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The properties of metal-to-semiconductor junctions and of free semiconductor surfaces are usually ex-
plained on the basis of surface states. The theory of the metal contacts is discussed critically, because
strictly speaking localized surface states cannot exist in such junctions. However, it is shown that virtual or
resonance surface states can exist which behave for practical purposes in the same way. They are really the
tails of the metal wave functions rather than separate states. In the past, the length of this tail has often
been ignored. Some estimates of its length are made and its consequences pointed out. A semiquantitative
discussion is given of various recent data, including the effect of an oxide layer on barrier height, the varia-
tion of barrier height with the metal, the work function of a free surface at high doping, and the effect of a

cesium layer on the work function.

I. INTRODUCTION

HIS paper is in the nature of a commentary and
elaboration of the theory of metal-to-semicon-
ductor junctions and of free semiconductor surfaces,
with a discussion of some of the more recent data. As is
well known, when a contact is made between a metal and
a semiconductor, there is a potential barrier ®. The
Fermi level Ey at the surface of a semiconductor lies in
the energy gap at a point,!

E=Ea"q> (1)

above the top of the valence band [Fig. 2(a)] where E,
is the gap width. The remarkable thing is that £ is
constant to within about 0.2 eV independent of :

(a) the degree of doping?? which swings the bands in
the bulk material by something of the order of 1 eV;

(b) the metal that is used,*® some differing from the
semiconductor by several volts in the work function ¢;

(c) the crystallographic orientation of the surface®?;

(d) whether there is a monolayer or so of oxygen or
oxide between the metal and semiconductor®:8;

(e) any bias voltage applied across the junction®8;

(f) whether one dispenses with the metal completely
and has a free surface, at least in the case of silicon,
again either atomically clean or with an oxide layer.10-8
Furthermore, £ is roughly a constant fraction ~0.3 of
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the energy gap in a whole range of group IV and ITI-V
semiconductors.®7 Of course there are exceptions to all
these statements, but by and large this is the story.

All these facts receive a natural explanation in terms
of Bardeen’s theory,! namely, that there are surface
states on the semiconductor in the band gap. A density
of even a fraction of a surface state per surface atom per
eV is quite sufficient to absorb any required extra
charge into the band of surface states without the Fermi
level in this band moving very much. Thus Er at the
surface of the semiconductor is effectively pegged to
some fixed value of £. A few of the data are shown in
Fig. 1.

At the time Bardeen’s theory was first advanced, the
semiconductor-metal contacts were made by pressing
the metal against the semiconductor, each coated with
an oxide film. Now, however, many of the junctions are
made by cleaving the semiconductor in a stream of the
metal vapor used to deposit the metal. The effective
partial pressure of the condensing metal is ten or more
times the residual partial pressure of gas,”+® so that there
is intimate atomic contact between the metal and
semiconductor without any intervening oxygen or other
impurity layer. Under such conditions it appears at first
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Fic. 1. Position of Fermi level at the surface (¢£) above the
valence-band edge for metal-to-silicon contacts. & is the value for
a free-silicon surface. £ is given by E,—®, where ® is the measured
barrier height. White circles refer to intimate contact between
metal and semiconductor, black circles to the case of a thin
intervening oxide layer. Circles half-black are used where the two
values coincide within experimental error. The data points second
from the left are for magnesium. (After Ref. 8. Data from
Refs. 2-8.) .
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Fic. 2. (a) Definition of ® and ¢ at semiconductor-metal junc-
tion. (b) An energy E of a surface state in the band gap of the

semiconductor corresponds to two propagating Bloch functions
k1, —ki in the metal.

(b)
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sight unreasonable to talk about surface states at all.
For an energy E below Ey in the gap of the semicon-
ductor, the solutions of the Schrédinger equation will
decay exponentially in the semiconductor but propagate
as Bloch states on the metal side of the junction to form
the ordinary volume states of the metal.!'12 This follows
from simple considerations of matching the wave func-
tions at the boundary as shown in Fig. 2. Let us assume
the x axis perpendicular to the surface. For some value
of k=k;, parallel to the surface, e.g., k,=k,=0, we have
the bands shown in Fig. 2(b). At energy E, the expo-
nential solution in the semiconductor can always be
joined onto the two Bloch states with wave vector
ki=Fki, —ky in the metal, the existence of the two &’s
ensuring that both ¢ and its derivative can be matched
at the boundary. Thus for energies in the semiconductor
band gap the volume states of the metal all have tails in
the semiconductor ; there are actually no surface states.

Our first task is therefore to discuss in Sec. IT how the
Bardeen explanation in terms of surface states may be
rescued. Although the exact form of the band of surface
states is not known, there are some semiquantitative
statements one can make. For example, the form of the
exponential tail in the semiconductor is determined by
the ordinary volume band structure. In Sec. III we
make some estimates of its length and discuss its relation
to some of the experimental data.

II. MATCHING THE WAVE FUNCTION

Let us first assume that ki, the component of k
parallel to the boundary plane, is conserved as an elec-
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1962), p. 99.
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tron crosses the junction. In reality there is sufficient
disorder at the boundary for diffuse scattering to be
probably a better approximation than the specular as-
sumption made here. But the effect of scattering is to
scramble states of the same energy E, leaving invariant
any total property such as the density of states or the
charge distribution ¥*¢ summed over all states in some
energy interval dE. Thus the device of considering
states of definite k;, leads to correct results for total or
average properties.

As a first step we treat the valence states of the
semiconductor and the conduction electrons of the metal
as free electron gases, which is a good approximation in
view of the small band gap.:3:* Because of the higher
density of four electrons per atom in the semiconductor
than the metal, the potential and Fermi surfaces in the
two regions are as shown in Fig. 3. The important point
is that in this simple model all semiconductor states
with k;, greater than 4’4" do not penetrate into the
metal. Their ki, is sufficiently large that their perpen-
dicular kinetic energy

Ey,=E—12ky*/ (2m) )

is negative in the metal, i.e., they decay exponentially
on the metal side of the boundary. The value of the
Fermi momentum kp for silicon is compared with that
of some typical metals in Table I. We have not counted
the d electrons in the case of transition metals because
they have such different wave functions with small
value at the cell edge that one does not expect them
to match at all well onto the silicon wave functions. Let
us concentrate for the present on the top part of the
table. We note that a large fraction f of the high-energy
states of the silicon, given by

le-kF,m/kF’,sc (3)
do not propagate into the metal. The same applies to
any surface states in the band gap formed when the

TABLE 1. Fermi momenta %z of metals (m)
compared with silicon (sc).

kF,m/ kF, sc
sodium 0.50
palladium,? platinum® 0.55
calcium, nickels 0.61
silver, gold 0.66
magnesium, copper 0.75
antimony 0.93
aluminum 0.97

& Assuming half an s-p electron per atom.
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detailed documentation. V. Heine, in Proceedings of the Ninth
Conference on Low Temperature Physics, 1964 (to be published);
J. M. Ziman, Advan. Phys. 13, 89 (1964); L.. Kleinman and J. C.
Phillips, Phys. Rev. 125, 819 (1962) ; M. H. Cohen and V. Heine,
ibid. 122, 1821 (1961).

4 D. Brust, Phys. Rev. 134, A1337 (1964).
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Fic. 3. (a) The potential, (b) the Fermi spheres, and (c) the
electron distributions in the Jones zones, in the nearly free-
electron model.

Fermi distribution is enclosed in the Jones zone. (We
reserve the word Brillouin zone for the reduced zone,
and use Jones zone for any zone constructed in extended
k space out of prominent reflection planes.) A surface
state at B, if one exists, is made out of plane waves at
B and B/, with a small imaginary component in %, which
does not affect the behavior parallel to the boundary.
Thus along the regions 444 of the zone [Fig. 3(c)]
genuinely localized surface states are possible in this
simple approximation. The remainder would propagate
into the metal as discussed in connection with Fig. 2.

This argument can be taken a step further by con-
sidering the actual band structure of the semiconductor.
The crystal face most commonly chosen for making
junctions is the (111) cleavage plane. The surface state
is related to the band edges of a section E(k,) of the
volume band structure for fixed ky, these edges in
almost all cases occurring at 2,=0. The wave function
of the surface state is therefore a mixture of the volume
states at k=k;;, k,=0 with of course the slow expo-
nential decay into the semiconductor superimposed. The
plane of the vector ki, is defined by the three directions
(101), (110), (011) at 120°, and a typical k,, about
halfway between the center and the edge of the
Brillouin zone is (2r/a) (3, 0, —%). The Bloch states at
the gap are linear combinations of plane waves, in the
plane-wave pseudopotential representation of band
structures,'13 with k differing from (27/a)(%,0, —%)
by various reciprocal lattice vectors. The lowest ones
relevant at the gap are

2 2w
——<—5/3) 07 _%) and _(%1055/3) . (4)
a a
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These have k;;=0.79% p. In addition, the wave functions
contain an admixture of

27 2w 2
——(—%7 il: %)y _(%::bly %)7 “(_%):’:17 _%)3 (5)
a a a

with %,,/kr=0.79, 0.30, 1.08 in pairs. Moreover, they
have quite a high k,, varying between 0.37kr and
1.10&F. Thus for all the top group of metals in Table I,
we have to a very good approximation surface states in
the semiconductor which decay exponentially on the
metal side.

Strictly speaking, however, there is some coupling to
the states in the metal as envisaged in the discussion in
Sec. I. It comes through having some admixture of the
wave with %k,=0.30kr in (5) and to a lesser extent
through the admixture of higher waves in the metal by
Bragg reflections. One ought to discuss the quantity

o(E)= / VA n(E) do, ©)

where #(E) is the density of states in the metal and the
volume integration is over all the semiconductor. This is
the total charge residing in the semiconductor from the
tails of the metal wave functions per unit range dE. For
a true surface state of energy E,, it is just a delta func-
tion at E, containing one electron. In our situation,
since the coupling between semiconductor and metal is
weak, one has the conventional Breit-Wigner situation,®
and p(E) goes through a resonance peak around E,, the
total again being one electron. Following the customary
nomenclature, we shall term these ‘‘resonance” or
“virtual” surface states.

We return now to the opposite case such as aluminum
in the bottom part of Table I. Here kr in the metal is
comparable with that in the semiconductor and greater
than ki for a typical wave function in the band gap,
e.g., the waves (4). For an energy in the gap, the E,
[Eq. (2)]in the metal is positive and we can only talk
about the density of charge p(E) in the semiconductor
tails of the metal wave functions. For a particular kj, the
question of matching the tails to the metal volume
states becomes a one-dimensional problem of the
idealized form shown in Fig. 4. We choose as our model
a weak one-dimensional potential with lattice constant
b, and consider the first band gap in a nearly free-
electron band structure. The algebra of matching wave
functions in the metal of type sin(kx—g) to those in the
semiconductor which have the form

% sin (rx/b—v) Q)

for all energies in the band gap, has been performed.
The calculation involves three steps: (a) determining
g(E) and vy(E) in the gap using a two-plane-wave

L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, Inc., London, 1958), p. 440.
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Fic. 4. Band structure of semiconductor, and potential ¥ (x) in
the semiconductor (sc) and metal (m), shown on the same energy
scale. The value of Vo, shown corresponds to positive £y in the
metal, the dashed value to negative Ej. The latter corresponds
roughly to a free surface.

approximation, (b) matching the wave functions at the
boundary, and (c) integrating |¢|? over the tail in the
semiconductor to obtain the total charge contained in it.
The following approximations were made:

v=half the band gap,
KEy—Vo,m=4kn?/2m=~E,, in the metal, (8)

KLEy—Vo,ee=ten2/ (2b°m)~E,, in the semiconductor,

where Eo, Vo,m, and Vo, are defined in Figs. 3 and 4.
v is chosen positive corresponding to “‘crossed bands” in
the sense of Shockley,'® and the boundary between metal
and semiconductor was taken at x=21b halfway between
the “atoms.” The result is that p(E) is proportional to

1 1
(1— 2 (@4-1)+ (a2—1)e

©
where
€= (Eon)/v, o= (Eo— Vo,sc)/(EO_‘ VO.m) . (10)

It is plotted in Fig. 5, and the total charge for energy
integrated over the gap is exactly one electron. Although
(9) has a mild infinity at each band edge, this is a

P (E)

Fic. 5. Density
of charge per unit
energy iIn the semi-
conductor tails of the
metal wave func-
tions.

Eo-v Eo Eo#v

16 W. Shockley, Phys. Rev. 56, 317 (1939).
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general feature of one-dimensional band structures
which disappears on integrating over k;; and the inte-
grated charge involved is intrinsically small. It is the
second factor in (9) which controls where the bulk of the
contribution to the total charge comes from. In our case
it is a maximum at the bottom of the band gap. It is
precisely here, at an energy

E (surface state)= Eo—v4-2v/a? (11)
just above the bottom of the gap, that we get a surface
state if we raise Vo, as high above Ey (shown dotted in
Fig. 4) as we have so far taken it below Eo. Incidentally,
if we take the boundary at the point x=2b, which per-
haps corresponds a bit more closely to the spacing of
atomic layers in the (111) direction because of the two
atoms per unit cell, both the maximum of p(E) and the
surface state come nearly at the center of the gap: Itis
difficult to say whether the model is too crude for this to
have any physical significance. We conclude therefore
that the tails of the wave functions behave rather like a
localized surface state, both in the total charge and ap-
proximately in its distribution in energy in the gap.
That is, the resonance has become considerably broader
but is still recognizable, as seen near the bottom of the
gap in Fig. 5.

We have therefore demonstrated how it can be pos-
sible for the system to be relatively stable against the
application of different metals with or without an oxide
layer, i.e., against different boundary conditions. Since
it is the most important property, it is perhaps worth
commenting how it may be looked at from various
points of view. Firstly, in the limit of small band gaps, ¢
in (7) becomes small and the length of the tail of the
wave function long compared with the Fermi wave-
length A/ (27). Under such conditions we might expect
a theorem to hold for p(&) analogous to that for black-
body radiation, namely that the energy density per unit
frequency range is constant except within \ of the walls,
independent of boundary conditions. A second factor is
the Shockley theorem!¢ and the rapid variation of ¢//¢
with energy on the semiconductor side so that the
surface-state energy is insensitive! to relatively small
changes in boundary condition y¥//¢ on the other side.
Thirdly, a comment about ‘‘dangling bonds.” In ac-
cordance with the Shockley theorem, the existence of
surface states has everything to do with the formation
of covalent bonds in the sense of the crossing of bands,
i.e., the fact that the potential tends to heap up charge
between the atoms rather than at the atoms. But the
broken orbital on the actual surface atom is not very
important, at least so the experimental evidence indi-
cates. A model which depended sensitively on what
happens to the dangling orbital would not have the
insensitive properties mentioned in (a) to (f) in Sec. I,
particularly as regards surface orientation. Similar evi-
dence comes from the electrical behavior of dislocations
which does not correlate at all with the presence or
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absence of dangling bonds and can be explained quite
well without them.!7:'® This also makes sense from a
theoretical point of view. A wave function cannot be
localized more than a Wannier function, and this is
spread over several atomic distances in a semiconductor
because of the small band gaps; i.e., ¢ in (7) is small.
This means that of any localized or surface state, only a
small probability y*y is concentrated on any one atom
or layer of atoms. Consequently that one atom or layer
cannot influence the energy very much as we see in the
shallow donor and acceptor levels. Of course deep traps
do exist too, but they need enormous perturbations like
doubly charged zinc or negative copper,'® and the
hybridization energy of a broken bond is not like that.
Dangling bonds might tend to form shallow states, but
they would be near the valence- and conduction-band
edges for each particular &, which means almost all of
them would be well hidden in the total valence and
conduction bands. Finally surfaces tend to reconstruct
atomically so as to join up into conjugated systems, thus
eliminating the dangling bonds.

III. DISCUSSION OF THE DATA

We turn first to Fig. 1 and the effect of a thin oxide
layer between the semiconductor and metal. If kp » is
small so that the resonance surface state is sharp and
only slightly coupled to the metal, the intervention of
the oxide layer would just reduce the coupling further,
leaving the energy of the resonance and thus ¢ un-
changed. If kp» is large and the coupling therefore
strong, the tails of the wave functions will suffer a
reduction in amplitude in the oxide, by a larger factor
than in the same thickness of semiconductor because the
band gap in the oxide is larger. Thus the amplitude of
the tails in the semiconductor is smaller and Er has to
rise in the band gap to achieve the same total charge in
the tails needed for electrical neutrality. The magnitude
of the increase in £, i.e., the amount that the black
circles lie above the white ones in Fig. 1, correlates well
with the position of the metal in Table I in accordance
with our explanation. Only antimony in Fig. 1 behaves
completely anomalously, and we note it behaves nor-
mally when there is an intervening oxide layer, but not
when in intimate contact with the semiconductor, a
point to which we return later.

Having discussed the differences in Fig. 1 between
with and without an oxide layer, we turn now to the
absolute value of £ for the intimate contacts (white
circles in Fig. 1) and its deviation from &, the value at a
free surface. The most elementary explanation would
run as follows: As we move to the left in Fig. 1, the
dipole

D= ¢py— ¢n (12)

7 R. K. Mueller, J. Appl. Phys. 32, 640 (1961); and (private
communication).
18V, Heine (to be published).

¥ N. B. Hannay, Semiconductors (Reinhold Publishing Corpo-
ration, New York, 1959), p. 342.
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that has to exist between the surface states and the
metal increases, i.e., more electrons flow into the surface
states to set up the dipole, and Er in the surface states
has to rise. We have

(13)

D=4nrai/e,

where ¢~1/q is the mean separation between the nega-
tive charge in the surface states and the positive charge
on the metal, € is the dielectric constant, and o is the
charge density per unit area. Further

dEp=t—tv=0/p(E), (14)
where p(E) is also expressed per unit area. Thus
=t (o). (19
" Lamp(m) (/9

Incidentally, in (12) and (15) it is not quite the real
work functions ¢g and ¢, that we want, but the volume
contributions to them without the surface dipoles on the
free surfaces. It is this which represents the difference in
binding of an electron in the two materials. However,
since the surface dipoles are small and anyway unknown,
we use the measured ¢’s.

In order to calculate ¢ from (15) we must estimate ¢/
and p(E). We start with ¢/, discussing both theoretical
and experimental estimates. Theoretically ¢ in (7) varies
in the band gap as shown in Fig. 6, with gmax being
given approximately by?%2

Jmax™ ot gap ('U/ZEO) ) (16)

where Ey is the energy at the gap #%kg.,%/ (2m) measured
from the bottom of the band. Taking again the repre-
sentative point defined by Egs. (4) and (5), and a mean
vertical band gap 2v of 4% eV to the first two conduction
bands, we obtain?

1/qmax=6.0 A. an

A calculation following Kane® for the center of the
Brillouin zone gives 5.5 A. Since |¢|? in the surface

20 W, Kohn, Phys. Rev. 115, 809 (1959).

21 E, T. Goodwin, Proc. Cambridge Phil. Soc. 35, 205 (1939).

2 The estimate below Eq. (5) of Ref. 11 was somewhat too large.
B E, O. Kane, J. Appl. Phys. 32, 83 (1961).
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F1c. 7. Variation of silicon work function ¢ with cesium coverage.
(After Ref. 24.)

state varies as exp(—2¢x), the center of gravity of the
charge is a distance 1/(2¢) from the surface. We note
that our estimates give a minimum length of the tail,
applicable when the surface state has an energy at the
center of the direct gap.

Experimentally the measurement most directly in-
volving ¢ is the change of work function ¢ of silicon
when a fraction 6 of a monolayer of cesium is deposited
(Fig. 7).2* Let us consider the limit of low coverage. The
ionization energy of a cesium atom is 3.9 eV, and if we
bring it up to the silicon surface the proximity of the
dielectric reduces this further. The work function of
silicon is 4.8 eV, so that the electron prefers by 0.9 eV
to go into surface states at Er in the semiconductor.
The potential and wave function are shown schemati-
cally in Fig. 8, and the dipole moment contributed by
each cesium atom gives a measure of the length of the
tail. We have

¢(0)— ¢(O)=4m0n (t/ Nt (t/€)210,  (18)

where Q is the effective charge of the dipole and suffixes
1 and 2 refer to the part of the separation ¢ inside and
outside the semiconductor, respectively. Since the di-
ameter 3.2 A of a cesium ion is comparable with the
penetration in the semiconductor, a fraction of the
electron will be situated on the ion, and we take Q~3e.
The number of sites 7, is 8X10% cm™2. Turning to the
data, what is “low coverage” for our purposes? At the
point B the ¢ has already dropped 0.5 eV so that the

%F. G. Allen and G. W. Gobeli, Report of the International

Conference on the Physics of Semiconductors (Institute of Physics
and the Physical Society, London, 1962), p. 818.
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Fic. 8. Potential around Cs* ion on the silicon surface. 4B are
the bands bent by the space-charge layer. The bending in BC
represents the Coulomb potential from the Cs* jon. DE is the
pseudopotential of the ion [ V. Heine and I. Abarenkov, Phil. Mag.
9, 451 (1964)].

dipole potential produced at one ion by its neighbors is
of this order of magnitude. That is already a consider-
able perturbation compared with the energy differences
depicted in Fig. 8, and indeed the experimental curve
appears to be still increasing in slope between o and 8.
The straight line slopes from 8 to v and « to 8 are, re-
spectively, 9 and 15 eV from which we guess a slope at
6=0 of 25 eV. It would be interesting to have more
precise data in this region. (18) now gives

(i/é)l—i" (t/€)2= 2.2 A . (19)

For (t/€); we take =1.6 A the radius of the core, and
e=1 because the core is tightly enough bound. Using
€(Si)=11.6 we obtain for the mean length of the tail in

the silicon

This figure compares satisfactorily with our theoretical
estimate1/(2¢) >3 Aand afigure #/e< 1A (i.e., <11 A)
deduced by Crowell® from the lack of variation of barrier
height ® with applied bias voltage in some junctions.
It is more difficult to estimate the density of states
p(E). As regards the total number of surface states,
there is roughly speaking only one number which can be
invariant under all the circumstances outlined in Sec. I,
and that is 2 electrons (counting both spin directions)
per surface atom. One might argue that it should be half
this because of counting per unit cell, but, on the other
hand, there are at least two bands at the valence- and
conduction-band edges likely to give rise to surface
states. The question is how spread out in energy they
are. Scaling in energy the results of Pugh?’ for diamond
would give a very high value, 6.4X10' electrons
cm~? eV-L. However, looking at Fig. 5, one might be
more inclined to go to the opposite extreme and assume

25 D. Pugh, Phys. Rev. Letters 12, 390 (1964).
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uniform spreading of the “states” in the band gap, at
least for the junctions with metals with high %p. Since
these do not behave radically different from other
junctions or the free surfaces, we might infer the same
true there. In any case such an assumption gives a
reasonable low-estimate p; .. (E). Adopting a mean band
gap of 43 eV again,* we obtain

pre. (E)=3.5X10" electrons cm™2 eV,  (21)

We shall adopt (21) in subsequent calculations, because
as we shall see a value much larger would imply very
small values of £— £. We note that (21) is only twice the
“straight-line” estimate of Allen and Gobeli.®® We reject
their detailed model with two very narrow bands for the
same reason as above, namely it seems too fine a
structure to be retained in junctions with metals with
high kr (though one could also argue that their two
bands are placed symmetrically above and below the
Fermi level so that any broadening would also be
symmetrical and retain the same Ep). Such very dense
bands might also be expected to show up in photo-
emission.?® At dopings less than 10" cm™3, (21) is quite
consistent with their data, predicting a curve which
bends up 0.02 eV at the p-type end and down 0.03 eV at
the n-type end. However, the experimental variation of
¢ at and beyond 10'° cm™ does not fit. At 10'® cm™3, the
thickness of the space-charge region is 50 A (p-type) and
90 A (n-type) which is becoming comparable with the
length of the surface-state tails. Thus, the bands bend
over the length (20) by about 0.12 eV. It seems reason-
able that under conditions of such steep band bending
there might be deviations of ~0.03 eV from the simple
theory as would be required to fit the data. (We note
that at even higher dopings the change of ¢ reverses
sign.) At least we suggest this as an alternative in-
terpretation of the data. Measurements on diodes at a
lower temperature should give a clearer indication of the
density of states applicable to the central range of
doping. We shall later come across other deviations
from the simple theory under conditions of extreme band
bending.
We return at last to Eq. (15) and the data of Fig. 1.

We put

: 80 0.5

124,

e 116 1

(22)

the first term being taken from (20) and the second term
representing the screening distance in the metal.?” With
the use of (21) and (22), Eq. (15) becomes

£=£010.13(@se— ¢m)

which is shown on Fig. 1 as the dashed line. It reproduces
the general trend of the data as well as any straight line
can. If we accept ¢ as correct to 509, then p(E) cannot

(23)

26 F. G. Allen (private communication).
2 N. F. Mott and H. Jones, The Theory of the Properiies of
Metals and Alloys (Clarendon Press, Oxford, 1936), p. 88.
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be much less than half of (21) without producing a line
that is too steep to represent the data. On the other
hand, if filling up the surface states is indeed the ex-
planation of the trend to higher £ values at lower ¢,
then p(E) cannot be much larger than (21) either. How-
ever we shall later mention a possible alternative ex-
planation of the high values of £ in Fig. 1.

We first discuss two other consequences of (21), (22),
and filling up the surface states. One is the variation of
barrier height with applied bias voltage. Since the sur-
face states are in good electrical contact with the metal,
we assume there is no extra dipole field between them.
All the charge o= eE/4n on which the lines of force from
the applied field £ terminate therefore reside in the
surface band, raising its Fermi level by o/o(E): i.e., ®
would decrease by this amount to keep Er constant.
Experimentally® a bias of 105 V/cm produces no
measurable change in ®, i.e., 66<2X 1072 eV. The §®
predicted from (21) for this field is 2X 1072 €V, just on
the limit of error. Again we find p(E) cannot be much
lower than (21) without leading to contradictions. A
similar effect to bias is the space-charge field produced
by doping. High #-type doping produces a strong field
which on the present model would lead to a reduction
in® by 0.01 eV for 2 0.2-Q-cm sample (N ;~9X 107 cm=3).
However, an increase of 0.03 eV in ® is found,>® which
cannot in any way be reconciled with the mechanism of
the present model.

This discrepancy leads us to point out that we have
in fact been using the idea of a Fermi level in the band
of surface states in a very cavalier fashion. The very
fact that the charge in these states is spread out over
some distance { means that there will be very severe
bending of the bands over this distance, as shown in
Fig. 9. Indeed the concepts of band bending must not be
taken too seriously over such distances since the band
states themselves cannot be localized to smaller than the
size of the Wannier function which is of the same
order? as £, From (22), over half of the dipole potential
difference between a metal and a semiconductor in the
junction occurs in the semiconductor. Thus if ¢y, is less
than ¢4 by more than 1 eV, the bands are bent so much
that the conduction-band edge dips below the Fermi
level [Fig. 9(c)]. This might be the explanation of the
good surface conductivity found on silicon when covered
with a monolayer of metallic cesium.?® The same should
apply for a calcium monolayer. Certainly such bending
of the conduction band is compatible with the existence
of a barrier. Calcium produces a barrier (Fig. 1), and it
would be interesting to know if cesium does too. We
come now to an alternative explanation of the trend of
¢ in Fig. 1. Basically a higher value of p(E), i.e., a less
sloping line, would not be incompatible with the data
for metals with high ¢,,>4 eV. That leaves calcium and
magnesium anomalously high. This might be related to
the extreme bending of the bands in the sense that in
Fig. 9(c) the length of the tails would be seriously
curtailed, at least in the lower half of the gap, necessi-
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F16. 9. Surface-state band bending (a) on a free surface, (b) in
a metal junction when ¢m< s, (€) in a junction when @& @se.
On the left is the semiconductor with bent valence- and conduction-
band edges shown, on the right the metal [cases (b) and (c)].

tating a higher ¢ and lower barrier to make up the re-
quired total charge. Another effect would be as follows:
The charge density |¢|2 is so high in the tails that the
bands bend downward already at a depth considerably
greater than ¢ which represents the center of gravity of
the charge, which would also tend to lower the barrier.
We conclude by reiterating that this surface-state band
bending is an inescapable consequence of the surface-
state charge being spread out in a tail, but the exact
consequences of it for barrier heights are far from clear.
In particular we have not been able to use it to provide a
convincing explanation for the sign of the change of
barrier height with doping.

Our present models say nothing specific about the
case of antimony in Fig. 1. Here £ lies close to the solid
sloping line, which represents the £ that would be
observed if the whole of the dipole potential ¢s— ¢om
appeared across the space-charge region rather than
between the surface states and the metal. This suggests
that the surface layer of the semiconductor is highly
conducting and acts as one conducting system with the
metal so that no dipole field can exist between them. If
the first layer of antimony bonded tetrahedrally to the

VOLKER HEINE

silicon and acted as donor centers, it might well produce
such a conducting #-type layer: Its thickness would only
have to be comparable with (20) for it to be effective.

Finally a comment about the work function of silicon
with a monolayer of cesium or oxygen: Since the thick-
ness of the surface states is as large as (20), the charge
that has to be transferred per atom to produce the re-
quired dipole | ¢se— ¢m| is only about one-tenth of an
electron per atom. Consequently, the electronic condi-
tion in a monolayer is very nearly the same as in bulk
material. Thus the work function with a monolayer will
be close to that of pure cesium or ‘“‘oxygen metal,”
respectively. By the latter term we mean that the
oxygen is likely to be bonded to the silicon as a close-
packed monolayer rather than existing as diatomic
molecules. In that case it would be metallic, and we can
estimate crudely its work function as 8 eV, the mean of
the ionization energy (13.6 V) and the electron affinity
(2.3 eV) of atomic oxygen. As a smaller second-order
effect, the existence of the dipole leaves the cesium and
the oxygen, respectively, with a small net positive and
negative charge, thus increasing and decreasing ¢, re-
spectively. We can estimate the order of magnitude by
taking one-tenth of the difference between the ionization -
potential and the electron affinity of the atom, since that
represents the Coulomb energy for one extra electron,
obtaining 0.3 eV for cesium and 1 eV for oxygen. Thus ¢
for cesium on silicon might be expected to drop ~0.3 eV
below the value for bulk cesium at about one monolayer
coverage, and then increase again to the latter for
thicker layers, of course. Something like that happens for
cesium on metals,?® and there appears to be some ex-
perimental evidence for it on semiconductors.?® The ¢
for a monolayer of oxygen on silicon becomes 8—1=7
eV, compared with the experimental value?® of 6 eV. For
thicker layers ¢ returns to 4.6 eV, very near the value
for a clean surface, which presumably indicates the
conversion of the oxygen layer to an electrically inert
oxide layer.2¢
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