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Lattice-Vibration Effects Due to Impurities in an Alkali Halide*t'
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The Green's-function approach to the study of impurity eRects on lattice vibrations is applied to alkali
halides. Due to the strong phonon-photon interaction, some care must be taken in the application of the
results for the pure crystal. A simpliled approach for obtaining the impurity contribution to the lattice
thermal conductivity is presented which leads to a phonon lifetime having resonance dips. Numerical cal-
culations for NaI:Li+, using a simple model for the interionic forces (which took into account the electronic
polarization but not dipole deformation) and the "mass-defect approximation, " revealed resonances at the
frequencies 2.2, 2.5, 2.8, and 3.0X10"sec '. An expression for the optical absorption is derived which re-
veals a peak of 6rst order in the impurity concentration at the localized-mode frequency and peaks at the
resonance frequencies proportional to the square of the impurity concentration. In the mass-defect approxi-
mation and in the above model, the localized-mode frequency of NaI:Li+ lay at 4.28&10"sec ', while that
of NaI:K+ lay at 1.76)&10'3 sec '. Using estimates of phonon and impurity-mode lifetimes, we conclude
that these peaks should be easily observed.

I. INTRODUCTION

HE basic theory of lattice vibrations rests on the
Born-Oppenheimer expansion. ' Owing to the

smallness of the ratio of the mass of the electron to that of
an ion, the electrons are assumed to "follow" the nuclear
motion. To erst order, we obtain the harmonic approx-
imation, which leads to normal modes of vibration,
commonly referred to as phonons. Higher order,
anharmomc terms (which will not be considered in
formal detail) lead to finite phonon lifetimes and play
a vital role in thermal conductivity, the maintenance
of thermal equilibrium, and nonzero optical-absorption
widths. The use of the harmonic approximation requires
a knowledge of the tmo-body forces. The latter is
provided by the "force-constant" matrix. The eigen-
values and eigenvectors of the "dynamical matrix"
D are the phonon frequencies and amplitudes, respec-
tively. With these quantities, we can form a Green's
function, with which we can determine the behavior of
the crystal in the presence of impurities.

The Green's-function approach to the lattice-vibra-
tion impurity problem was introduced by I.M. Lifshitz.
Later on, work was done on the related problem of
impurity levels in electron bands by Koster and Slater. '
Soon after, many theoretical papers appeared on the
subject, dealing with increasingly complex crystal
models and investigating various phenomena due to
impurities. 4 All the works listed used the Green's-
function technique.

Experimentally, impurities play big roles in many
lattice-vibration phenomena observed in sols. One of
the more important ones is lattice thermal conductivity.
Here, the impurities can be viewed as phonon scatterers,
with the phonons serving as the carriers of the energy.
Recently, careful measurements of the thermal conduc-
tivity s of some alkali halides at low temperatures has
revealed a dip in the x versus T curves. ' It was suggested
that the dip may be due to an impurity resonance mode.

Impurities can also play an important role in the
infrared absorption of ionic crystals. Sharp absorption
peaks in the infrared have been observed for some
alkali hahdes doped wl'th H i lons (U centers). s Tile
peaks are attributed to a mode of vibration localized
about the impurity ions. Due to the fact that, in this
case, the frequency of the localized mode is more than
twice the maximum phonon frequency, no three-phonon
scattering can take place, and this mode has an un-
usually long lifetime and therefore yields a very sharp
absorption peak.

The Green's-function technique will be applied to an
ionic crystal, where, in particular, long-range Coulomb
forces exist. Two simple models for the interionic forces
will be used in the calculations for NaI:Li+ and
NaI: K+. One of the reasons for choosing NaI was that
it has a gap between the acoustic and optical bands,
thus making it possible to have a localized mode in the
case of NaI: K+. However, the main reason for choosing
the couples NaI:Li+ and Nal:K+ is that, to a good
approximation, we have to take account only of the
mass change at the impurity sit" we get what will be
referred to as the "mass-defect approximation" (MDA}.
In Table I, we list the physical constants used in the
calculations. We see that the changes in the electronic
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TABLE I. Room-temperature data.

1. Atomic weights

2. Ionic radiusb
(in'. )

3. Nearest-neighbor distance&
(in X)

4. Compressibility

5. Reststrahlen frequency of NaIb
6. Electronic polarizabilityb

7. Madelung constant of NaI

Ll:
Na:
Li+:

Na+:
LiI.

NaI:
KI:
LiI:

NaI:
KI:
07+ .

Na+.
I

K+'
Li+

6.940 K: 39.100
22.991 I: 126.91
0 78 K+ 133
0.98 I 2.20
3.02
3.23
3.53
6.01X10 "cm'/dyn
7.07X10 "cm'/dyn
8.54X10 "cm'/dyn
=2 20X10 sec
0.28X10 4 cm'
6.41X10 4 cm'
1.1.3X10~4 cm3
0.045X10 '4 cm'
= 1.7476

a American Institute of Physics Handbook (McGraw-Hill Book Company,
Inc. , New York, 1957).

b Reference 1.

polarizability, compressibility, and nearest-neighbor
distances are small in comparison with the mass
changes. This holds especially well for NaI: I,i+.
"Complete" theoretical results will be obtained only in
the MDA. Theoretical results in the cases when other
changes are taken into account are straightforward
though more complicated. In addition, they require a
better knowledge of the interionic forces.

We will assume that the impurity concentration
1/1V is so small that we neglect the interaction between

impurities. For the in-band modes, this consists in
neglecting multiple scattering of phonons by impurities.
Equivalently, we assume that we can treat the crystal
as a collection of independent subcrystals, each with
S ion pairs.

The p'rogram of the discussion is as follows. In Sec. II,
we present the basic theory of lattice vibrations and
impurity modes. In Sec. III, we present a new method
of obtaining the contribution of impurity scattering to
the thermal conductivity. In Sec. IV, we discuss two
simple models for the lattice vibrations of ionic crystals,
the point- (or rigid-) ion model of Kellermann, (herein-
after referred to as the PIM), and a simple model which
takes account of the electronic polarizability, referred
to as the electronic-polarization model (KPM). For
some modes of vibration, the ionic crystal interacts
strongly with the electromagnetic field. We have

attempted to clarify some aspects of this interaction
which have sometimes been controversial. In Sec. V,
we present a simple quantum-mechanical derivation of
the contribution of the impurities to the optical absorp-
tion. In Sec. VI, we present and discuss the calculations
and results made using the MDA for NaI:Li+ and
NaI: K+. Finally, we reserve our summary, conclusions,
and prospects for the future to Sec. VII.

II. BASIC THEORY OF IMPURITY MODES

In the MDA, with a single mass m1' replacing m1 at
the origin of our lattice, all the properties of the
impurity modes are determined by the Green's function'

A P(e)Ap,"(0)
G.,p, (or', n) =Po

or'(k) —co'

where Pr, is a sum over the normal modes of the perfect
crystal (hereinafter referred to as phonons); k is the
phonon label (=—{k,s});k is the wave vector; s is the
branch index; oP (k) are the phonon frequencies;
A P(e) are the normalized phonon amplitudes; m refers
to the unit cell at R„;i refers to the ion of the cell;
and n, P, refers to components in x-y-s space. More
explicitly,

A.P (I)= e.,(k)p'"'R"',
(y) 1/2

where R„;—= R„+R, is the position of the ith ion of the
unit cell at R„.We have

P A P(e)A P"(n)=br, r;,
nai

P e.,(ks) e, (ks') =8„,

P, p„(ks) pp, (ks) =b,pb,;.
The Green's function can also be written as

G p (&0' e) =—P{D(k) —o&'I} p
'e'"' "'~r (&)

E l

where R„;„;=R„+R;—R„—R,. The local mode fre-
quencies are determined by solving for co

1 = por~G(or2)

where G(or') =G~r~r(or2, 0) and e=m~'/m| —1. The local-
mode amplitudes are (for the x mode)

&urLo()= porLc'8 Lo(0)G r(orLo'I)

The normalized amplitude is such that

BgPo(0) = (p~Lo'Z)-&
where

g2 —g 2+ (qorLc4) 1

Actually, if we do not let our crystal become infinite,
Eq. (5) has solutions for or which lie in. the phonon
bands, differing from the phonon frequencies by
amounts of order 1/S.'

VK. W. Kellermann, Phil. Trans. Roy. Soc. London A238,
513 (1940).

See P. G. Dawber and R. J.Elliott, Proc. Roy. Soc. (London)
A273, 222 (1963); A. A. Maradudin, Phonons and Phonon Inter-
actions (W. A. Benjamin Inc., New York, 1964).
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One usually replaces the sum over k by an integral.
Then we have a singularity to avoid. In a sense, the
certain presence of "external" perturbations such as
anharmonic forces and genuine external fields "smears"
the discrete spectrum (present as long as 1V is finite,
however large it may be) into a continuous spectrum.
We can write Kq. (5) as

Since

B P(0)=(ep') 'T+A P(0),

at resonance

(15)Bet'(0) = [t/pcpit'G'(coact') jA ei"(0) .

'V e.is(k)
dk

(2m. )' ~ cp'(k) —tp' C P(e) = [m(gati)/nt;)'~'B;s(st),

In the case of NaI:Li+, (1/etc''G') 10'. Finally, it is
easily shown that the orthonormal in-band amplitudes

(8) are

where n is the volume of the unit cell.
Critical values of e, corresponding to restrictions on

the mass m~' necessary to obtain a local mode, are gotten
by setting &p equal to the frequency cp at the bottom/
top edge of a band, in case &~~0.

Maradudin' ' has demonstrated that the localized
mode amplitude behaves, for large R„, like a sum of
terms which go like exp( —n) R;~)/) R;~, where n is,
in general, a complex constant. That the amplitude
should be localized. is seen from the fact that B;za(e)
is a superposition of all the phonon plane waves, each
with nearly equal contributions. We have just another
example (the superconductivity state is another) of a
small perturbation leading to an "extraordinary"
state. A good idea of the degree of localization can be
obtained by looking at

where m(ni) =m; for R;NRpt and m(01) =mt'. That
they are orthogonal follows from the symmetry of the
matrix for which they are eigenvectors. "That they are
normalized (and orthogonal) is easily shown by carrying
out Q„„CP(e)C P'*(st).

We now express the above results on impurity modes
in quantum-mechanical terms. The Hamiltonian for the
perfect crystal is

p.p(n)
Hp ——P +-', Q V.;p, (rt m)x—, (n)xp, (m), , (17)

251 '

where x,(e) and p, (st) are the ion positions and
momenta, respectively. If we make the canonical
transformation:

x,(e) =Pe(k/2m, tp(k))'"(2 '(st)a(k)+H. c.)nisi

p;(e) = (1/i)P, (km;tp(k)/2)'~'

X (A P(ss)a(k) —H.c.),
(18)

For the in-band modes, one separates out a homo-
geneous part and takes the outgoing-wave solution
fol' G: where the a(k) and at(k) obey the usual creation-

s ( ) g p ( )+ p p G + ( p )B s (0) (10)
annihilation commutation relations, the Hamiltonian
is iagona ize

where
G;p;+(cp', e)=G;p;(tps&i0, n) =G"&iG'. Hp ——Qs Ace(k) [$(k)+-,' j, (19)

The T matrix, "in this case, is

Tg= pcs'(1 —pcs'G+) ';

where Ã(k) =at(k)a(k). .

In the case of a lattice with impurities, we can make
(11) an analogous transformation:

and, in terms of T, we have

or

x;(I)=Ps(k/2m;Q(k))'"{B '(N)b(k)+H. c.)
B,s(N)=A;s(rt)+P T+G;pi+(cps, e)Apt"(0) (12) P, (st)= (1/i)gt(km;O(k)/2)"'

p X(B P(e)b(k) —H.c.},
(20)

~+Bscattered ~

Resonance modes occur for frequencies co~ such that

1=,~~sG~(~~&)

Corresponding to each of these resonances is a pole of
T+ just off the real axis of the complex oP plane. Corre-
sponding to the localized mode is a pole of T+ on the
real axis, but not in the unperturbed (phonon) spectrum.

'A. A. Maradudin, Astrophysics and the Many Body Problem
(W. A. Benjamin, Inc. , New York, 1963)."M. V. Klein, Phys. Rev. 131, 1500 (1963).

where k is here an impurity-mode index, D(k) are the
impurity-mode frequencies, and bt(k) and b(k) obey
creation-annihilation commutation relations. Then, in
the MDA,

=P„kn(k)[bt(k)b(k)+-', j. (21)

"A. A. Maradudin, Westinghouse Res. Lab. Rept. No. 64—
929—100—P1 {unpublished).
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III. CONTRIBUTION TO THE LATTICE
THERMAL CONDUCTIVITY

where —k—= (—lt, s). To first order in 1/S,

e e' -(((o+M')T 'b' b

X(k)=ata—=btb+Q
&' 2$(roan&') i~i E 1o's co—s+i0

(o1 io'—)T 'b tb' t)

+ I+H c. . (30)~"—~'+ io j
Using

d(b'tb) 1 1
=—Lb'tb, H $=—((o—M') b'tb,

zA z
(31)

(22) we 6„dI =gsv v VTrC(k),

The bulk of the contribution to the lattice heat
current is due to the phonons. The contribution of
B„,tt,r,e I see Eq. (12)j is of an order higher than 1/E
Also, the contribution of certain "nondiagonal" terms
which occur in some theories has been shown by
Maradudin" to also be of an order higher than 1/X.
We thus use the following expression for the heat
current J:
where e (k) is the phonon group velocity, r(k) the
phonon lifetime (to be discussed later), C(k) the
phonon heat capacity, and VT the temperature gradient.
Explicitly,

where

rimp (k) = ImT+.

(riIdX/dtIri)=(riIXIri)/r; „ (32)

(33)

expLA&o (k)/ke Tj
C(k) =

VkeT' (expI tie&(k)/keTj —1)'
(23)

where k~ is Boltzmann's constant and V is the sample
volume. Cubic symmetry leads to a thermal conduc-
tivity of the form

(24)Ktxp —~+pK

where

a=Ps C(k)v.'(k)r(k). (25)

P A;"*(n)B,,s'(ii) =F"'=bs s
nas

where we have suppressed arguments, using primes
instead, and have let

e' e =Q e 1(k)e 1(k ) . (28)

Combining Eqs. (18), (20), and (27), we obtain

a(k) = s 2L1/(~~')"'ll:(~+~')F""'b(k')

—(a1 co')F-""'*b(k'—)j, (29)

~A. A. Maradudin, Westinghouse Res. Lab. Rept. No. 64-
929-100-P4 (unpublished)."J.A. McLennan, Phys. Rev. 115, 1405 (1959);W. C. Schieve
and R. L. Peterson, ibid. 126, 1458 {1962).

We will assume that the theory of McLennan" and
Schieve and Peterson" golds, and we will discuss only
the contribution of impurity scattering to r(k).

The lifetime r(k) in the above theory is defined by
the equation

(~ I d&(k)/«I ~)= I:r(k)j-'(~ I &(k) I ~) (26)
where

dN (k)/dt = (1/its) LX(k),H]
and Ie) is an. eigenstate of Ho. The orthogonality
relations of A s(ri) lead to

The above expression for v ' was obtained by
Maradudin, " for the case of a monatomic lattice for
which e a= 1. (See also Elliott and Taylor. ") He used
the Kubo expression for the thermal conductivity,
many-body techniques, and approximations which
amount to giving physical reality to the lifetime.
However, the extreme simplicity of the above approach
and the great amount of information derived suggest
that the above approach may have general use in the
investigation of the role of "localized perturbations"
in irreversible phenomena. The approach is certainly
applicable to the calculation of the contribution of
point-defect scattering to the lifetime of electronic
states.

To conclude this section, we should like to make a
point concerning the McLennan expression for I~: and
one of Kubo's expressions for ~:

p

&Kubo=
T 0

dp' dt(j (t it p') j(0))„

IV. LATTICE VIBRATIONS IN IONIC CRYSTALS

The application of the above theory on impurity
modes to ionic crystals is not straightforward, due to

14R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (London)
83, 189 (1964).

KMcLennan= dt( j(t)j(0))r
~B~ —ao

Above, p= 1/keT, j(t) is heat-current-density operator
e'il'~" j(0)e or'ls, and ( )r is a thermal canonical average
using II. The Schieve-Peterson approximation replaces

( )r by a canonical average using He. The canonical
average then becomes a sum over k of terms with a
time dependence expI t/r(k)] arising from j(t). The
lifetime r(k) for alkali halides is at least 10 ' sec ',
so that for T)10'K, ti/kiiTr(10 '. Thus, in the
Schieve-Peterson approximation, and to first order in
the parameter tt/krrTr, the two expressions for s give
the same result.
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the presence of macroscopic electric and magnetic
Gelds produced by ionic vibrations. We have to deal
with high dielectric constants and therefore with
crystal-shape- and environment-dependent sects. In
particular, theorists have concluded that the %=0
optical modes consist of a longitudinal mode frequency
coL, and a doubly degenerate transverse mode frequency
cog) with

(35)

where e„and eo are the high-frequency and zero-fre-
quency dielectric constants of the crystal. This result is
at first surprising, since cubic symmetry is expected to
lead to the equality of ~L, and co+. Rosenstock, "besides
bringing up this point, has recently claimed that the
k= 0 modes and modes with

l
k

l
&0 and k in the general

direction have neither longitudinality nor transversality—with obvious justification. Rosenstock s arguments
concerning cubic symmetry are true but are not
applicable to ionic crystals because of depolarization
fields and the strong phonon-photon interaction.

The important fact to keep in mind is that all results
concerning the

l
k

l
&0 optical modes are crystal-shape-

and environment-dependent. As Huang" shows, one
obtains the frequencies co~ and cop, corresponding to a
longitudinal and two transverse modes, respectively,
for the k&0 optical modes, if one assumes that there is
no transverse optical (TO) mode contribution to the
macroscopic electric field (ETo =0). We will refer to
such a crystal as an "isolated" crystal. Contrary to the
statements of Lyddane and Herzfeld, " this result is
independent of other boundary conditions (crystal
shape and environment) and is independent of the
direction of k. In the case of nonelectromagnetic
phenomena, such as thermal conductivity and neutron
diGraction, it is assumed that the crystal is "isolated. "
Whether this is so may be questionable. For gross
properties such as thermal conductivity, results are not
observably a6ected by the actual conditions. In neutron
diffraction, we might see a boundary condition eGect
in the TO branches near R=O. In a calculation of the
transverse susceptibility, the contribution to ETo"
should just be removed from the dynamical matrix
and be lumped together with the external transverse
field. Then one can solve for the polarizability propor-
tional to Eg, the total transverse macroscopic Geld.
One should therefore use this modified dynamical
matrix D to obtain the optical, local mode, character-
istic frequency. We have used D in the calculation of
the impurity contribution to the thermal conductivity
lifetime with the above-mentioned reservations. At
h—=0, the condition ETo ——0 leads to a singularity.
Then, either ej=eiz and D~=Z~+47rP"=0, or &e=0
and D = e&". We neglect this fact and let D(k) be
continuous at k=0.

'~ H. B.Rosenstock, Phys. Rev. 121, 416 (1961).' K. Huang, Proc. Roy. Soc. (London) A208, 352 (1951)."R.H. Lyddane and K. F.Herzfeld, Phys. Rev. 54, 846 (1939).

We now consider the computation of D. In the PIM,
we use the k&0 elements obtained by Kellermann. r

The elements for k=0 (which he did not provide) are

D 'pj (0)=rj.wjfj p(C Q)—
=ijpf;8 p(C+2Q), n=s, (36)

where rj;= p;/gm;, C= (2+28)/e, and Q=4s./3e —all
in Kellermann's notation. We have also let n= z corre-
spond to the longitudinal modes and, in the optical
absorption calculation, wil], take the wave vector to be
in the o.=z direction.

In the EPM,"we include the fields due to an elec-
tronic polarization wave

.(js) =p .piivani (37)

The active electric Geld is then in the PIM,

+ai gpj +aipjpjxpj++Toai

while in the EPM,

&-'=Zpj ~-pj(pjxpi+j pj)+PTo--

We assume

t'ai= ~iEai )
.A

(39)

(40)

(41)

where ai is the electronic polarizability of the ith ion.
Solving for p;, we have, in the EPM,

where

D ' "—Zl -1—R
rnka .,„&a„J

(42)

Then
Ea j.;pj

D jr = D jr&+ D~ jj (43)

where D~~ is the repulsive contribution to D~. For
%=0, we obtain

C—Q/d, rr=x, y
D.,p; (o)=~,~,~.p

C+2Q/d', ~=s
(44)

where d=1—(ai+as)Q and d'=1+2(ai+as)Q. In the
absence of impurities, the equation of motion for e;(k)
becomes

Z pj D-pj'(&) spy(&)
—~'(&)e-(&)

= (~'/a')&pj(1/al R)-pj 'P«pj" —(43)

The RHS is nonzero only for k&0, when it equals
rj;E;"/d. Removing the macroscopic 6eld contribution
of the LO mode amounts to taking the z components of
D~(0) and DE(0) equal to the x, y components. In

' Born and Huang, Ref. 1, p. 272.

We neglect overlap force effects on p;, considering
only the forces on p; due to the Kellermann active
Coulomb Geld. The Coulomb contribution to D~ can
be written as

(3g)
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the absence of other perturbations, Huang's" macro-
scopic equation for the ion displacements is equivalent
to the equation

k=O, and those which can be referred to as a back-
ground contribution m ~(k) due to in-band mode
impurity scattering. %'e have

Q D, P (0)2; (V—22,= (11,/d)E " (46) 2n 'c=P g, (k/2(0zc) "2([D(0P—(o21].; '/z},

m T p 'g '(iV/2M )1/22 . (kÃ/2~ )1/2c

(51)

where e=e~ and ~;~ is the transverse, k 0, polarization
vector.

Above, we have used the relations(47)(OT'= e*'/m(C —
Q//d },

The frequency spectrum obtained using the above
theory is in gross disagreement with experiments. Ke
assume, with Born and Huang, that the discrepancy is 2 t k~ ~

112 c(,T. ,(k))
partly due to the fact that the ions do not carry a full m ~(k) =
unit charge. Rather, we should associate with them & ~2~T& (dT' —&'(k) —20

charges of magnitude e*=fe. We have determined f so
as to yield the experimental value of cop. We have

where m is the reduced mass of the two ions. For NaI,
with ~T——2.20X10" sec ', we find f=0.69. This is the
only correction included in our calculations.

( 1)"'.1'+( 2)"'.2'=,
(2 1T)2+ (q 2T)2—1

(52)

V. CONTRIBUTION TO THE OPTICAL
ABSORPTION COEFFICIENT

In this section, we let 8 p(22) be the impurity-mode
amplitudes corresponding to D~ or D~, as the case
may be. Then, in the presence of an external Geld

yielding a macroscopic field

Prom cubic symmetry, the susceptibility X p, satisfies

X p
——$ pX,

P m —Xg to (53)

x=2 x(k) (54)

First-order, time-dependent perturbation theory yields:

Em (r]) Emac(s r (&ut— (4g)
where

a,=a'—M E-, (49)

we obtain for our total Hamiltonian, in the case of D~,
!m. (k)!'2(0(k) t('

x(k) =
PiXc 1(a2(k) (02+—i(I'(k)/2)I

(55)

where

M =—p e,2,";(21)=p m (k)[bt(k)+b(k)]. (5o)
Is a(a)) = —(42r(0/C) ImX. (56)

We have included a damping term due to the finite
lifetime of the modes. The absorption coefficient is

a ((d) =aT (u))+ azc (a&)+as ((u),

+le Gnd that
In Eq. (50), we have let (( —+0, since 2( R &&1. We

get three types of nonzero m (k): those due to the local
modes, those due to the transverse optical modes at with

r, '/2 l42re2(d (
&'(~) =

mac E (a)T2—(g2)+ (rT2/2)'P

1 (42r(u) U2) t( roc'/2
a"(~)=—

I

E~ ~c i Z2p &(~&c2 „2)2+(r«2/2)2)
'

1 47(-e'co !T+eT 2(k)! 'I'(k)/2
a'(M) =

~2 mcc 2 ([~T2—I'(k))2+[r2(k)/2]2}([~2(k) —~2]2+[r(k)2/2]2}

where

U=—p' g'[D(0) —~ac'I j*;*1 '=2J1/(~T' —~ac'), (59)

and we have inserted a width into the expression for
m ~(k).

In the EPM, we have to use D~ instead of D~, use
e;* instead of e;, use co~g resulting from D~, and divide

the above expressions for g and a(ru) by the factor d.
An experimentally important quantity is

a'c(~z, c) 1 (4m) ( 1
(60)

aT(~„) iy&2n, ) Ez2r„2rT2i
'

where we have let U —+ qi/(&uT' Mr, c'+2rT'/2—)
We see that, provided !T+!' is sharply peaked at the
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resonance frequencies, and F(res) is large, we may see
absorption peaks at resonance frequencies.

VI. CALCULATIONS AND RESULTS

The inputs for our calculations were the physical
constants given in Table I and K.ellermann's D'~. We
were therefore restricted to his sampling mesh of the
first Srillouin zone. We have sums such as

L~*~(&)7
S„=—P, x=1, 2

S & Lco'(k) —(o'j"

to perform. These were readily converted into sums
over Kellermann's 1/48 section of the zone. All major
computations were carried out using the IBM-709 of
the Cooperative Computing Laboratory at MIT.

In Subsec. A of this section, we discuss the results for
the frequencies and eigenvectors of the dynamical
matrix using the EPM, comparing the results with
those obtained using the PIM" and DDM. ' The EPM
results were used to get an idea of the behavior of the
impurity lifetime important in thermal conductivity.
This subject is discussed in Subsec. B of the section.
In Subsec. C, we discuss the results concerning the
optical absorption. The dynamical matrices of the EPM
were used. Table III summarizes the important
numerical results.

A. Results for the EPM

In Table II, we compare the square frequencies along
the (100) and (111)directions obtained with the PIM,"
the EPM, and the DDM" with the results of neutron
diGraction experiments carried out at 118'K." The
theoretical frequencies are those for the "isolated"
crystal. We see that the longitudinal optical band of the
PIM is completely out of line. For some points, the
EPM does better than the DDM, but, all in all, the
DDM yields more favorable results. There seems to be a
tendency for the EPM to have a negative error along
the (100) direction, which increases the closer we come
to the zone face. The lower frequencies signify less
binding. Woods el, u/. 22 have claimed that this is due
to the neglect of dipole deformation. One may justify
this claim simply by citing the good results of the DDM.
But there is further conhrmation. We note that acoustic
modes along the (100) direction and with large ~k~

generally have a greater overlap of neighboring ions.
If we do not permit the electron clouds to deform, we
will get an added repulsive force.

It is interesting to note that for all the cases con-
sidered, the amplitudes e ~(k) were much greater for

' A. M. Karo, J. Chem. Phys. 31, 1489 (1959).
~ A. M. Karo and J.R. Hardy, Phys. Rev. 129, 2024 (1963).
~~ A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.

Cochran, Phys. Rev. 1,31, 1025 (1963).
~~ A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys.

Rev. 119, 980 (1960).

TABLE II. Comparison of square frequencies for the isolated
slab of NaI. LA = longitudinal acoustic; TA = transverse acoustic;
LO =longitudinal optical; TO = transverse optical.

«oo)
Experiment' EPM PIM DDM

(000)

(200)

(600)

(8oo)

(1000)

(222)

(333)

(444)

LA
TA
TO
LO
LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO

LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO
LA
TA
LO
TO

0.0 0.0

2.2
3.1
0.6
0.2
3.0
2.2
1.0
0.4
2.7
2.2
1.2
0.6
2.4
2.3
1.1
0.6
2.3
2.3
1.1
0.6
2.3
2.3

2.19
3.28
0.58
0.17
3.16
2.18
1.04
0.32
2.81
2.14
1.25
0.37
2.32
2.09
0.87
0.37
2.04
1.99
0.00
0.36
2.02
1 94

&111)
0.5 0.37
0.3 0.30
~ ~ ~ 3.27
2.2 2.22
0.8 0.73
0.5 0.56
~ ~ ~ 3.25
2.2 2.26
1.1 1.01
0.7 0.76
~ ~ ~ 3 22
2.2 2.31
1.3 1.21
0.9 0.89
~ ~ ~ 3.19
2.2 2.35
1.4 1.28
0.9 0.93
~ ~ ~ 3.18
2.2 2.37

0.0

2.01
4.17
0.52
0.27
4.09
2.05
0.95
0.51
3.87
2.12
1.25
0.69
3.61
2.23
1.37
0.80
3.41
2.31
1.38
0.83
3.34
2.35

0.43
0.26
4.13
2.01
0.84
0.50
4.03
2.00
1.20
0.69
3.89
2.00
1.47
0.80
3.75
1.99
1.57
0.85
3.70
1 99

0.0

2.2
33
0.6
0.2
3.1
2.2
1.0
04
2.8
2.2
1.1
0.5
2.6
2.3
1.0
0.5
2.7
2.3
1.1
0.5
2.7
2.3

0.5
0.3
3.3
2.2
0.8
0.5
34
2.1
1.0
0.6
3.5
2.1
1.1
0.9
3.6
2.0
1.1
0.9
3.6
2.0

& Estimated from graphs.

we have

Q E~y($) C~l($) =Q Cgg2($) 6u2($) = 1,

so that if e ~ is the larger for some s, e 2 must be the
larger for other s. The dominance of e ~ over e 2 for
the optical modes was so great, that, when combined
with the oP factors occurring in the equations for col.q',
~...', and v; p, we found that the acoustic band played
almost a negligible role in determining the effects of
impurities (which replace the Na+ ion) on the crystal.

the optical modes than for the acoustic modes. This is a
general result for the amplitude of the lighter ion in a
diatomic crystal. From the orthogonality condition

Z ~-($)~$$($) =3-$~',
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B. Results Concerning the Thermal Conductivity and an even smaller peak at

We computed a quantity related to the phonon
lifetime important in thermal conductivity r(k); i,

given by Eq. (33):

We used the dynamical matrix for the EPM and the
isolated crystal. We have plotted I'; ~ in Fig. 1. We
cannot rely heavily on the quantitative results for F; ~
throughout its domain, since we had a principal value
integral to perform without a fine enough mesh.
However, varying the closeness of approach to the point
for which the principal value was taken yielded changes
in F;, of usually about 1—5% and sometimes 50% bgt
negligible change in the position and character of the
peaks centered at

'=6.1 and 8.9X10"sec ~,

one smaller peak at

=4 8X10 sec

TABLE III. Results concerning optical absorption.

res 7 6X10 sec

According to Walker and Pohl, ' a resonance fre-
quency of 1.0X10"sec ' was able to account for a dip
in g at about 30'K, in the case of KCl: I (using a simple
expression for ~).The above resonances can therefore be
expected to be influential in this temperature region.
In the range of the acoustic band, I'; ~ was, at most,
0.0085X10'3 sec '. It must be kept in mind that when
other contributions to phonon lieftimes are added to
g; ~

—', the eGect of the sharp resonance peaks will be
diminished. Moreover, if a peak is too sharp, it may not
show up in the thermal conductivity. In the low-
temperature range (0 to 50'K) that we are interested in,
other contributions to v ' amount to 10'—10 sec '.'
Thus, our resonance peaks can still stand out, with
magnitudes of about

(1/X)10"=10"sec '

for X=10+4. At low temperatures, we expect an error
of a few percent to arise as a result of the use of
room-temperature data. In any case, we can be prepared
for some complex structure in the temperature depend-
ence of g for NaI doped with Li+.

coJ.g(1013 sec ')
g '(10 "sec4)
Na(ul. g) (10' cm ')
EEI,|,p(10 )
g*~'ciP)I

m1'(amu)

col,g above optical band
coL, t, in gap

NaI:Li+

4.28
0.00635
3.25

16.3
0.74

13.3

NaI:K+

1.76
0.397
1.60
0.91
0.26

33.1

C. Results Concerning Optical Absorption

We now consider the results concerning optical
absorption. In Table III, we list. the results of our
calculations. The figures for Na(coze) and XEr,or were
gotten by assuming F&——&a& and F&o——&orcj100. Results
of Barnes" show that I'~ is of the order of magnitude of

at room temperature. At lower temperatures
(=50'K), Fr should be at least an order of magnitude

2' R. B. Barnes, Z. Physik 75, 723 (1932).
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lower. For monatomic crystals, Klemens'4 and Mara-
dudin" have both obtained estimates of I'z, o (due to
anharmonic interactions) which are around cvz, o/100
for temperatures around 10 to 50'K. We have neglected
the shift in cur. q due to the anharmonic interactions.
This too, according to Maradudin, " is on the order of
col,o/100 at low T. All the above estimates may be
incorrect by a factor of 10 either way. The acoustic
band is so weakly "inAuential, " that there exists no
light mass (e(0) impurity with a localized mode in
the gap. Finally, the results for ~C,ized(0) )' indicate
that the length characterizing the localization of the
NaI:Li+ local mode is less than a lattice spacing.

VD. SUMMARY AND CONCLUSIONS

We have investigated two important eBects due to
impurities on the lattice vibrations of alkali halides.
Having set up the basic theoretical machinery, we have
obtained some idea of what to expect experimentally in
the case of NaI:Li+. We developed a simple approach
to obtaining the impurity contribution to the phonon
lifetime which is applicable in thermal conductivity.
Numerical results indicate that we should observe a few
dips due to resonance modes in the It:-versus-T curve of
NaI:Li+. It has been suggested by Visscher25 that we
may even be able to observe the virtual localized modes
(resonances) directly by neutron-scattering experi-
ments. It would therefore be worthwhile to calculate the
contribution of impurities to the correlation function:

F(& ~) =& e'*' ""-'~({expL—~C.x'(~) j)
X{expf~g x;(m, t) j)),

where x;(m t) =e"~«"x,(yn)s-'~«".
We should seek to improve on our numerical results

'4 P. G. Klemens, Phys. Rev. 122, 443 (1961)."W. M. Visscher, Phys. Rev. 129, 28 (1963).

by using a 6ner mesh. Then we could rely on results for
G& and obtain, the group velocities, v(k), and finally,

g(1). As far as optical absorption is concerned, we

determined the localized mode frequency in the MDA
for NaI: Li+ and NaI: K+; with estimates of the lifetime
of the localized mode, we showed that one should be
able to observe a localized mode absorption peak at a
frequency of 4.28)&10" sec ', in the case of NaI:Li+,
and at a frequency of 1.76&10" sec ', in the case of
NaI: K+. Resonance modes of NaI: K+ and of NaI:Li+
may also be optically observable.

In general, we shouM consider using better models

for the interionic forces such as the DDM and others"
which take account of dipole deformation. (The DDM
has been applied to NaCl and KC1 in the MDA by
Jaswal and Montgomery'~) Furthermore, we should

look into the effects and importance of impurity-
impurity interactions, i.e., terms to second order in

1/E. Finally, when possible, physical constants used
in future calculations should correspond to the tempera-
ture around which experiments on the particular
phenomenon of interest are carried out.

ACKNOWLEDGMENTS

The author would like to express his deepest thanks
to Professor George F. Koster for suggesting this
problem and for providing his advice during the course
of this work. He is indebted to MIT for the research
and educational facilities provided him and the teaching
and research assistantships given him. Many thanks
are due to the employees of the Cooperative Computing
Laboratory for their help.

'6%'. Cochran, Phys. Rev. Letters 3, 412 (1959};R. A. Cowley,
W. Cochran, B.N. Brockhouse, and A. D. B.Woods, Phys. Rev.
131, 1030 (1963),

27 S. S. Jaswal and D. J. Montgomery, Phys. Rev. 135, A1257
(1964).


