
P H YSI CAL R EVI EW VOLUME 138, NUM HER 6A 14 J UNE 1965

Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction
Factors and Partial Quenching of Spin-Orbit Interaction
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It is shown that the dynamical Jahn-Teller effect in a complex having orbital degeneracy may partially
quench spin-orbit interaction, the orbital parts of the Zeeman and hyper6ne interactions, and other orbital
operators governing response to perturbations such as strain or applied electric 6elds. Such dynamical
quenching thus decreases the value of orbital reduction factors usually attributed in paramagnetic resonance
studies to covalent bonding, without necessarily causing anisotropy in the spectrum of an individual com-
plex. The dynamical Jahn-Teller effect may also substantially enhance various second-order effects. Such
dynamic effects thus may make important changes in the parameters of the spin Hamiltonian without
changing its symmetry. It is shown that the dynamical Jahn-Teller effect accounts qualitatively for un-
usual features in the spectra of interstitial transition-metal ions Cro, Mn+, Mn', and Fe+ in silicon and that
it is probably of importance equal to or greater than that of covalent bonding in the interpretation of the
spectrum of Fe'+ in MgO and CaO. A mathematical analysis of the dynamical effects is given for an orbital
triplet state in interaction with a doublet or triplet vibrational mode, and some results are given also when
the coupling is with the phonon continuum.

I. INTRODUCTION

S Jahn and Teller' s showed, an electronically de-
generate state of a nonlinear complex is unstable

(except in the case of simple Kramers degeneracy) with
respect to some asymmetric nuclear displacement which
lifts the degeneracy. If the coupling between the elec-
trons and such displacements is sufhciently strong rela-
tive to the zero-point energy of the associated vibra-
tional modes, the complex undergoes a static distortion
to a new configuration of minimum energy. ' ' If the
coupling is less strong, or if the zero-point vibrational
energy is comparable with the energy barrier separating
equivalent configurations, no static distortion occurs,
but the complex exhibits a coupled motion of the elec-
trons and the vibrational modes.™This latter situation
is referred to as the dynamical Jahn-Teller effect. s "

The dynamical Jahn-Teller effect has been the object
of a number of studies" ' in the time since its unusual

' H. A. Jahn and E.Teller, Proc. Roy. Soc. (London) A161, 220
(1937).

'H. A. Jahn, Proc. Roy. Soc. (London) A164, 117 (1938).
3 J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939).
4 U. Opik and M. H. L. Pryce, Proc. Roy. Soc. (London) A238,

425 (1957).' A. D. Liehr, J. Phys. Chem. 67, 389 (1963).
e W. Motiitt and A. D. Liehr, Phys. Rev. 106, 1195 (1957).
7 W. Mof5tt and W. Thorson, Phys. Rev. 108, 1251 (1957).
8 H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A.

Sack, Proc. Roy. Soc. (London) A244, 1 (1958).
' The reader should consult the comprehensive paper by Liehr

(Ref. 5) or two recent review articles (Refs. 10 and 11) for a more
complete set of references to other work on the Jahn-Teller effect.

"N. S. Ham, Spectrochim. Acta. 18, 775 (1962).
"H. C. Longuet-Higgins, Adv. Spectr. 2, 429 (1961)."W. R. Thorson, J. Chem. Phys. 29, 938 (1958).
'~ W. MoKtt and W. R. Thorson, Calcll des Fonctions d'Onde

Molecllaire, edited by R. Daudel (Rec. mern. C.N.R.S., Paris,
1958)~

'4 W. D. Hobey and A. D. McLachlan, J. Chem. Phys. 33, 1695
(1960).

'~ V. I. Avvakumov, Zh. Eksperim. i Teor. Fiz. 37, 1017 (1959)
LEnglish transl. : Soviet Phys. —JETP 10, 723 (1960)g.

~6 A. D. Liehr, Z. Naturforsch. 16a, 641 (1961).

features were first pointed out by Abragam and Pryce, '~

Longuet-Higgins, opik, Pryce and Sack, ' MofFitt and
Liehr, ' and MofFitt and Thorson. ~ However, little atten-
tion has been given within this dynamical regime to the
possibility that the Jabn-Teller coupling may change
the e6'ect of the spin-orbit interaction, as well as other
interactions, in those situations in which spin-orbit
interaction is not quenched by static crystal fields. Such
changes and their effect on paramagnetic resonance
spectra (including several striking ef'fects for which
there is now some experimental evidence) will be the
topic of this paper; we shall be concerned in particular
with the case of a Jahn-Teller interaction that is some-
what stronger than the spin-orbit interaction yet not so
strong as to produce a static distortion. The opposite
situation has been considered by Opik and Pryce, 4 Van
Vleck,"and Liehr, "who showed that certain complexes

"H. M. McConnell and A. D. McLachlan, J. Chem. Phys. 34,
1 (1961).

n H. M. McConnell, J. Chem. Phys. 34, 13 (1961).' H. C. Longuet-Higgins and M. C. Child, Phil. Trans. Roy.
Soc. (London) A254, 259 (1962).

n M. C. Child, Phil. Trans. Roy. Soc. (London) A255, 31 (1963).
~' M. C. M. O' Brien, Proceedings of the First Jnternational Con-

ference on Paramagnetic Resonance (Academic Press Inc. , New
York, 1963), p. 322.

~M. C. M. O' Brien, Proc. Roy. Soc. (London) A281, 323
(1964).

23R. Englman and D. Horn, Proceedings of the First Inter-
nanonal Conference on Pararnagnetcc Resonance (Academic Press
Inc. , New York, 1963), p. 329; R. Englman, Phys. Letters 2, 227
(1962).

'4 I. B. Bersuker, Zh. Eksperim. i Teor. Fiz. 43, 1315 (1962);
44, 1239 (1963) )English transl. : Soviet Phys. —JETP 16, 933
(1963); 17, 836 (1963)j; I. B. Bersuker and B. G. Vekhter, Fiz.
Tverd. Tela 5, 2432 (1963) [English transl. : Soviet Phys. —Solid
State 5, 1772 (1964)j."J.T. Hougen, J. Mol. Spectry. 13, 149 (1964)."J.C. Slonczewski, Phys. Rev. 131, 1596 (1963).

27 A. Abragam and M. H. L. Pryce, Proc. Phys. Soc. (London)
A63, 409 (1950).

28 J.H. Van Vleck, Physica 26, 544 (1960);Discussions Faraday
Soc. 2'6, 98 (1958).

"A. D. Liehr, Bell System Tech. J. 39, 1617 (1960).
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would be stablized by a strong spin-orbit interaction
s,gainst a weak Jahn-Teller distortion.

We consider a complex in a state which, in the sym-
metrical configuration, has orbital degeneracy with an
associated orbital angular momentum, as well as spin
degeneracy. We 6nd that the Jahn-Teller interaction
partially quenches the orbital angular momentum even
though it is insuKciently strong to produce a static
distortion or to introduce anisotropy into the paramag-
netic resonance spectrum. This partial quenching shows

up as a reduction in the magnitude of the spin-orbit
splitting of the state, and in reduced orbital contribu-
tions to the magnetic moment, hyperfine interaction,
etc., of the spin-orbit levels.

Such "orbital reduction factors" in matrix elements of
orbital angular momentum or spin-orbit interaction of a
complex as compared with the appropriate free ion are,
of course, well known experimentally and have been
discussed extensively. ""Ordinarily, however, they are
the direct result of the delocalization of the electronic
wave function because of covalent bonding (spin-orbit
interaction may, of course, also be changed by expansion
or contraction of the radial wave function). Their size
has been taken as a measure of the importance of co-
valency. Our first conclusion, therefore, is that in ap-
propriate cases the dynamical Jahn-Teller effect simu-
lates the effect of covalent bonding in reducing the
magnitude of certain parameters of the system. As we
shall see, the Jahn-Teller effect may on occasion produce
very much greater reductions in such parameters than
can reasonably be attributed to covalency.

The possibility that dynamical Jahn-Teller effects
may change the values of these orbital reduction factors
has been for the most part overlooked in past studies of
the Jahn-Teller effect and of such complexes. McConnell
and McLachlan" "have noted, however, in their work
on the negative radical ion of benzene that the dynami-
cal Jahn-Teller effect reduces matrix elements of orbital
angular momentum associated with electronic motion
around the ring. Also, in considering "inversion split-
ting" (dynamical Jahn-Teller effect) of complexes of
transition metal ions with a d' configuration, Bersuker
and Vekhter" have taken account of the reduced over-
lap matrix element between the different equivalent
configurations in calculating matrix elements of orbital
angular momentum and spin-orbit interaction. No
systematic presentation of such dynamical quenching
effects has, however, to the best of our knowledge been
undertaken before the present work.

In partially quenching the orbital angular momentum

' K.W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 (1953)."J.Owen, Proc. Roy. Soc. (London) A227, 183 (1955)."J.Owen, Discussions Faraday Soc. 19, 127 (1955).
3'M. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549

(1956).
'4 W. Low, Paramagnetic Resonance in Solids (Academic Press

Inc. , New York, 1960).
s6 W Marshall aud R. Stuart, Phys. Rev. 123, 2048 (1961).

L of a degenerate state, the Jahn-Teller interaction leads
to finite matrix elements of L between the ground state
of the coupled electronic-vibrational ("vibronic") sys-
tem and excited states located higher in energy by an
amount = rshco (n = 1, 2, 3, ), where h&v is the energy
of the appropriate oscillator (phonon). Accordingly,
there are second-order corrections from these relatively
low-lying excited states to the spin-orbit splitting, g
shifts, etc., in the ground state. Thus second-order
effects may be enhanced by the Jahn-Teller interaction
over what is expected from coupling to excited states
of the electronic system in the symmetrical configura-
tion. In the limit of a static Jahn-Teller distortion these
second-order sects go over into the conventional

g shifts, etc., for the distorted configuration.
There are a number of experimental situations to

which these considerations are relevant, and in several
of these, the dynamical Jahn-Teller effect offers a plausi-
ble explanation for otherwise puzzling data. Most
striking are the cases of the interstitial transition-metal
ions Cr, Mn+, Mn', and Fe+ in silicon, the paramag-
netic resonance spectra of which were studied by Ludwig
and Woodbury. "" These ions are at sites of tetra-
hedral symmetry, and the ground state of each is an
orbital triplet ('Ts for 3d', 'Tr for 3dr). Their resonance
spectra show a remarkably large quenching of the
orbital contribution to the Zeeman interaction as well
as evidence of a strongly reduced spin-orbit splitting and
enhanced second-order effects, none of which has been
satisfactorily accounted for on the basis of covalent
bonding. We believe that these ions offer the clearest
examples available so far of the effects of dynamical
Jahn-Teller quenching.

Other complexes having orbital triplet ground states
in cubic symmetry are Co'+:MgO, "Fe'+: MgO, "and
Fe'+: Ca0.4' The spin-orbit stabilization of Jahn-Teller
effects in these complexes has been discussed by Van
Vleck, ' and orbital reduction factors less than unity
have been attributed by Low"" and by Shuskus" to
covalency. We believe that the latter identification is
correct for Co'+:MgO, but that for the two Fe'+ com-
plexes the dynamical effects may be of at least com-
parable importance to those of covalency and probably
are dominant for Fe'+:CaO. The ions Co'+ and Fe'+
are of especial interest in the present connection for the
historical reason that one justification for their study
in octahedral coordination in MgO was the hope that
they might offer examples of the Jahn-Teller effect. No
such sects for either ion were ever identified, however.

3'H. H. Woodbury and G. W. Ludwig, Phys. Rev. 117, 102
(1959);Phys. Rev. Letters 5, 98 (1960).

37 G. W. Ludwig and H. H. Woodbury, Solid State Phys. 13,
223 (1962).

"G. W. Ludwig, H. H. Woodbury, and F. S. Ham (to be
published).

w W. Low, Phys. Rev. 109, 256 (1958).
~ W. Low and M. Weger, Phys. Rev. 118, 1119, 1130 (1960);

ibid. 120, 2277 (1960).
"A. J. Shuskus, J. Chem. Phys. 40, 1602 (1964).
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It will be clear from this paper that such eGects appear
in fact to be present and significant, at least for the
Fe'+, and that their supposed "absence" stemmed from
a failure to recognize the form such e6ects would take
in the dynamical Jahn-Teller regime.

The purpose of this paper is to set forth and sub-
stantiate the qualitative features of the expected
dynamical Jahn-Teller effects, using such mathematical
models as permit a rigorous analysis of simplified cases.
From these, the general behavior of the sects in
realistic cases may be inferred. It is not our purpose here
to provide a detailed interpretation for any ion, nor to
calculate orbital reduction factors for any realistic case.
Such realistic calculations are not yet possible, and more
detailed interpretation of existing spectra will be
attempted in a later publication.

The dynamical regime with which we shall be specially
concerned in this paper corresponds to a Jahn-Teller
interaction which is somewhat stronger than the spin-
orbit interaction (so that one is justified in treating the
former first and then dealing with nondiagonal matrix
elements of the latter by perturbation theory). Yet, we
shall assume that the reduced spin-orbit splitting is still
greater than the splitting of each spin-orbit level in an
applied magnetic field. As long as this is the case, each
spin-orbit level responds to a magnetic field (and, simi-

larly, to other perturbations) qualitatively the same as
it would in the absence of the Jahn-Teller interaction-
for example, in cubic symmetry a spin-orbit triplet
(J=1) gives a cubically symmetric spectrum for each
single complex despite the Jahn-Teller interaction. If
the reverse were the case, the spin would couple more
strongly to the magnetic field than to the residual orbital
angular momentum; the spectrum then has g=2 and is
closely related to the superposition of spectra for the
various distorted configurations of the complex.

The treatment given in this paper will be confined to
the case of an orbital triplet (Ti or Ts)"" in cubic or
tetrahedral symmetry. The eGect of partial quenching of
L will, of course, occur, too, in cases of lower symmetry,
if I is not already quenched by crystal fields. The case
of the cubic orbital doublet (E) is of less interest in the
present work because L is already quenched by the
cubic crystal field. The doublet is, of course, the case
that has excited most of the past interest in the dynami-
cal Jahn-Teller effect because of the available spectra
for nearly octahedral Cu'+ (3d') complexes" "; our

~%e use the notation of Mulliken t R. S. Mulliken, Phys. Rev.
43, 279 (1933};or see Ref. 43j for the irreducible representations
of the point-symmetry groups.

4' J. S. GrifEth, The Theory of Transition 3fetal Ions (Cambridge
University Press, Cambridge, 1961).

44 B. Bleaney and D. J. E. Ingram, Proc. Phys. Soc. (London}
A63, 408 (1950).

4'D. Bijl and A. C. Rose-Innes, Proc. Phys. Soc. (London)
A66, 954 (1953).

B. Bleaney, K. D. Bowers, and R. S. Trenam, Proc. Roy.
Soc. (London) A22S, 157 (1955).

paper thus has no direct relevance to the interpretation
of these Cu'+ or related spectra.

Our analysis is divided into several parts. In Sec. II
we derive the aforementioned dynamical eGects for an
orbital triplet (Ti or Ts) coupled to a doubly degenerate
E vibrational mode. This case is very simple mathe-
matically, as was noted by MoKtt and Thorson. ~

Accordingly, complete formulas can be obtained for the
different effects for an arbitrarily strong Jahn-Teller
interaction, and the physical origin of these eGects may
be seen readily; this is the only case in which a full
analysis can at present be given rigorously. Thus, while
this case is not a realistic one for quantitative applica-
tion to practical situations, since it neglects, among
other things, all coupling to the T2 vibrational modes,
it is a good one for setting forth the general features of
the expected sects.

In Sec. III we consider the mathematically more
complicated problem of the orbital triplet coupled to a
triply degenerate T2 mode. Ke prove that the general
features of the quenching are similar to those found with
E mode coupling, and we suggest approximate formulas,
but we are unable to give rigorous formulas for this case
or for the case of both E and T2 mode coupling.

For a complex in a crystal there is not just a single
set of T2 and E vibrational modes which is involved in
the dynamical Jahn-Teller effect, but in reality the
entire phonon spectrum. In Sec. IV we formulate this
problem in the simplified case in which the triplet is
assumed to interact only with the E component of the
phonon spectrum, and we write down without deriva-
tion the expressions for the energy shift and quenching
factor. A more complete treatment of this problem will

be given elsewhere; the present results suggest the
general form and are useful in permitting estimates of
the strength of the Jahn-Teller interaction with the
acoustic branch of the phonon spectrum when data are
available of the effect of static strain on the resonance
spectrum.

The paper is concluded with a discussion and generali-
zation of our results and with a survey of their applica-
bility to cases of experimental interest.

II. ORBITAL TRIPLET (T, OR Ts) E-
VIBRATIONAL MODE

A. Vibronic States and Matrix Elements

We consider first an orbital triplet electronic state47

belonging to the irreducible representation T~ or T2 of
the cubic point group 0 or the tetrahedral group T~, in

4' Throughout the paper we use as a basis for the triplet state
the real functions &I =&~, p~ =p„ps=& ~ which are taken to trans-
form, respectively, for T2(O or Tz) as yz, zx, xy, for T&(O) as x, y, z,
or for Tr(Ts) as x(y' —s'), y(s' —x'), s(x' —y') where x, y, s,
denote Cartesian coordinates with respect to the cubic axes. The
modes Qs, Q, are chosen to transform as [s'—ss(x'+y') j and
(V3/2} (x'—y2). Accordingly, matrices such as 8p, 8, in (2.2) take
the specific form given.
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IllteI'RctloII wltll R slllgle pair of vlbratloIlal modes Q(), Q
belonging to the representation E.The vibronic Hamil-
tonian (neglecting for the moment all effects associated
wItll spIII) Is glvell by

X=Epd+(1/2p)LP p'+PP+)(I'(p'(Q()'+QP)gd

+VLQ a+Q.u.]. (2.1)

Here I'p, I', are the momenta conjugate to Qp, Q, ; p is
the effective mass of the mode and ~ its angular fre-
quency; V is the Jahn-Teller coupling coeflicient; and
the matrices 8, Bg, and b, are, respectively, the unit
matrix Rnd

r
+-,' 0

+p
0 0

0
0

—%3/2
8,= 0

0

0 0
+VS/2 0

0 Oq

(2.2)

The energy of the degenerate state in the symmetrical
con6guration is Eo. For simplicity we assume that the
electronic states f;(s) are independent of Q, and we
ignore coupling to other electronic states.

The simplicity of this ca,se (as contrasted to the other
Jahn-Teller problems we have to consider) lies in the
fact that the matrices appearing in (2.1) commute and
consequently can be simultaneously brought to diagonal
form. Accordingly, as noted by Mo%.tt and Thorson, ~

the vibronic eigenfunctions 4;„(Q,~) are products of one
of the electronic functions f;(~) (i= $, g, f) and simple
harmonic oscillator wave functions for a displaced two-
dimensional oscillator, the equilibrium position of
which ls

Q() = —Ve ()/p(pP Q
='—Ve /)M(pP (2.3)

(i= &, g, 1') and the corresponding energy

E; =Ep—(VP/2p&pP)+ (e()+e,+1)A(p,

eg, m, =0, j., 2, 3, ~ ~ ~, (2.5)

where F„(y) is a standard harmonic oscillator function
which may be defined by the generating relation

exp( —S'+2S(Iy ——',n'y')

- ~-(y)=mI(4n-"' Q (Sv2) ", (2,6)
p(~!)I('=

Wltll (I= (II(p/fI)
The vibronic spectrum (2.5) in this case rema, ins. the

same as in the absence of the Jahn-Teller interaction,
except for the displacement —V'/2)(I(pP common to
all states. In particular, the vibronic ground state

where 8'g ol 8' ls thc Rpp1opr1Rtc dlRgonal component
of the matrix hg or 8,, The potential energy of the
oscillator at this position of equilibrium is lower than
Ep by the "Jshn-Teller energy" Eqz, which in this case
is given by Eqz = V'/2IIM'. We obtain therefore

Ve;()~ Ve;,
@;.(0, )=0;()p.,(Q9+ l~.. Q.+, , (24)

p~') I ~'

(Np=e. =0) remains a triplet for arbitrary sterngth of
the Jahn-Teller coupling, "and all excited states remain
separated from the ground state by at least the finite
cxcltRtlon energy &co.

However, the equilibrium position (2.3) for the dis-
placed oscillators is diA'erent for the three diGerent
electronic functions f;(~) corresponding to the three
values i,= $, It, t . As this separation increases in propor-
tion to V/)(IaP, the region of overlap between correspond-
ing oscillator states associated with diferent electronic
functions is diminished, and matrix elements between
such states fall o6 accordingly.

Matrix elements of various operators between the
vibronic eigenstates (2.4) may be evaluated explicitly
using the generating relation (2.6) for the harmonic
oscillator functions. Consider an electronic operator 8
wlIIcll Is independent of Q(), Q, . TllcII R vlbronlc matrix
element of 8 is simply the product of an electronic
matrix element and the oscillator overlap integrals:

= (P; I
6

I P;)(in() I jap')()(ie,
I je.')„(2./)

whcl e

(in pl je()')()

Ve, () ~ Ve;()~
dQ~-IQ+ J"» IQ+ I, (2g)

I ~' k I ~'&

aIId similarly for (Az,
l jn, ),. In particular, matrix ele-

ments in which one of the states is in the ground-state
triplet involve

() Vay"
(iOI je)()——2- I'(II!)-Ii'I

I
(e;() e;())"—

kp(p J

$ t/r'2 2

&(exp — (e;p —e;())' . (2.9)
4pcv

An electronic operator 8g that has only ofI'-diagonal
matrix elements among the states f», ))!„,f», accordingly
has matrix elements within the vibronic ground-state
triplet

3 VQ
(+'ppl &~I+ pp)=(0'l&~lfI) «p—

4 pk)

These are diminished from their value in the absence of
the Jahn-Teller coupling by the exponential factor, the
argument of which is proportional to the square of the
diGerence in the displacement of the oscillators for the
different states or to the ratio of the Jahn-Teller energy

4 The treatment of Ref. 24 errs in concluding that "inversion
splitting" lifts the threefold degeneracy of the T2 ground state
in this case. Such a splitting is impossible in a system having
cubic symmetry.
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Egz to A~. Thus the direct effect of 8g within the
ground-state triplet of the vibronic system is gradually
quenched as the overlap of the oscillator wave functions
for the different states diminishes as the strength of the
Jahn-Teller interaction is increased. The exponential
factor in (2.10) is the orbital reduction factor caused by
dynamical Jahn-Teller quenching of the operator 8&.

On the other hand, an electronic operator 6~ having
only diagonal matrix elements (in terms of f», f„f») is
in this case unaffected by the Jahn-Teller coupling:

0
0.5
1.0
1.5
2.0
3.0
4.0

TABLE I. Values of G(x) and related functions.

e 'G(x) e *G(x/2)G(x)

0
0.570
1.318
2.319
3.684
8.26

17.68

0
0.346
0.485
0.517
0.499
0.411
0.324

0.210

0.178
0.115
0.067

e
—x/2

1.0
0.779
0.607
0.472
0.368
0.223
0.135

&+'-I»l+~"-)=&»t'l»ly'»v~- ~-" (211)

We must also consider second-order perturbation
effects on the ground-state triplet arising from couplings
with the excited vibronic states. Because of (2.11),such
couplings arise in this case only from off-diagonal
operators 6&, 6&, which may belong to either of the
representations T~ or T2. We have to evaluate sums of
the form

&+~oo I »x I +2oo)

, &+~oo I &~
I +'-&&+'- I

&~
I +2oo)

(2.12)
boo(24+224)i', k n, m

for the two cases j=k and j/k, where the prime on the
summation indicates that states with e=ns=o are
excluded. The relation (2.12) serves to define an opera-
tor 8» with matrix elements only within the ground-
state triplet. We find, using (2.7) and (2.9),

&+~ool&» I+~oo&= —(&~) 2 @~leal&'&&»t'l~~ l&2&i'
3 V2n2- (3V2n2)

Xexp ——
GI I

(2.13)
2 @2444 k 2p, 2(o4)

and for the case jAk (where i' or k)

&+~'oo
I
»~'

I oooo& = (&&) &»t'216& I 0'&&0' I
»'!~'

I »4&

3 V'n' (3V2n2)-
)&exp —— GI I, (2.14)

2 i42444 k 4p'4o4&

Representative values of G(x) and e 'G(x) are given in
Table I for values of x near unity.

These formulas will suKce to permit calculation in
this case of the energy of states derived from the ground-
state vibronic triplet when spin and spin-orbit inter-
action are included, and also to evaluate the response of
these states to external pertubations.

B. Quenching of Orbital Angular Momentum
and Spin-Orbit Interaction

The electronic orbital angular momentum L is an
operator of the type 6z with only off-diagonal matrix
elements between the states P», P„, »t». Accordingly, its
matrix elements within the vibronic ground-state triplet
are reduced as in (2.10):

3 V'n'
&+'oolL'ol+ioo&=Q;ILolf;& exp —— — . (2.18)

4 pcs

Thus, the orbital angular momentum of the ground-
state triplet is partially quenched by the Jahn-Teller
interaction. This quenching may be essentially complete
if the Jahn-Teller interaction is strong enough, as is, of
course, obviously so for the large static tetragonal dis-
tortion which is the limiting form of a strong Jahn-Te. ler
interaction in this case. In the dynamical regime, when
the overlap of the oscillator wave functions for the
different states is still appreciable, the quenching is
only partial.

When we include the spin S of the electronic state, we
must add to the Hamiltonian (2.1) the spin-orbit inter-
action, which we assume takes the simple form

where G(x) is defined as Xso=~s r. (2.19)

x
G(x) = P = -(e"—1)dg. (2.15)

G(x) is equal to the sum

(2.16)

(2.17)

y'r»gts

Pl
~.~ (24+m)24!224!

if y+s=x, and it has the asymptotic expansion

e~ 1 2' 2')(3'
G(x)~—1+-+ + +..~" x ~ 2lx2 3lx3

This complicates the solution of the vibronic problem
because 3Cso is not diagonal in terms of f», P„, fr', how-

ever, if Xso is suf!iciently small relative to the Jahn-
Teller interaction, we can treat K&0 successfully by
perturbation theory using the exact solutions (2.4)—(2.5)
of the vibronic problem without spin.

Of course, if spin-orbit interaction is large compared
with the Jahn-Teller interaction, we should reverse this
procedure, solve the spin-orbit problem first, and then
take account of the Jahn-Teller interaction. This is the
situation considered by Van Vleck" and Liehr, "who
showed that in appropriate cases a strong spin-orbit
interaction could stabilize the system against a Jahn-
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Teller distortion. In our present analysis, on the other
hand, we shall be concerned primarily with the former
situationwith the Jahn-Teller interaction stronger than
spin-orbit interaction.

Since 3Cso is linear in L, its direct effect within the
ground-state triplet is reduced by the same exponential
factor as in (2.18). Defining an Hermitian operator
'=(g„Z„,g,) in terms of its nonzero matrix elements

&+'«I&.I+.oo&=&+.ool&. I+roo)

=&+tool ol+too&= —o (220)

[apart from the Hermitian conjugate of these all other
matrix elements of Q are defined to be zero7, we can
thus express the direct CGect of spin-orbit interaction
within the vibronic ground state by the equivalent
operator

Xso'=VS.S, (2.21)

3 V'0, '
X'=angl, exp

4 p, 'cv4
(2.22)

Here gI, is deGned in terms of a typical nonzero electronic
matrix element of I.

gz=o&AI~*IN & (2.23)

Thcrc ls, however a second-order effect of X80 within
the ground state, since Xqo has matrix elements also
with excited vibronic states. Using (2.13)—(2.14), we
obtain its operator equivalent

aeso&''=+Eg(S S)'
+E,(c,oS.'+Z„'S„'+Z,'S.o), (2.24)

with

where

Eg—— (X'gag/to) f, —
Eo= (Ai'/")—(fo f.)—

3V'u' (3V'u')
f,=exp —— GI—

2 p'(o' ~4 p' ro')

3 V'u'- (3 V'u')
fo=exp —— GI—

2 p'-4 k2 p'-4i

(2.25)

(2.26)

X80('& has the same form as second-order terms arising
from spin-orbit coupling to other states of the electronic

system in a cubic crystal Geld. However, E~ and E2 as

given by (2.25)-(2.26) maybe substantially larger than
corresponding coefBcients4' derived from the cubic Geld

splitting because of the relatively low excitation energy
to the excited vibronic states. This is easily seen from
the values of 8 G($) ands G(x/2) glvenlnTableI)
and from expected values for the codEcient (Log'o/ku),
on the assumption that Ace is much smaller than the
cubic Geld splitting 10Dq.

The relative energies of the spin-orbit levels derived.
from the ground-state vibronic triplet depend on the
relative magnitudes of X', E~, and E2. If X' is much larger

than E~, E2, the levels are grouped according to the
eigenvalues IS—1I, S, (S+1), of the effective total
angular momentum operator (where 2=1)

J=Q+S,
and we have

EP+1)—E(J)=V(/+1).

(2 27)

(2.28)

But (2.30) is simply the second-order spin-orbit term
O'S,'—S(S+1)j which we expect in the electronic
ground state in the presence of a static tetragonal dis-
tortion along the s axis which places f» lower than the
electronic doublet/', f„by the energy difference

AE=BVo/2pcoo=3Eg p. (2.31)

Since this AE is precisely the separation of the energy
surfaces obtained from the vibronic Hamiltonian (2.1),
with neglect of the nuclear kinetic energy terms, at the
position (2.3) of the minima in the lowest surface, we

see that our result (2.30) agrees completely with that
appropriate to the static Jahn-Teller distortion, as of
course it should. The fact that in this limit the surviving

, term in Xso'+%so&'& hasonlydiagonalmatrixelements
with respect to 'k(pp, %&pp, Capp is thus the direct re-

Only the term proportional to(2 oS,'+2„'S„'+2,'S,')
in %so&'& (ignoring spin-orbit terms of third order or
higher) splits levels of given J (for J.)2) or couples
states of dBFerent J. Thus so long as X'&&Ey, E2 the
levelsaremuch thesameasintheabsenceof Jahn-Teller
coupling, but the Jahn-Teller interaction reduces the
diect spm-orbit spllttlng 1D rcplaclDg X by X aDd cD-

hances the second-order splitting of levels with J~&2 in
proportion to E2.

If, however, Ey and E2 should be comparable with or
greater than X',the spin-orbit levels may be distributed
quite differently from what is found in the conventional
crystal-Geld model for an ion in cubic symmetry. This
situation will occur if E'p/Aced is sufficiently large that,
V in (2.22) is suitably quenched. The energy levels in
such a case may usually be worked out fairly simply
once values for X', E~, and Eg have been assigned, but
the states will in general no longer be eigenstates of J.

If E'p/Are)) 1,we mayuse the asymptotic expression
(2.17) for G($) ln evaluating Eg and Eo from (2.25)—
(2.26). We find then that both E' and X' decrease
exponentially, but that E2 has the asymptotic value

Eo 2Xopa&os—o/3Vo. (2.29)

In this limit, therefore, the only signiGcant term in
Rso'+Xso&o& is Eo(Z 'S'+2 'S '+2'Sg'), which
has only diagonal matrix elements among the vibronic
states %gp, %,pp, 0'~pp. %C obtain, for example,

&+tool&so'+&so&''I+too)

2X pQP gl,
I-S,'—S(S+1)). (2.30)

3V'



Aection of the fact that these three states describe the
three possible static tetragonal distortions of the com-
plex with their associated zero-point motion and that
the overlap of the zero-point motion about diGerent
distortions diminishes rapidly as the strength of the
Jahn-Teller coupling increases.

CI'lteria for the applicability of our procedure in using
perturbation theory to find the effect of spin-orbit inter-
action on thc vibronic states are of interest, particularly
for contrast to the criteria appropriate to Van Vleck's
cons1derat1ons" of sp1n-orb1t stab1hzat1on. Ke ev1dently
desire that V, Es and Es as given by (2.22), (2.25),
and (2.26) be small compared. to lsoo and. that spin-orbit
perturbation corrections higher than second. order bc
very small or, ideally, negligible. These conditions may
be shown usually to be satished if

Vs/tsois» ( l~ (, (2.32)

that is if the Jahn-Teller energy is much greater than the
spin-orbit splitting in the absence of Jahn-Teller cou-
pling. Van Vleck's considerations, on the other hand,
requir'e thc I'cvclsc, IlRIQely

Vs/pop((
i
X i, (2.33)

in which case it is legitimate to solve the spin-orbit
problem first and to ignore (or treat as perturbations)
Jahn-Teller matrix elements coupling levels of different
J.In practical examples, of course, one is likely to 6nd
that neither hmit (2.32) or (2.33) is apphcable, but the
limiting cases are still useful in suggesting qualitatively
thc behavior that should be expected.

C. Response to External Perturbations

MagneHc Field

An cxtc1nal IQRgnetlc 6cld H glvcs risc to thc Zccman
interaction

xJ»=PL H+gsoPS H,

with P= ebs/2mc, geo= 2.0023. The direct Zeeman effect
on the vibronic ground state is then given, in accordance
with (2.18) and {2.23), by

X»»' gzPS H+g——s'PS H, (2.35)

(2.36)

To this wc must add the second-order terms arising as in
(2.13)—(2.14) from the combined effect of the orbital
part of (2.34) and the spin-orbit interaction:

&I»'si=giP[(P. S)(S H)+(P„H)(Q 8)]
+gsP[& 'M4+ 2„'S„H„+2,'S,H,], (2.37)

Static Uniform Straiw

A uniform strain lifts the degeneracy of the electronic
states ft, f„,f» in accordance with the perturbation

Rs= Vs[eo8o+e.h.]
+Vs[ess&oo+esP'so+eis&s»], (2 41)

1 Bss( BNg)
ei'=e'~= +

2 ax; az;J
(2.42)

is a component of the strain tensor (referred to the cubic
axes xi= x, xs=y, xs=s) and

eo= [ess—s(eii+ess)7,

e,= (VS/2) [eii—ess]. (2.43)

Thc MatrKcs Bg) 8e Rrc

0 0 0
0 0
0 —1 0

given in {2.2), while

0 0
0 0 0

0 0

In partially quenching the orbital angular momentum
of the vibronic ground state, the Jahn-Teller coupling
thus reduces thc dIrect olb1tRl cont11butlon to thc Zcc-
man splitting, in accordance with (235) and (2.36),
enhances the second-order contributions (2.37) with

respect to the corresponding terms derived from the
cubic-field splitting, and leaves the direct spin contribu-
tion gsP(S H) unchanged (except possibly for a second-
order correction to gs which in the present case is zero).
The resulting g factors for the various spin-orbit levels
reQcct these changes. For example, in the 3d' con6gura-
tion in cubic symmetry, if X'»E~, E~ the lowest spin-
orbit level is the 7= 1 triplet of 'Tg, the g factor of
which is given by (if also X'))gPH)

g(J = 1)=asgs ——',gz+3gi+ (6/5)gs. (2.39)

Whereas g(J = 1)=3.5 for the crystal-field model

using free-ion wave functions [gz=gz= —1; gs= —6gi
=+12K/(10Dq); gs= geo —Q./(10Dg)], this value is re-
duced toward 3.0 as the partial quenching of L di-
minishes gz toward zero, if gi and gs remain small. [We
Rssumcq of course~ that thc quenching ls not so ncRI'ly

complete that Y&gePHS; if this happens S couples
more strongly to H than to 9, and the g factor(s)
approaches the spin-only value of 2.]

In the limit Egg/boo)) 1, X~&si in (2.37)-(2.38) takes
an asymptotic form consistent with the g shift for a
static Jahn-Teller distortion, for example,

(+»oo (3'a'"
) +»oo)

(2XPgrs/hE—)(S,H,+S„H„), (2.40)

where hE is given by (2.31).

gi- (&gr '/~)f. —
gs = —(2Xgis/boo) (fo

—f,),
and fo, fo were given in (2.26).

(2.38)
0 —1 0

V2)= —1 0 0
0 0 0

(2 44)
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The operator of which Vp is the coefficient in (2.41) is
diagonal in terms of »t», P„, P» and thus has the form of
0& in (2.11). Accordingly, within the vibronic ground
state it takes the identical form as in (2.41), with the
same coefficient U2, in terms of matrices hg', 8,' which
are identical in form with (2.2) but couple the vibronic
states 4'»pp, %„pp %»pp instead of P», P„, g». It has no
matrix elements between the ground state and excited
vibronic states (in this case) and so gives rise to no
higher order terms.

The operator multiplying Vp in (2.41) is of the off-
diagonal type 8&, so its effect within the vibronic ground
state is partially quenched as in (2.10), and it moreover
gives rise to second-order terms linear in strain by work-
ing jointly with other type 8& operators such as the
spin-orbit or orbital Zeeman interactions.

We can, therefore, give the effect of both types of
strain on the vibronic ground state, including the
second-order terms representing the strain-induced
change in the spin-orbit and Zeeman interactions, by
means of the equivalent operator

V&[ p~p + @ ]+Vp [e28~2» +epl~pp +e12+2» ]
(~C.V /~--)f.[".(~,~.+~.~,)

+epi(Z.&,+2,&.)+eip(Z+„+Z»5g)]
(gzV p/4—i)pf [epp(Z„H, +Z,H„)

+epi(&,&.+Z.& )+eip(2~„+g„H,)], (2.45)

where
Vp'= Vp e pL —-'(V'~'/u'~')] (2.46)

»nce both Vp' and f decrease exponentially for large
Eg»/Ap&, in the limit of the static Jahn-Teller distortion
the only term remaining in (2.45) is the term in U&,

which gives the effect of a uniaxial [100]strain in de-
stroying the equivalence of the three possible tetragonal
distortions. The disappearance of U3 in this limit, of
course, is a direct reflection of the fact that a uniaxial
[111]strain does not destroy this equivalence.

Other I'ertlrbati orIs

The effect of other perturbations on the vibronic
ground state may be written down from the results for
those considered above, since these are representative of
the three different types of operators, as classified by the
irreducible representation of 0 or T& to which they
belong and by whether they are real or imaginary, which
lift the degeneracy of the orbital triplet state. The mag-
netic field belongs to Ti and appears in pL H associated
with an imaginary Ti operator L, while the [100]and
[111]types of uniaxial strain [the V& and Vp terms in

(2.41), respectively] belong to E and T&, respectively,
and associate with real operators Sg, V2p, etc. Since the
symmetrized and antisymmetrized direct product of T&

or Tp with itself (for either 0 or Te) contains, respec-
tively, (A i, E, T2) and Ti, these three exhaust the possi-
ble types (since Ai leads to no splitting).

Thus, for example, the effect of the term F(L I) in the

hyperhne interaction'4 4' follows immediately from our
results for the magnetic field, if only we replace P by F
and 8 by I in the appropriate terms of expressions such
as (2.35), (2.37), and (2.45).

The linear effect of an applied electric field E for
tetrahedral symmetry follows from the above results for
the [111]type of strain, since H belongs to Tp under Te
(under 0 it belongs to Ti and since it is real does not
split the triplet in first order).

(V'/2u~')(M &
—2) (3.2)

where M= 5 '(Q&&P) and I is an Hermitian electronic

operator defined [in analogy with (2.20)] by

Q»~I, ~&„)= i, , (etc.). —

Defining /=M+I, we have then

(3.3)

E=Ep+ (»»+ pP) hpp

+ (V'/4pp&') [F(F+1)—M(M+1) —6], (3.4)
rI,=O, 1, 2, 3,

where F is the eigenvalue of g [F=M 1, M, M+1—for
M~&1; F=1 for M=O] and M takes the values n,
n —2, to 0 or 1. The degeneracy of each vibronic
level is (2F+1) in the "spherical" approximation of

(3.2) and (3.4), and the ground state is a triplet with

III. ORBITAL TRIPLET (TI OR T2)—
T2 VIBRATIONAL MODE

A triplet state in interaction with a set Of vibrational
modes Q», Q„, Q» belonging to Tp gives rise to the
vibronic Hamiltonian~

~=Eo~+(2~) '[F»'+F-, +F»'+~' (Q»+Q, +Q;)]~
+V[Q»&~»+Q. &~.+Q&»z], (31)

where V'~», V'p„, 1'p» are the matrices given in (2.44), in

terms of f», P„, f» as basis.
In this case the matrices V 2~, ~~„V2t do not commute,

and it is consequently not possible to find three fixed

linear combinations of »»», f„, P» which diagonalize the
linear term in (3.1) for all Q», Q„, Q». The vibronic eigen-

functions, therefore, do not have a simple form analo-

gous to (2.4), and the energy spectrum is no longer

essentially unchanged by the Jahn-Teller interaction,
as it was in. (2.5). The problem is, therefore, very much

more complicated than for the E vibrational mode. We
shall not attempt here to analyze this case thoroughly,
but we shall give enough detail to be able to compare its
general properties with those of the E mode case,
particularly with respect to the quenching of various

operators within the vibronic ground state.
The spectrum of (3.1), to second order in the Jahn-

Teller coupling coeKcient V, was shown by MofFitt and
Thorson' to be the same as that of the Hamiltonian ob-

tained from (3.1) by replacing the terms linear in V by
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oo=0, de=0, F= 1=1.The Jahn-Teller energy Eqr in
this case is (2/3) V'/p~'.

In the limit of a very strong Jahn-Teller coupling,
Egg))ken, the ground state is fourfold degenerate corre-
sponding to four equivalent static distortions' 4

(Qr', Q„',Qr'), = (2U/3@M')(mi, mo, mo), (3.5)

with the associated electronic states

P, = (1/VS)(~,P,+'m, P„+'~,g,), (3.6)

where for j=1, 2, 3, 4, (mi, mo, two) is the set
(+1, +1, +1), (—1, —1, +1), (+1, —1, —1),
(—1, +1, —1), respectively. The fourfold vibronic de-
generacy spans the irreducible representations To+A i
if the orbital triplet belongs to To (and Ti+Ao if the
triplet belongs to Ti) so that an accidental degeneracy
occurs in this limit. Thus, as the strength of the Jahn-
Teller coupling increases, the triplet ground state of
(3.4) is approached by a. singlet state which has the same
limiting energy. " For a finite coupling strength the
ground state is presumably always the triplet, but
whereas in the case of the E mode the triplet is always

below the nearest excited state, for the T2 mode the
excitation energy to the singlet may be much less
than L)~

In considering the quenching of operators within the
vibronic ground-state triplet, analogous to that found
in Sec. II, it is convenient to look first at the case of a
very strong Jahn-Teller coupling and to form the wave
functions @go, +„0, 0'~0 for the triplet and 0'qg for the
nearby singlet as linear combinations of the lowest
vibronic eigenfunctions +; appropriate to each of the
four distorted configurations (3.5):

4«= (2A) i('Pi —4'o+ 4o—%4) )

4 o
——(2A)-'(%i —%o—Co+04),

(3.7)
%ro ——(2A)

—'(4 i+'Po —%o—%4),

4 so ——(2'') —'(4 i++o+4o+ +4) .

Each 4'; is given approximately for Ezr)) kv by P; in
(3.6) multiplied by the vibrational function correspond-
ing to zero-point motion about the jth extremum; the
nonorthogonality of the 0'; arising from a small overlap
in this motion about different extrema necessitates the
normalization correction factors A, A in (3.7). Matrix
elements within the triplet or between the triplet and
singlet may then be expressed in terms of matrix ele-
ments among the O';. Obviously those operators are
completely quenched as Ezr/hoi increases which can
be shown to depend only on off-diagonal matrix ele-
ments among the 0;, since their overlap eventually
diminishes exponentially in E~r/Ace in analogy to
(2.10). Operators depending on diagonal matrix ele-
ments may remain finite in the limit.

"The energy difference between the singlet and triplet is the
"inversion splitting" referred to by Bersuker (Ref. 24).

Real operators belonging to E or T2 and imaginary
operators belonging to T& are the only ones leading to a
first-order splitting of the triplet. We may show from
the general transformation properties of these operators
that when the triplet states have the form (3.7) (the @;
are real) matrix elements of E and Ti operators within

the triplet may be given in terms of a single o6-diagonal
matrix element among the 4, ; a T2 operator requires
one diagonal and one o6-diagonal matrix element among
the 0, to be specified completely. Representative matrix
elements for each case are the following:

&4'r IoT iI @«&= 2A-'(@ IoTi, I @i&, (3.8a)

(e„iE,I
e«)=2A-o(e, iE, I e,&, (3.8b)

&+«I 2'ori +.o&=&-'{&+il7'orl +i)—&+ii 2'or
I
+.&} (3 8c)

Thus the electronic orbital angular momentum, which

belongs to T&, is strongly quenched within the vibronic
triplet ground state by a strong To mode Jahn-Teller
coupling, just as it was in (2.18) for the E mode. An

operator belonging to E is also strongly quenched this
time [for example, the Uo part of the strain interaction

(2.41)];while one belonging to To [the Vo part of (2.41),
say] may remain finite in the limit because of the di-

agonal matrix element on the right-hand side of (3.8c);
for E mode coupling the reverse was true. This behavior
is of course just a reAection of the fact that in the static
limit all four distorted configurations are equivalent
with respect to a [100]uniaxial strain (E) which thus
causes no splitting, while a [111] strain (To) dis-

tinguishes one of the four.
It has so far not been possible to derive a rigorous

quantitative expression for the quenching in this case,
like (2.18) and (2.46) for the E mode, because the over-

lap integrals needed in (3.8) are difficult to evaluate
even if we can make use of the Born-Oppenheimer
approximation over most of the con6guration space.
However, it is quite simple to evaluate the quenching
to the accuracy represented by Moffitt and Thorson's
approximate Hamiltonian (3.2) and the energies (3.4).
We obtain for representative matrix elements of elec-
tronic operators the following:

&~~. I
L.

I ~«&= &~» I L.
I ~,)

X{1 2o(Vn/p—u'—)'+ ~ }, (3.9a)

&+so I
Eo

I +«&= &A I Eo
I ko&

&& {1—o («/ii~')'+ . }, (3.9b)

&+«I 2'orI +.o&= &@I2'or IW.&

X{1——,'(Vn/p~')'+. }. (3.9c)

As seen from (3.8), the limiting value of the bracketed
functions in (3.9a) and (3.9b) must decrease expo-
nentially to zero Ezr/Boo-+ ~, while that in (3.9c)
may be shown from (3.8c) and (3.6) to approach (2/3).
These results suggest the following extrapolation of (3.9):

iro I
+oo&= (6 I

La
I
4'& exp[—-'(«/goo')'], (3.10a)
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(q"oI E~l + o)=(t'IE~I P ) expr —l(vn/t ~')'], (3.10b)

X (x3+ ~g exp[—s2(vu/p(v')']) (3.10c)

These expressions have the correct general behavior, but
they are certainly not correct in detail and may be in
substantial relative error for both intermediate and
large values of Eqp/Pua.

Second-order eGects on the ground state from per-
turbations coupling to the excited vibronic states, like
those derived in the case of the E mode, will be en-
hanced here too by the Jahn-Teller interaction. In this
case, in fact, all three of the operator types (T&, E, and
T~) give rise to second-order eRects, since even the Tm

operator is partially quenched (for the E mode, an
E operator wa, s not affected at all and, therefore, did not
couple the ground state and excited states). A rigorous
calculation of these sects would, of course, be very
much more dificult than it was for the Emode, although
expressions may be derived quite simply (we do not give
the results here) for the two limits: (a) the limit corre-
sponding to MoKtt and Thorson's approximate Hamil-
tonian (3.2), and. (b) the static limit. The general form
of the operator equivalents of these second-order eGects
on the ground-state triplet is, of course, known on sym-
metry grounds. The second-order spin-orbit and Zeeman
eRects take the form (2.24) and (2.3/) Ladditional terms
proportional to S' and (S H) may, in general, also ap-

pear]; the relative asymptotic behavior of the coefli-

cients as Eqp/Aced increases must this time be compati-
ble with the limiting trigonal distortion. Similarly, the
second-order sects of strain take the general form given
in (2.45), except that we must now add to this expression
terms arising because the E type of strain also couples
to excited states. These take the form

I ee(Z.S.——,'ZQ ——',Z„S„)+e.(%3/2)(ZQ, —Z„S„)]

[eg(Z,H,—', Z„H —~ Z„H„)+e,(V3-/2)(g, H, —g„H„)].

There is a further source of second-order eGects in
this case which was not present for the E mode, namely
the singlet state which may be quite close to the ground-
state triplet. Since the triplet belongs to T2 and the
singlet to Aq, however (or to T~ and A2), only operators
belonging to T2 can couple the triplet and the singlet.
Thus there is in particular no spin-orbit or Zeeman
coupling between these states and no consequent second-
order e8ect on the g factor of the triplet. There may,
however, be large second-order (and higher) eRects on
the triplet due to a T2 strain coupling with the singlet.

IV. CONTINUOUS PHONON SPECTRUM

A complex in a crystal interacts with the entire
phonon spectrum, not just with a few localized modes,
and it is evident that the phonons collectively must

produce effects via the Jahn-Teller interaction which are
similar to those obtained in Secs. II and III for the
simpler cases of single modes. In particular, it is of
interest to know at least qualitatively the eGect of the
continuous phonon spectrum in quenching orbital
angular momentum and other operators.

We shall not go into any detail with this problem at
this time but shall simply cite a few results. A more
complete treatment will be reserved for a later publica-
tion. As a guide to the general form of the result for the
continuous phonon case, we may take the analog of the
case of a single E mode in Sec. II and consider the
orbital triplet in interaction with the phonon spectrum
only through the E part of each mode. In terms of
annihilation and creation operators of the phonon 6eM,
the Hamiltonian analogous to (2.1) then takes the form

Bc=Fps+P ha&(qt)Lat(qt)a(qt)+ 2~]d
qt

+P (I Ve(qt)a(qt)+ Ve*(qt)at(qt)]8&
qt

+LV,(qt) a(qt)+ V.*(qt)at(qt)] 8.) . (4.1)

Here g denotes the propagation vector of the phonon,
t its mode of polarization, and ~(qt) its frequency, while

Ve(qt), V,(qt) are Jahn-Teller coupling coeKcients which

are mutually related so that the Hamiltonian has the
full symmetry of 0 or Tg.

The spectrum of (4.1) may be easily shown to be
identical with that of the decoupled problem in which

the Jahn-Teller interaction is zero, except for an energy
shift 8E which is common to all states of the full system
and is given by

bE= —-', P,c Ltt~(qt)] 'I
I ve(qt) I'+

I v.(qt) I
']. (4.2)

We may also show in this case that operators with

only diagonal matrix elements with respect to the elec-
tronic states fb f„,Pr are unaffected by the Jahn-Teller

coupling, just as was true for 6~ in Sec. II, while those
like 8~ with only o6-diagonal matrix elements are

partially quenched. The quenching factor for 5& in the
ground state of the system may now be shown to be

exp( —
4 Z~& I hu(qt)] 2LI V, (qt) I

2+
I V, (qt) I

2]& (4.3)

in place of the exponential factor in (2.10).
When the T~ part of the Jahn-Teller interaction with

each mode is included in the Hamiltonian, the problem
no longer admits a simple rigorous result like (4.3), any
more than it did for the localized modes. Qualitatively,
however, the behavior is similar, except that, of course,
operators of both types 8& and 6& are now partially
quenched. Second-order eGects are enhanced by a con-

tinuous phonon spectrum in both cases, just as they
were for the single vibrational modes.

V. DISCUSSION

We have considered several idealized situations in
which the dynamical Jahn-Teller effect has been shown



to cause a partial quenching of spin-orbit interaction,
orbital angular momentum, and other orbital operators,
within the degenerate ground state of the vibronic
system. This quenching is the result of the coupled
motion of the electrons and the vibrational modes vrhich
characterizes the dynamical Jahn-Teller regime, and it
occurs even though the Jahn-Teller coupling is insuffi-
ciently strong to produce a static distortion of the com-
plex. So long as the residual spin-orbit interaction is
larger than the splitting of the degenerate levels in a
magnetic 6eld, the paramagnetic resonance spectrum
of each complex shovrs no departure from the symmetry
of the undistorted conffguration, but the Jahn-Teller
coupling introduces orbital reduction factors in the
response of the complex to perturbing 6elds, and it
may enhance the corresponding second-order effects.

The examples we have considered vrere chosen be-
cause their mathematical simplicity permits a more
complete analysis over the full range of the strength
of the Jahn-Teller interaction than is possible in other
cases. They are, of course, not quantitatively applicable
to actual molecules or complexes. Ke must novr con-
sider how these results may be generalized and to vrhat
extent they may be relevant to actual experimental
cases.

We have shown in the case of an orbital triplet in
interaction with a pair of localized E vibrational modes
that quenching occurs for orbital operators belonging
to both T~ (orbital angular momentum, spin-orbit and
orbital Zeeman interactions, etc.) and Tn [e.g. , response
to [111juniaxial strain or (in tetrahedral symmetry) to
an applied electric ffeldj. The orbital reduction factors
describing this quenching vary as a function of the Jahn-
Teller coupling coe%cient V in proportion to a simple
describing this quenching vary as a function of the
Jahn-Teller coupling coefficient V in proportion to
exp[—4 (Va/pa&')'j =exp[—

~Earp/~

j. In this case,
operators belonging to E (e.g., response to [100juniaxial
strain) are unaffected by the Jahn-Teller coupling.
On the other hand, for the triplet in interaction vrith a
set of T2 vibrational modes, Tj and E operators are
quenched [this time in proportion to a complicated
function of (Va/paP)' which we have suggested may be
represented approximately as a descending exponential),
vrhile T2 operators are only partially quenched, remain-
ing ffnite in the limit of large Eqr/M with a value sa

their original value.
It is evident from these results that if interaction is

with both E and T2 modes, then all types of orbital
operators Tj, T2 and E are quenched at least partially.
Whether it is the E or the T2 operator that has a 6nite
value in the limit of the static Jahn-Teller distortion
depends on vrhich mode of distortion dominates in
determining the limiting con6guration of minimum
energy. 4' Since in realistic situations vrith an orbital
triplet the Jahn-Teller coupling is with both types of
modes, we may expect in general in the dynamical

regime that all types of operators will display orbital
reduction factors less than unity as a consequence of the
Jahn-Teller interaction. Moreover, all types of perturb-
ing operators correspondingly should give rise to en-
hanced second-order e8ects in the ground state, due to
interaction with excited vibronic states. Similar con-
clusions should apply to other degenerate cases besides
the orbital triplet, including those of lower symmetry;
the relevant operators in each case are those having
nonzero matrix elements betvreen the degenerate states.

The dynamical Jahn-Teller situation for a complex in
a crystal is complicated further by the fact that inter-
action is with the continuum of phonons and not only
with a fevr localized modes of vibration. We have given
expressions for the Jahn-Teller energy (4.2) and quench-
ing factor (4.3) for a simple example of the continuum
case. These may be evaluated for the acoustic branch
of the phonon spectrum, in the long-wavelength ap-
proximation, using data obtained from the eGect of
static strain in splitting the orbital degeneracy of the
complex. It is obvious, from (4.2) and (4.3), however,
that the important regions of the phonon spectrum are
those near critical points, vrhere the density of states is
high. Thus, critical points in the continuum act mu. ch
like locabzed modes of similar frequency, and their
effect may be analyzed approximately in these terms.
Unfortunately, this approximation is of limited help in
making a quantitative analysis in actual cases, for we
rarely would know values for the Jahn-Teller coupling
coefBcients appropriate to the vairous critical points.

Therefore, while our considerations have suKced to
demonstrate the general occurrence of these conse-
quences of the dynamical Jahn-Teller eff'ect, and to
provide a guide to the general form and magnitude of
these e&ects, it vrill be diKcult to give a quantitative
analysis for actual complexes of experimental impor-
tance. %'e must probably be content in most cases to
analyze the situation in terms of an effective generalized
spin Hamiltonian [containing terms like (2.21), (2.24),
(2.35), (2.37), (2.45), etc.j which takes account of
orbital reduction factors and enhanced second-order
sects through phenomenological coeKcients chosen to
6t the data. The values found for these coefFicients may
be markedly affected by the Jahn-Teller effect, how-

ever, and they may di6er considerably from vrhat one
expects from ligand 6eld theory taking account of
covalent bonding.

In the model cases vre have considered we find that
even a weak Jahn-Teller coupling causes an appreciable
decrease from unity in the various orbital reduction
factors. For example, if V'/paP= (1/10) ku, the factor
appropriate to L or to spin-orbit interaction is given by
(2.18) and (2.22) to be 0.93 in the case of the 8 mode,
and from (3.10a) to be =0.86 for the T~ mode. However,
these values are correct only if the Jahn-Teller coupling
is much stronger than the spin-orbit interaction,
Eqp)) t &(, as discussed in Sec. IIB. For a weak Jahn-



A 1738 FRANK S. HAM

Teller coupling, this inequality is very likely to be
reversed, as in (2.33), and we must then follow Van
Vleck" and I,iehr" in examining each spin-orbit
level separately for Jahn-Teller instability. If a level is
a singlet or a Kramers doublet, there is no instability,
and the only effect of terms linear in Q in the Hamil-
tonian (2.1) or (3.1) is to couple the states of this level
to other levels. Such coupling introduces a small energy
shift in the level quadratic in Q (no splitting) and for the
doublet produces a g-shift linear in Q which averages to
zero under the zero-point motion. Thus, the spin-orbit
interaction stabilizes such levels against a weak Jahn-
Teller coupling, and apart from higher order perturba-
tion effects (assumed small) it eliminates the effect of
the Jahn-Teller coupling on g factors, hyperfine inter-
action, etc. On the other hand, if a spin-orbit level has
degeneracy greater than 2 (J&~1), Jahn-Teller instabil-
ity remains. In these cases one may get significant
quenching from the dynamical Jahn-Teller effect for
those operators which have matrix elements among the
degenerate states, and one obtains reduction factors for
these operators quite analogous to the orbital reduction
factors we have found for orbital operators. Thus with a
suKciently strong spin-orbit interaction even the spin
angular momentum can be at least partially quenched
by the dynamical Jahn- Teller effect. Substantial quench-
ing in such cases requires, however, Vq'/p&v'= Ace, where
V~ is the Jahn-Teller coupling coeflicient appropriate
to the Jth spin-orbit level. Since Vg is simply some
numerical multiple yq of the corresponding Jahn-Teller
coefficient V for orbital operators, substantial quenching
can occur under Van Vleck's condition (2.33) only if
the relations

are simultaneously satisfied. This is a dificult condition
to fulfill, since for the iron group of transition metals )
is comparable with typical values of A~ for the relevant
modes. In the case considered by Van Vleck" of the
lowest level (J = 1) of the 3d' conaguration in octahedral
coordination, 7J is 1/10 for both E and I'2 modes, so
that if the Jahn-Teller coupling is weaker than the spin-
orbit interaction, and if ha&& ~X~, then we have VP/p&0'

((1/100)her, and Jahn-Teller reduction factors are
within one percent of unity. In this case, therefore, as
Van Vleck has noted, a suKciently strong spin-orbit
interaction suppresses for all practical purposes any
manifestation of Jahn-Teller instability of this level.

To sum up, the dynamical quenching effects we have
calculated for orbital operators are correct even in our
model cases only if V'/pa&'»

~
X ~, but within this range

they a6ect matrix elements of all orbital operators
among the several spin-orbit levels derived from the
vibronic ground state. In the reverse situation appro-
priate to Van Vleck s considerations, strong spin-orbit
coupling may eliminate such effects in certain levels by
stabilizing the level against Jahn; Teller instability,
either in an essential fashion as for a Kramers doublet,

or "accidentally" by reducing the coupling coefficient
to a small value. We may, however, still get dynamical
quenching effects with

~ X
~&&V'/y~' (for J&&1), and be-

cause of the strong spin-orbit coupling these then
quench at least partially both orbital and spin operators
within a level. Finally, dynamical quenching effects
certainly occur if V'/p&u'=

~

X ~, in which case it is diffi-
cult to predict in general what values various parameters
might assume. We shall not consider these other situa-
tions further, and we shall now present general argu-
ments and cite experimental evidence to support our
contention that the range of interest for dynamical
Jahn-Teller quenching not only is likely to occur in
practice but in fact has been realized in several com-
plexes involving transition metal ions of the iron group.

The general argument that such cases are likely to
occur is based on the observation that the range of
interest represents an intermediate one with respect to
the strength of the Jahn-Teller coupling and the spin-
orbit interaction, and that examples from both extremes
have been observed. On one hand, we have the examples
of Co'+ (3d')" and Fe'+ (3d')'0 octahedrally coordinated
in Mgo. Neither of these show any indication of Jahn-
Teller distortions, and both have g values (see Table II)

TABLE II. Experimental g factors of transition
metal ions in orbital triplet states.

3d'. 5'

3d': 4TI

Ion

Fe'+ MgO
Fe'+: CaO
Mn+: Si'
Cr: Si~

Co'+' MgO
Fe+: Mgp
Fe+: NaF
Mn'. Si'
Fe+: Si'

3.428
3.30
3.01
2.97

4.278
4.15
4.344
3.362
3.524

Reference

+ These values are for ions occupying inter'stitial sites in the silicon lattice,
b W. Low and M. Weger, Ref. 40.
o A. Shuskus, Ref. 41.
d G. W. Ludwig and H. H. Woodbury, Ref. 37.
e W. Low, Ref. 39.
f J.W. Orton, P. Auzins, J. H. E. Gr ifmths, and J. E.Wertz, Proc. Phys.

Soc. (London) 78, 554 (1961).
B. Bleaney and W. Hayes, Proc. Phys. Soc. (London) B70, 626 (1957).

close to the values for the lowest spin-orbit level (1=2
and 1, respectively) expected on the basis of ligand 6eM
theory for the cubic con6guraton. These are the two
cases cited by Van Vleck" as displaying spin-orbit
stabilization against Jahn-Teller instability. They evi-
dently correspond to V'/paP»

~
X

~
(although as we' ll see

below there is some reason to think that this inequality
is poorly satisfied for Fe'+).

On the other hand, as examples from the other
extreme, U'/poP&) ~X~, we may cite cases in which the
Jahn-Teller coupling is so strong that it leads to a static
distortion despite a stabilizing inAuence of the spin-
orbit interaction. Two ions giving such an effect are
Cu'+ (3d') and Ni'+ (3d') at the tetrahedral A sites of
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the chromite spinels Cu Co~,Cr204, Ni Co~,Cr204,
and Cu Ni&, Cr204 studied by Arnott, et a/. "In tetra-
hedral coordination Cu'+ and Ni'+ should be in the
orbital triplet states 'T2 and 'T&, respectively, but a
strong spin-orbit interaction would stabilize both in
ground states having, respectively, J=—,

' and 0. How-
ever, tetragonal distortions of these compounds do in
fact occur" in the appropriate ranges of the composition
parameter x, and they accord with Dunitz and Orgel's
suggestion" that these macroscopic distortions arise
cooperatively from Jahn-Teller distortions occurring at
the sites of the individual Cu'+ and Ni'+ ions (Co'+ at
the A site is in the state 4A~ and so has no Jahn-Teller
instability due to orbital degeneracy). Thus the Jahn-
Teller coupling in these cases is evidently sufficiently
strong to override the stabilizing e6ect of the spin-
orbit coupling, even though for Cu'+ and Ni'+ the
values for ) should be among the largest of those for the
ions of the 6rst transition group. These examples also
confirm that the Jahn-Teller coupling of t2 electrons can
be quite strong in tetrahedral coordination (in the octa-
hedral case t2 electrons are "nonbonding" and should
thereby be but weakly coupled to the vibrational
modes).

Since the strength of both spin-orbit and Jahn-Teller
coupling varies over a considerable range for diGerent
ions and diferent environments, the experimental veri6-
cation that examples exist from both extremes makes it
likely that other cases may occur in the range where
dynamical Jahn-Teller quenching occurs. Thus on these
general grounds we may hope to 6nd cases with
V'/pcc'&

~

X
~

(ideally)) ) X () but with V'/lice'=Au& so that
no static distortion occurs (cc here is, of course, some
effective frequency which approximately characterizes
the vibrational modes which are important for the
Jahn-Teller coupling). These cases should reveal the
expected eGects of dynamical quenching in the values
found for their orbital reduction factors.

In Table II are presented experimental values of the

g factor of the lowest spin-orbit level of an orbital
triplet term of various ions in cubic or tetrahedral sym-
metry. For the 'T2 terms of the 3d' configuration the
lowest level has J=1 and as discussed in connection
with (2.39) has a g factor near 3.5 in the crystal-field
model which is diminished toward 3.0 by Jahn-Teller
quenching of the orbital Zeeman energy (assuming the

~ R. J. Arnott, A. Wold, and D. B. Rogers, J. Phys. Chem.
Solids 25, 161 (1964).

~' Arnott et ut. (Ref. 50) report the following cubic and tetrag-
onally distorted structures in the indicated ranges of the compo-
sition parameter x:

Cu, Co1,Cr204. cubic, 0 ~& x ~& 0.43
tetragonal, c/u &1, 0.48~& x &1

Ni, Co1 Cr204. cubic, 0&x&0.5
tetragonal, c/a&1, 0.6&x&1

Cn,Niq, Cr204. tetragonal, c/s) 1, 0&x&0.125
tetragonal, c/a &1, 0.175&x&1.

"J.D. Dunitz and L. E. Orgel, J. Phys. Chem. Solids 3, 20
(1957).

residual spin-orbit splitting is still larger than the Zee-
man splitting). For 3dr 4Tt the J=-,' level is lowest
with the corresponding values of g near 4.3 and 3.3,
respectively.

The most striking cases in Table II are the four
interstitial ions Cr', Mn+, Mn', and Fe+ in silicon
studied by Ludwig and Woodbury. '~ 38 None of these
ions have spectra indicating any departure from tetra-
hedral symmetry at the site of an individual ion, yet
the 6rst three appear to have almost entirely suppressed
the orbital contribution to the g factor, while the corre-
sponding orbital reduction factor for Fe+ is about 0.2.
A detailed analysis of these and other data for these
ions will be presented in another publication"; we
believe that these results can plausibly be attributed to
dynamical Jahn-Teller quenching. All of these iona show
evidence that the spin-orbit splitting has been drasti-
cally reduced from free-ion values (yet remaining larger
than the Zeeman splitting), and that second-order
sects are enhanced over what would be expected from
the ligand field model using a X reduced by covalent
bonding. Indeed these spectra show a large isotropic
hyperfine interaction with the transition metal nucleus
which would be dificult to reconcile with the great
decrease in the orbital reduction factors if this decrease
were due to the spread of the wave function onto
neighboring silicon atoms. These features are all com-
patible with dynamical Jahn-Teller quenching, which is
able to effect a much larger decrease in the orbital re-
duction factors for these ions than could thus reasonably
be attributed to covalent bonding.

Among the other ions listed in Table II, the g factor
of Co'+: MgO has been accounted for by Low, "taking
account of the second-order g shift and of mixing with
4I', on the basis of an orbital reduction factor 0.89—0.85
for the orbital Zeeman interactions. This value is similar
to others which have been attributed to covalent bond-

ing, "—"and we believe that dynamical quenching
probably plays no substantial role in this case. Since ) is

large for Co'+, and since in octahedral coordination the
t2 electrons are nonbonding and may be but weakly
coupled to the vibrations, Co'+:MgO seems quite
likely to be a case to which Van Vleck's considerations
rather than ours apply.

For Fe'+:MgO" and Fe'+:CaO "we may, however,
have complexes in which dynamical Jahn-Teller quench-

ing is as important as covalent bonding in affecting the
orbital reduction factors, which for the Zeeman inter-
action are 0.8 and 0.6, respectively. These values are
somewhat smaller than we might have expected as a
result of covalency, and we suggest in particular that
the diGerence between them may be due primarily to
the Jahn-Teller effect. The spin-orbit interaction is

significantly smaller for Fe + than for Co'+, so that Fe'+
on this account would be less likely than Co'+ to fulfill

Van Vleck s condition for spin-orbit stabilization. More-
over, the lattice constant is larger in CaO than in MgO,
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so that we would expect less covalent bonding for Fe'+
in CaO. The opposite conclusion would be required if
the covalent interpretation of the diGerenc|.'in the

g factors were correct. The looser lattice should, on the
other hand, enhance the dynamical quenching by lower-

ing the relevant vibrational frequencies.
To get a rough idea how well Van Vleck's stabilization

criterion may be satisfied for Fe'+ in MgO, we have
evaluated the Jahn-Teller energy (4.2) arising from the
coupling of Fe'+ to the E component of the acoustic
branch of the phonon spectrum, using a coupling co-
efficient determined from the data of Watkins and
Feher" on the eGect of static strain in splitting the de-
generacy of Fe'+ (J=1). We obtain 8E= —45 cm '.
Added to a similar value arising from the T2 component,
this is already comparable to the spin-orbit coupling
parameter ikey =100 cm-'. Moreover, localized vibra-
tional modes and higher branches of the phonon spec-
trum (or coupling coeKcients at critical points in the
acoustic branch which may be larger than those ob-
tained in the long-wavelength limit) are likely to give
the dominant contribution to the Jahn-Teller inter-
action. Thus it appears that Van Vleck's condition
ihi»V'/paP is not well satisfied, and it is likely that
Fe'+:MgO is a marginal case in which dynamical
quenching is at least as important as the reduction due
to covalency.

Evaluation of the orbital reduction factor (4.3) for
Fe'+:MgO from the data of Watkins and Feher gives
the result that dynamical quenching due to the E com-
ponent of the acoustic branch alone would reduce the
spin-orbit and orbital Zeeman energies by the factor
0.83, if, on the other hand, our condition V'/poP»

ikey

were satisfied. It is clear that this is not the case either,
since the combined quenching eBect of all parts of the
phonon spectrum cannot result in a factor smaller than
the observed" value of 0.8. However, if V'/porn= i) i, as
appears to be the case, then an over-all dynamical
quenching effect of =10% (that is a reduction factor
=0.9) for Fe'+:Mgo seems quite possible, which
together with a similar 10% reduction due to covalency
as in Co'+:MgO would then account for the value 0.8
found experimentally for the reduction factor. We sug-

"G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29
(1962).

gest, therefore, that the two sects are comparable in
this case and that for Fe'+:CaO" the dynamical
quenching accounts for some three-quarters of the ob-
served reduction.

While a more detailed interpretation of the evidence
for dynamical quenching in the spectra of the inter-
stitial ions in silicon will be presented in a later publica-
tion, we believe the data of Table II sufBce to show that
dynamical quenching is important for the understanding
of these ions and also for at least some of the Fe com-

plexes. We expect that other complexes will be found
exhibiting this manifestation of the dynamical Jahn-
Teller eGect, not only in the paramagnetic resonance
spectra of ions having orbitally degenerate ground
states, but also in optical spectra involving an excited
state with such degeneracy.

VI. CONCLUSION

We have shown that the dynamical Jahn-Teller effect
for complexes having orbital degeneracy can sub-

stantially diminish the orbital reduction factors appro-
priate to spin-orbit splitting, orbital Zeeman interaction,
and the response of the system to other perturbations
such as strain or applied electric fields, without lowering
the effective symmetry of the complex. These dynamical
effects simulate eGects usually associated with covalent
bonding, and where they are significant they may
radically alter conclusions which otherwise would be
drawn about the importance of covalency. As a result
of couplings to excited vibronic states of relatively low

energy, such dynamical quenching may also enhance
various second-order eGects to a considerable extent
over what would be expected from couplings to excited
electronic states of the symmetrical configuration. The
importance of all such dynamical eftects on the param-
eters of a phenomenological spin Hamiltonian must be
recognized in any interpretation of the paramagnetic
or optical spectra of such systems.
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