that the important regions of the phonon spectrum are
those near critical points, where the density of states is
high. Thus, critical points in the continuum act much
like localized modes of similar frequency, and their
effect may be analyzed approximately in these terms.
Unfortunately, this approximation is of limited help in
making a quantitative analysis in actual cases, for we
rarely would know values for the Jahn-Teller coupling
coefficients appropriate to the vairous critical points.

Therefore, while our considerations have sufficed to
demonstrate the general occurrence of these conse-
quences of the dynamical Jahn-Teller effect, and to
provide a guide to the general form and magnitude of
these effects, it will be difficult to give a quantitative
analysis for actual complexes of experimental impor-
tance. We must probably be content in most cases to
analyze the situation in terms of an effective generalized
spin Hamiltonian [containing terms like (2.21), (2.24),
(2.35), (2.37), (2.45), etc.] which takes account of
orbital reduction factors and enhanced second-order
effects through phenomenological coefficients chosen to
fit the data. The values found for these coefficients may
be markedly affected by the Jahn-Teller effect, how-
ever, and they may differ considerably from what one
expects from ligand field theory taking account of
covalent bonding.

In the model cases we have considered we find that
even a weak Jahn-Teller coupling causes an appreciable
decrease from unity in the various orbital reduction
factors. For example, if V?/uw?=(1/10)%w, the factor
appropriate to L or to spin-orbit interaction is given by
(2.18) and (2.22) to be 0.93 in the case of the E mode,
and from (3.10a) to be ~0.86 for the T's mode. However,
these values are correct only if the Jahn-Teller coupling
is much stronger than the spin-orbit interaction,
E;r>>|\|, as discussed in Sec. IIB. For a weak Jahn-
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Teller coupling, this inequality is very likely to be
reversed, as in (2.33), and we must then follow Van
Vleck?® and Liehr® in examining each spin-orbit
level separately for Jahn-Teller instability. If a level is
a singlet or a Kramers doublet, there is no instability,
and the only effect of terms linear in Q in the Hamil-
tonian (2.1) or (3.1) is to couple the states of this level
to other levels. Such coupling introduces a small energy
shift in the level quadratic in Q (no splitting) and for the
doublet produces a g-shift linear in Q which averages to
zero under the zero-point motion. Thus, the spin-orbit
interaction stabilizes such levels against a weak Jahn-
Teller coupling, and apart from higher order perturba-
tion effects (assumed small) it eliminates the effect of
the Jahn-Teller coupling on g factors, hyperfine inter-
action, etc. On the other hand, if a spin-orbit level has
degeneracy greater than 2 (J2> 1), Jahn-Teller instabil-
ity remains. In these cases one may get significant
quenching from the dynamical Jahn-Teller effect for
those operators which have matrix elements among the
degenerate states, and one obtains reduction factors for
these operators quite analogous to the orbital reduction
factors we have found for orbital operators. Thus with a
sufficiently strong spin-orbit interaction even the spin
angular momentum can be at least partially quenched
by the dynamical Jahn-Teller effect. Substantial quench-
ing in such cases requires, however, V;2/uw?~ fw, where
Vs is the Jahn-Teller coupling coefficient appropriate
to the Jth spin-orbit level. Since Vy is simply some
numerical multiple v of the corresponding Jahn-Teller
coefficient ¥ for orbital operators, substantial quenching
can occur under Van Vleck’s condition (2.33) only if
the relations
N>V o= fio/ v,

are simultaneously satisfied. This is a difficult condition
to fulfill, since for the iron group of transition metals A
is comparable with typical values of %w for the relevant
modes. In the case considered by Van Vleck? of the
lowest level (J=1) of the 3d® configuration in octahedral
coordination, v; is 1/10 for both E and T2 modes, so
that if the Jahn-Teller coupling is weaker than the spin-
orbit interaction, and if #w>> |\|, then we have V /2/uw?
< (1/100)%w, and Jahn-Teller reduction factors are
within one percent of unity. In this case, therefore, as
Van Vleck has noted, a sufficiently strong spin-orbit
interaction suppresses for all practical purposes any
manifestation of Jahn-Teller instability of this level.
To sum up, the dynamical quenching effects we have
calculated for orbital operators are correct even in our
model cases only if V2/uw®>|\|, but within this range
they affect matrix elements of all orbital operators
among the several spin-orbit levels derived from the
vibronic ground state. In the reverse situation appro-
priate to Van Vleck’s considerations, strong spin-orbit
coupling may eliminate such effects in certain levels by
stabilizing the level against Jahn-Teller instability,
elther in an essential fashion as for a Kramers doublet,
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or “accidentally” by reducing the coupling coefficient
to a small value. We may, however, still get dynamical
quenching effects with |\ [>>V?%/uw? (for J> 1), and be-
cause of the strong spin-orbit coupling these then
quench at least partially both orbital and spin operators
within a level. Finally, dynamical quenching effects
certainly occur if V2/uw?=|\|, in which case it is diffi-
cult to predict in general what values various parameters
might assume. We shall not consider these other situa-
tions further, and we shall now present general argu-
ments and cite experimental evidence to support our
contention that the range of interest for dynamical
Jahn-Teller quenching not only is likely to occur in
practice but in fact has been realized in several com-
plexes involving transition metal ions of the iron group.

The general argument that such cases are likely to
occur is based on the observation that the range of
interest represents an intermediate one with respect to
the strength of the Jahn-Teller coupling and the spin-
orbit interaction, and that examples from both extremes
have been observed. On one hand, we have the examples
of Co?t (3d7)% and Fe?* (3d%)% octahedrally coordinated
in MgO. Neither of these show any indication of Jahn-
Teller distortions, and both have g values (see Table IT)

TaBLE II. Experimental g factors of transition
metal ions in orbital triplet states.

Ton g Reference
3ds: 5T, Fert: MgO 3.428 b
Fert: Ca0 3.30 c
Mnt: Si» 3.01 d
Cr: Sie 2.97 d
3d7: 4T, Co**: MgO 4.278 e
Fet: MgO 4.15 f
Fet: NaF 4.344 g
Mn°: Si» 3.362 d
Fet: Si» 3.524 d

& These values are for ions occupying interstitial sites in the silicon lattice.

bW. Low and M, Weger, Ref. 40,

o A, Shuskus, Ref, 41.

d G. W. Ludwig and H. H. Woodbury, Ref. 37,

¢W. Low, Ref, 39.

tJ. W. Orton, P. Auzins, J. H, E. Griffiths, and J. E. Wertz, Proc. Phys.
Soc. (London) 78, 554 (1961).

& B, Bleaney and W. Hayes, Proc. Phys. Soc. (London) B70, 626 (1957).

close to the values for the lowest spin-orbit level (J=%

and 1, respectively) expected on the basis of ligand field
theory for the cubic configuraton. These are the two
cases cited by Van Vleck?® as displaying spin-orbit
stabilization against Jahn-Teller instability. They evi-
dently correspond to V2/uw?>|\| (although as we’ll see
below there is some reason to think that this inequality
is poorly satisfied for Fe?t).

On the other hand, as examples from the other
extreme, V%/uw®>>|\|, we may cite cases in which the
Jahn-Teller coupling is so strong that it leads to a static
distortion despite a stabilizing influence of the spin-
orbit interaction. Two ions giving such an effect are
Cu?* (3d%) and Ni%t (3d8) at the tetrahedral 4 sites of
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the chromite spinels Cu,Co;—,Cr:04, Ni,Cos_,CrsOy,
and Cu,Ni;_,CrsO4 studied by Arnott, et al.®* In tetra-
hedral coordination Cu?*t and Ni?* should be in the
orbital triplet states 27, and ®T}, respectively, but a
strong spin-orbit interaction would stabilize both in
ground states having, respectively, J=3% and 0. How-
ever, tetragonal distortions of these compounds do in
fact occur® in the appropriate ranges of the composition
parameter x, and they accord with Dunitz and Orgel’s
suggestion®? that these macroscopic distortions arise
cooperatively from Jahn-Teller distortions occurring at
the sites of the individual Cu?** and Ni** ions (Co?* at
the A site is in the state 44, and so has no Jahn-Teller
instability due to orbital degeneracy). Thus the Jahn-
Teller coupling in these cases is evidently sufficiently
strong to override the stabilizing effect of the spin-
orbit coupling, even though for Cu?t and Ni*" the
values for A should be among the largest of those for the
ions of the first transition group. These examples also
confirm that the Jahn-Teller coupling of ¢, electrons can
be quite strong in tetrahedral coordination (in the octa-
hedral case 7, electrons are “nonbonding” and should
thereby be but weakly coupled to the vibrational
modes).

Since the strength of both spin-orbit and Jahn-Teller
coupling varies over a considerable range for different
ions and different environments, the experimental verifi-
cation that examples exist from both extremes makes it
likely that other cases may occur in the range where
dynamical Jahn-Teller quenching occurs. Thus on these
general grounds we may hope to find cases with
V2/ue?Z [N (ideally>>|\|) but with V2/uw?=#w so that
no static distortion occurs (w here is, of course, some
effective frequency which approximately characterizes
the vibrational modes which are important for the
Jahn-Teller coupling). These cases should reveal the
expected. effects of dynamical quenching in the values
found for their orbital reduction factors.

In Table II are presented experimental values of the
g factor of the lowest spin-orbit level of an orbital
triplet term of various ions in cubic or tetrahedral sym-
metry. For the 5T, terms of the 3d° configuration the
lowest level has J=1 and as discussed in connection
with (2.39) has a g factor near 3.5 in the crystal-field
model which is diminished toward 3.0 by Jahn-Teller
quenching of the orbital Zeeman energy (assuming the

% R. J. Arnott, A. Wold, and D. B. Rogers, J. Phys. Chem.
Solids 25, 161 (1964).

o Arnott ef al. (Ref. 50) report the following cubic and tetrag-
onally distorted structures in the indicated ranges of the compo-
sition parameter x:

Cu,;Co1-,Crs04: cubic, 0 x<0.43

tetragonal, ¢/a <1, 0.48<x<1

cubic, 0<2<0.5

tetragonal, c/a>1, 0.6<x<1
tetragonal, ¢/a>1, 0<x<0.125
tetragonal, ¢c/a<1, 0.175<x<1.

(1;25;) D. Dunitz and L. E. Orgel, J. Phys. Chem. Solids 3, 20

NizCol_,CrZQ H
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A 1739

residual spin-orbit splitting is still larger than the Zee-
man splitting). For 34" 4T, the J=% level is lowest
with the corresponding values of g near 4.3 and 3.3,
respectively.

The most striking cases in Table II are the four
interstitial ions Cr?, Mnt, Mn% and Fet in silicon
studied by Ludwig and Woodbury.?”+3® None of these
ions have spectra indicating any departure from tetra-
hedral symmetry at the site of an individual ion, yet
the first three appear to have almost entirely suppressed
the orbital contribution to the g factor, while the corre-
sponding orbital reduction factor for Fe* is about 0.2.
A detailed analysis of these and other data for these
ions will be presented in another publication®; we
believe that these results can plausibly be attributed to
dynamical Jahn-Teller quenching. All of these ions show
evidence that the spin-orbit splitting has been drasti-
cally reduced from free-ion values (yet remaining larger
than the Zeeman splitting), and that second-order
effects are enhanced over what would be expected from
the ligand field model using a A\ reduced by covalent
bonding. Indeed these spectra show a large isotropic
hyperfine interaction with the transition metal nucleus
which would be difficult to reconcile with the great
decrease in the orbital reduction factors if this decrease
were due to the spread of the wave function onto
neighboring silicon atoms. These features are all com-
patible with dynamical Jahn-Teller quenching, which is
able to effect a much larger decrease in the orbital re-
duction factors for these ions than could thus reasonably
be attributed to covalent bonding.

Among the other ions listed in Table II, the g factor
of Co2t:MgO has been accounted for by Low,? taking
account of the second-order g shift and of mixing with
4P, on the basis of an orbital reduction factor 0.89-0.85
for the orbital Zeeman interactions. This value is similar
to others which have been attributed to covalent bond-
ing,31-3 and we believe that dynamical quenching
probably plays no substantial role in this case. Since X is
large for Co%t, and since in octahedral coordination the
¢, electrons are nonbonding and may be but weakly
coupled to the vibrations, Co?*:MgO seems quite
likely to be a case to which Van Vleck’s considerations
rather than ours apply.

For Fert:MgO% and Fe?":Ca0,* we may, however,
have complexes in which dynamical Jahn-Teller quench-
ing is as important as covalent bonding in affecting the
orbital reduction factors, which for the Zeeman inter-
action are 0.8 and 0.6, respectively. These values are
somewhat smaller than we might have expected as a
result of covalency, and we suggest in particular that
the difference between them may be due primarily to
the Jahn-Teller effect. The spin-orbit interaction is
significantly smaller for Fe?* than for Co?*, so that Fe*+
on this account would be less likely than Co?* to fulfill
Van Vleck’s condition for spin-orbit stabilization. More-
over, the lattice constant is Jarger in CaO than in MgO,
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so that we would expect less covalent bonding for Fe*+
in CaO. The opposite conclusion would be required if
the covalent interpretation of the difference in the
g factors were correct. The looser lattice should, on the
other hand, enhance the dynamical quenching by lower-
ing the relevant vibrational frequencies.

To get a rough idea how well Van Vleck’s stabilization
criterion may be satisfied for Fe*t in MgO, we have
evaluated the Jahn-Teller energy (4.2) arising from the
coupling of Fe** to the E component of the acoustic
branch of the phonon spectrum, using a coupling co-
efficient determined from the data of Watkins and
Feher®® on the effect of static strain in splitting the de-
generacy of Fe*t (J=1). We obtain éE=~—45 cm™.
Added to a similar value arising from the 7'y component,
this is already comparable to the spin-orbit coupling
parameter || =100 cm™'. Moreover, localized vibra-
tional modes and higher branches of the phonon spec-
trum (or coupling coefficients at critical points in the
acoustic branch which may be larger than those ob-
tained in the long-wavelength limit) are likely to give
the dominant contribution to the Jahn-Teller inter-
action. Thus it appears that Van Vleck’s condition
[N|>>V?2/uet? is not well satisfied, and it is likely that
Fe*t:MgO is a marginal case in which dynamical
quenching is at least as important as the reduction due
to covalency.

Evaluation of the orbital reduction factor (4.3) for
Fe*+:MgO from the data of Watkins and Feher gives
the result that dynamical quenching due to the E com-
ponent of the acoustic branch alone would reduce the
spin-orbit and orbital Zeeman energies by the factor
0.83, if, on the other hand, our condition V2/uw®>>|\|
were satisfied. It is clear that this is not the case either,
since the combined quenching effect of all parts of the
phonon spectrum cannot result in a factor smaller than
the observed® value of 0.8. However, if V2/uw?= ||, as
appears to be the case, then an over-all dynamical
quenching effect of ~ 109, (that is a reduction factor
~0.9) for Fe**:MgO seems quite possible, which
together with a similar 109, reduction due to covalency
as in Co*":MgO would then account for the value 0.8
found experimentally for the reduction factor. We sug-

8 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29
(1962).
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gest, therefore, that the two effects are comparable in
this case and that for Fe*r:CaO# the dynamical
quenching accounts for some three-quarters of the ob-
served reduction.

While a more detailed interpretation of the evidence
for dynamical quenching in the spectra of the inter-
stitial ions in silicon will be presented in a later publica-
tion, we believe the data of Table II suffice to show that
dynamical quenching is important for the understanding
of these ions and also for at least some of the Fe com-
plexes. We expect that other complexes will be found
exhibiting this manifestation of the dynamical Jahn-
Teller effect, not only in the paramagnetic resonance
spectra of ions having orbitally degenerate ground
states, but also in optical spectra involving an excited
state with such degeneracy.

VI. CONCLUSION

We have shown that the dynamical Jahn-Teller effect
for complexes having orbital degeneracy can sub-
stantially diminish the orbital reduction factors appro-
priate to spin-orbit splitting, orbital Zeeman interaction,
and the response of the system to other perturbations
such as strain or applied electric fields, without lowering
the effective symmetry of the complex. These dynamical
effects simulate effects usually associated with covalent
bonding, and where they are significant they may
radically alter conclusions which otherwise would be
drawn about the importance of covalency. As a result
of couplings to excited vibronic states of relatively low
energy, such dynamical quenching may also enhance
various second-order effects to a considerable extent
over what would be expected from couplings to excited
electronic states of the symmetrical configuration. The
importance of all such dynamical effects on the param-
eters of a phenomenological spin Hamiltonian must be
recognized in any interpretation of the paramagnetic
or optical spectra of such systems.
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