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Cyclotron Resonance in Bismuth with a Slightly Anomalous Skin Elect
L. C. HzBzL

j3eIE Telephone laboratories, Murray IIN, Em Jersey
(Received 27 January 1965)

The power absorption coefficient is calculated for microwave radiation propagating normal to the su~face
of a slab of bismuth with a static magnetic 6eld parallel to the sample surface where a slightly anomalous
skin-effect condition is assumed. Resonances are found which would be absent for a strictly local skin-effect
condition and which satisfactorily account for observed resonances that have been previously attributed
to spin and combination resonances.

I. INTRODUCTIom showed that the size of singularities due to spin reso-
nance couM not possibly be great enough to explain the
experimental results, even taking into account the large

g factors expected in bismuth.
It will be shown in this paper that singularities having

the proper size and shape result naturally from the
theory if the strictly local relation between J and E is
relaxed to allow small nonlocal terms. ' The nearly
locRl limit has often bccn referred to Rs the anoIQalous
relaxation limit. s It has been studied recently by Jones
and Sondheimer~ for carriers with spherical Fermi sur-

faces with results presented for infinite carrier relaxa-
tion times. The theory to be presented here calculates
the motion of individual carriers with a method, based
on Hamilton's equations adapted to the bismuth band
structure, in which the relaxation time plays an im-

portant role. The quantitative discussion will be limited
to the case of E parallel to 8 where the largest nonlocal
CGects were observed. The singularities which result
are also quite diferent in shape from those which have
been calculated for the extreme anomalous limit. "

To calculate the power absorption one must solve the
wave equation

MITH, Hebel, and Buchsbaum' (SHB) have reported

~

~

the results of microwave experiments on pure,
»ngle-crystal bismuth. They measured the power ab-
sorption coe%cient as a function of static magnetic 6eld

foI' I'RdlRtlon propagating normal to tlic surfRcc of R

slab of sample with 8 parallel to the sample surface. The
results were analyzed in terms of a semiclassical theory'
which was based on assumption of a strictly local rela-
tion between the microwave electric field E and the
induced current J.

The local theory explained the most prominent
features of the results. For E polarized perpendicular to
8 the power absorption was characterized by onsets of
absorption at hybrid resonances. Such singularities cor-
respond to resonances in the electron-hole plasma in-
volving several types of carriers and result from the
longitudinal space-charge 6eld which is present for
EJ 8. For E polarized parallel to 8 the power absorp-
tion displayed peaks which resulted from cyclotron reso-
nance for those carriers whose orbits were tilted with re-
spect to 8—so-called longitudinal or tilted-orbit cyclo-
tron resonance. Only for such carriers does R have a
component in the plane of the orbit, which can couple to
the cyclotron motion.

Additional singularities were also observed which
were not accounted for by the local theory. They
occurred when the microwave frequency co equaled the
cyclotron frequency ~, and in some instances when
~—2~,. Such singularities were especially pronounced
for E parallel to 8 for carriers whose orbits were per-
pendicular to 8 and which could rot, as a result, display
a cyclotron resonance in a local theory. SHB tentatively
attributed such singularities to spin resonances or com-
bination resonances of the sort discussed by Cohen and
Blount. ' However, a later calculation by Hebel, Blount,
and Smith given in the immediately preceding article,

VX(Q x E)—(rd/c)sfsrE+(4rr/sa&)Jj=o, (I)

where gg is the d].electric constant of the lattice. If a
local J(E) is used, then J= rr E which results in an ex-

ponential solution; for a wave propagating in the x
direction E(x,t) = E expi(cot —kx). The power absorption
coeKcient A is given in general in terms of the ratio of
the microwave magnetic field H to E at the surface, ob-
tained by solving the boundary conditions for propaga-

' G. E. Smith, L. C. Hebel and S. J. Buchsbaum, Phys. Rev.
129, 154 (1963).' The same theory has been used to analyze experiments with
8 perpendicular to the surface. See J.K. Gait, Vf. A. Yager, F. R.
Merritt, B.B. Cetlin and A. D. Brailsford, Phys. Rev. 114, 1396
(1959).' M. H. Cohen and E. I. Blount, Phys. Mag. 5, 115 (1960).

4 L. C. Hebel, E. L Blount, and G. E. Smith, preceding paper,
Phys. Rev. 158, A1656 (1965),

5Nonlocal effects in bismuth have been considered for 8
perpmdicular to the surface by P. B. Miller and R. R. Haering,
Phys. Rev. 128, 126 (1962), and by J. Kirsch, Phys. Rev. Da,
A 1390 (1964).The Doppler shifts characteristic of their geometrv
are absent for I parallel to the surface.' A. B. Pippard, Adv. Electron. Electron Phys. 6, 1 (1954).' M. C. Jones and E.H. Sondheimer, Proc. Roy. Soc. (London)
A278, 256 (1964).

8 M. Ia. Azbel and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 30,
811 (1956) )English trsnsl. : Soviet Phys. —JETP 5, 772 (1956)j;
J.Phys. Chem. Solids 6, 113 (1958);D. C. Mattis and G. Dressel-
haus, Phys. Rev. 111, 403 (1958); S. Rodriguez, ibid. 112, 1616
(1958).

9 As an experimental example, see A. F.Kip, D. ¹ Langenberg,
and T. W. Moore, Phys. Rev. 124, 359 (1961);J. E. Aubrey and
R. G. Chambers, J. Phys. Chem. Solids 3, 128 $.957).
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tion normal to a slab. That is,

X=4n/L(n+ I)Py.s]

where n= Re(H/E) and ~= Im(H/E). Here, n and ~ may
be regarded as the real and imaginary parts of the sur-
face admittance; in local theory they are also the real
and imaginary parts of the index of refraction.

In the nearly local limit J(r) is determined by fields
in the immediate vicinity of r, so that it is attractive to
expand J in a power series involving E and its deriva-
tives. If only the terms up to second derivative are
kept, the wave equation can still be solved easily, and
one obtains the best SCN-consistent exponential field.
It will be shown that such terms give resonances at
m=~, which describe those observed by SHB. Proper
treatment of carriers which collide with the surface is
important and can easily be done to lowest order.
Higher derivatives of E give resonances at ~=ecv. some
of which are seen by SHB. Such resonances will only be
discussed qualitatively.

A brief discussion of the bismuth band structure is
given in Sec. II. In Sec. III the current density is cal-
culated both for carriers in the bulk and for carriers
whose olbits strike thc surfRcc. Thc cRlculRtion of thc
power absorption coeKcient follows in Sec. IV, and in
Sec. V the results are used to discuss the resonances
observed by SHB.

II. BAND-STRUCTURE ASSUMPTIONS

In bismuth, '0 the carriers are believed to be charac-
terized by Fermi surfaces which are ellipsoidal in cross
section but nonparabolic in energy 8 versus momentum
y. A model of the band structure has been introduced
by Lax et at'. "which has been highly successful in in-

terpreting infrared absorption phenomena. In the model
the nonparabolicity is such that for calculations of the
microwave frequency current a conventional parabolic
relation may be substituted for 8(y) provided the in-
verse efFective masses used are those evaluated at the
Fermi energy 80. Such a parabolic form will be assumed
in this article; it is identical to that conventionally used
to interpret dc Haas —van Alphen, transport, and cyclo-
tron resonance experiments in bismuth.

A Cartesian coordinate system is chosen in which axis
j. lies along a binary axis of the crystal, axis 2 a,long a
bisectrix axis and axis 3 along the trigonal axis. The elec-
tron band is made up of three ellipsoids slightly tilted
out of the plane perpendicular to the threefold axis. For
a typical ellipsoid, to be referred to as ellipsoid "u," the
electron energy is given by"

&rpl +&sps +&ppp +2rr4pspp y (3)
' For extensive references; a general review of the properties

and band structure of bismuth, see W. S. Boyle and G. E. Smith,
Prog~ess ie Semkondectors, Vol. 7 (John Wiley R Sons, Inc. ,
New York, 1963)."B.Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keys, Phys.
Rev. Letters 5, 241 (1960); R. N. Brown, J. G. Mavroides, and
B.Lax, Phys. Rev. 129, 2055 (1963).

where y is measured relative to the ellipsoid center and
the 0,'s are components of the reciprocal mass tensor. For
such an ellipsoid, the mass tensor itself has the form

ml
m./nip —— 0

.0

0 0
tÃ2 554

553~

(4)

III. CALCULATION OP THE CURRENT DENSITY

A. Basic Equations

When its Fermi frequency 8p/h is much greater than
the experimental frequency ~ and the cyclotron fre-
quency ~„aspecies of carrier in the metal is usually de-
scribed by a semiclassical one-electron method. One
formalism" uses a distribution function calculated using
the Boltzmann equation. An equivalent but perhaps
more direct method for situations of interest here is to
calculate the motion of individual carriers using Hamil-
ton's equations; impurity and wall scattering can be
introduced when the current is evaluated. For a particle
with charge e, momentum p, and energy 8=8(y),
Hamilton's equations yield

dp/Ck= eLEe'"'+ (1/c)v ~ B], (6)
where

v= c)8/c)y. (7)

The current density is then obtained by averaging the
velocity at r and t for a Fermi distribution over all
orbits which pass through the point at that time.
With the average denoted by (v),

J(r,t) =ne(v) =J'(r)e'"'. (g)

E and 8 will be taken parallel to each other and to the
surface of a semi-in6nite slab of metal. For convenience
their direction is called the s direction which is taken
along one of the principal directions of the mass-
ellipsoid of the group of carriers being considered. Such a
choice eliminates the tilted-orbit cyclotron resonance
characteristic of the local theory for E parallel to B,
wjlich othcrwisc masks thc nonlocal effects for e—u and
also is the most important case for analysis of the ex-
perimental results; a qualitative discussion is given in
Sec. V for the case in which s is not along a principal
direction.

Im See for example R. G. Chambers Pro&. R.oy. Soc. (London)
A202, 578 (1950); Proc. Phys. Soc. (London) A65, 458 (1952).

The remaining electron ellipsoids, to be referred to as
ellipsoids "b" and "c", are obtained by rotations of
ellipsoid "u" through ~120' about the trigonal axis.

The hole band is made up of an ellipsoid of revolu-
tion about the trigonal axis. Thus, for holes'0

2(8—8p) = (1/Mr)(Pis+Ppr)+Ps'/Mp, (5)

where b~ is the band overlap energy. %here they are
needed, values listed by SHB will be used: m~=0.0062,
fps2 1 30' 853 0 017) m4 ———0.085, 3fg =0.057, M3 =0.77.
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r),(x,t) =en.
"d(t—t') — 1

exp —-(t—t')

X dtrE(xr) exp(io)t)). (10)

In order to proceed, we will make the approximation
that E(xr) varies only slightly over the orbit in the (x,y)
plane (see Sec. I).Thus E(xr) is expanded in a Taylor's
series about the point x

1 de
E(xr) =Q„— (xr —x)",

mI dx

where in practice only the erst few terms will be used.
With

(12)
and

8=o).(t- tr),

Eq. (10) may be partially integrated and combined with
Eqs. (8) and (11) to give the desired equation for the
culI'cnt densltyq

ne'0. , 1 d"E
J,(x)=

~ mfdx

Propagation is taken along the x direction which is
perpendicular to the face of the slab and which is rot
assumed to be along a principal mass-CHipsoid direction.
Hen. ce, the energy 8(y) has the form

2~=rxxpx +(xypy +2(xsypxp()+(xsps =2@)+(xgps y (9)

where o,; are inverse CBective masses evaluated for
b= b0~ thc Fcrm1 energy~ and hg ls thc cnc1gy of motion
perpendicular to S.

Because E and B are taken to lie along a principal
mass direction, r), =n.p„so that Eq. (6) for p, separates
from the equations for p, and p„. A formal solution for
a given particle may be written down immediately in
terms of an integral back in time along its orbit. The
contribution at time 3 from each earlier time t' must be
weighted by the probability that no scattering due to
bulk impurities has occurred in the time interval t—t .
Collisions with the walls are treated separately in Sec.
III-D. Introducing a relaxation time w to represent
scattering by impurities in the metal, one has

I'IG. j.. Orbit of a carrier in real space with laboratory axes
(a,y} an(i principal axes (a',y'}.

to the center at (x,g) the orbit is obtained by direct
integration of Eq. (6) to obtain (x—x) and (y—g) in
terms of p and p„; substitution of the result in Eq. (9)
gives the orbit equation

2 8,(c/eB) '= a„(x x)s-
+ *(y—0)'—2 *.(*—*)(y—1t), (»)

which is an CHipse rotated 90' from that of the momen-
tum ellipsoid and scaled by (c/eB).'

To evaluate the current, Eq. (14), only distances
along the x direction of propagation are needed. Con-
sequently, it is most convenient to transform to a sys-
tem of coordinates in which the orbital motion is circular
and in which distances in the x direction have a simple
functional dependence. The details of the transforma-
tion are given in Appendix I. First a rotation is made
about the s axis through the angle C, shown in Fig. 1,
to x' and y' along principal directions of the orbit
ellipsoid. Next a transformation is made to coordinates
Nr and Ns shown in Fig. 2 by a shrink (or stretch) of axes
followed by a rotation through an angle X. Measuring
N~ and N2 relative to the orbit center, the resulting mo-
tion is circular with a cyclotron frequency ~„an inverse
cyclotron mass n„and an equivalent cyclotron radius
r,. That is,

o)g= 88lxg/c with Qg= ((x~ Qy )

The orbit is given by

where, as shown in Fig. 2, Nj and ug can be simply ex-
where the upper limit is ~ for orbits which do not strike pressed in terms of the angle )P whose time derivative is
the wall, a constant equal to ro,.

B. Solution of the Orbit Nr= rg cos)p, Ns= rg sml(t'.

Evaluation of Eq. (14) for the current density re- In addition, the equation for (x—x), the extent of the
quires solution of the orbit in the (x,y) plane. Relative orbit along the propagation direction, becomes a simple
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Ug

U

resonances; a term of order d'"E/dx'" contains a de-
nominator (1+~ r)(1+4(v r) ~ (+n" r ) Thus&

there are resonant terms at co= 2co„ao=3co„etc., with
diminishing amplitudes if the series converges. The dif-
6culty in treating these higher order terms is the labor
required to calculate the current contribution to the
proper order for those carriers which strike the surface
as well as the increased complexity of the wave equation.
The theory of this paper will be limited to a quantita-
tive discussion of terms to order d'E/dx'. Higher terms
will be considered only in a qualitative way. However,
it should be noted that their resonant denominators
have the same type of frequency dependence as the
lowest order terms.

Fro. 2. Transformed orbit equation in (u1,N2) space.

one.
(x—*)=(~/~)'"I =( @.~./"')'" o 0 (19)

One notes that n, in Kq. (19) is the inverse mass com-
ponent along the propagation direction (in the lab
system) and that the "tilt" of the orbit ellipsoid does not
appear in the final equation for (x—x).

C. Current Density for Carriers in the Bulk

D. Current Density of Carriers Which
Strike the Surface

For carriers which strike the surface (xi—x) is no
longer zero as it was for bulk carriers. . However, the
additional current density extends only a distance of
order r, into the metal whereas the bulk currents ex-
tend a skin depth 8. Since the (xi—x) current density
will be proportional to r,dE/dx Er,/b, its net effect
will be of the same order as the ((xi—x)') contribution
for bulk carriers, i.e., of order E(r,/6)'. Consistent with
the approximation that r.«b, the (xi—x) contribution
will be treated as a surface current. That is, one in-
troduces the current per unit length I'„where

For a carrier which does not strike the surface, the
distance x~—x back along the orbit may be taken as

and defines

de, (x), (24)

(xi—x)=0, (21)

((xi—x)')= (4B n /5&a ')(1—cos8). (22)

Thus for carriers in the bulk, substitution of Eq. (22)
into Eq. (14) gives

2 Spry ~ 27-2 d2g-
J,(x)=ne'n, r E(x)+- . (23)

5 ~' ( +1",'r')gx'

One notes that d'E/dx' E/b' where h is the skin
depth; consequently, the second term in Eq. (23) is of
order (r,/5)' multiplied by a resonant factor compared
to the 6rst. As a result, the relaxation time must be
finite and not too large for the theory to apply for co

near u, .
Higher terms in the expansion of E give additional

xi—x=(xi—x)—(x—x)
=(28,n,/a&P)'"[cos(/+8) —cosf7 (20)

where 0 is defined in Eq. (13) and the angle f, shown in
Fig. 2, is used to label the x coordinate at time t. The
average over all orbits that arrive at the point (x,y) at
the time t may then be regarded as an average over P
combined with an average over the Fermi distribution.
One finds

J,'= r,S,(x). (25)

J,' will then be used instead of J, itself for the con-
tribution of the (xi—x) term. The di6erence between the
two involves terms ofhigher order than (r,/8)'which are
dropped.

The equation for the surface is a simple one in the I,&,

N2 system. Referring to Fig. 2, the wall at xo can be
specified in terms of the angle fp. Using Kq. (19) one has

xp ——(28,n~, ')'IP cosPp.

1. Diglse Refection

(26)

"For more extensive discussion of treatment of boundary
scattering, see P. J. Price, IBM J. Res. Develop. 4, 152 (1952).

For diffuse reQection, one assumes a complete loss of
phase memory with a surface collision. " Thus, in
evaluating Eq. (14) for J„the integration is carried out
over the angle 0 only until the particle in question strikes
the wall. The resulting expression is then averaged for a
Fermi distribution over all orbits which strike the sur-
face. To obtain F„Eqs. (14), (20), (24), and (26) must
be combined. The details are given in Appendix II.
After averaging over. the Fermi distribution the final
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1CSUlt 1S

J,'(x) =ne'n, e(boa./a')~
& Cx),

IV. ABSORPTION COEFFICIENT FOR
E PARALLEL TO B

In this section it will be shown that under slightly
nonlocal conditions the absorption coeKcient A dis-

plays a resonance for co—~,vrhose shape is predominantly
that of either a classical absorption or dispersion, de-

pending on whether the real part of the total dielectric
constant is negative or positive. To calculate A given by
Eq. (2), the ratio of I to E at the surface must be ob-
tained by solving the wave equation, Eq. (1), using a
current density given by the sum of Eqs. (23) and (27)
for all the carriers. Since the nonlocal terms are only
appreciable near a resonance for r,((5, such terms will

be kept only for that carrier for which (v—~„vrith only
the usual local term kept for all other carriers.

It is convenient to write the current density contribu-
tions to the vrave equation in terms of equivalent di-

clcctlle eonstRnts eq Rnd ep, whclc eq lnclUdcs only tcI'IIls

from the resonant group of carriers and ep terms from
all carriers. Including the "lattice" dielectric constant

Cga onc uses
(28)ey=4rn8 CK~T/sv=G)y r/~ q

&&~e;2/(1+~,2-2) r,(x). (27)

2. +pecllur Reflection

When the particle is specularly reQected its energy is
conserved. For a "specular force" normal to the sur-
face, Eq. (6) shows that p„parallel to the surface is
also conserved. " Then direct integration of Eq. (6)
shows that the x coordinate of the orbit relative to the
orbit center is unchanged by the collision. This means
that, in Figs. 1 and 2, after striking the wall at "b," the
particle starts toward "c"with the same p, and p„ that
it had at "a."The orbit thus remains the same except
that it is displaced in the y direction with successive
collisions. Since the phase of E is not a function of y,
the problem can be simplified by putting the particle
back at "u" vrhen it strikes the wall at "b,"making the
orbit re-entrant. However, the angle 0 in Eq. (14) for
J, must then be increased by 2(m —lto) with each suc-
cessive collision.
~ Consequently, in addition to the term J,' calculated
in Eq. (27), one must continue the integration over all

paths between successive vrall collisions to obtain a
second contribution. This second portion is shown in
Appendix II to be identically zero to order (r,/5)'
bceRUsc eontI'lbUtlons Rt thc suI'fRec Rl'c 180 oUt of
phase to contributions at distances of order r, , Thus, to
order (r,/8)' both specular and diffuse scattering give
the same result for J,'.

er 4——rrne' Q n;n„r/ioo+ eg= 0„'r/ioo+ eg, (29)

where co„ is the plasma frequency for the resonant
carriers and 0„is the total plasma frequency. The non-
local character of the resonant terms can be expressed
to order {r,/8)' by a parameter $ which is basically a
resonant factor times the ratio of the Fermi velocity to
the velocity of light. That is, for the resonant carriers,
one introduces

2 @0@~ M T2

5 c2 (1+(g 2r2)
(30)

In addition, de/dx and hence H have a discontinuity at
the surface due to the fact that the current contribu-
tions from electrons which strike the surface has been
treated as a surface current. Equation (31) shows that

(d/dx) $(1+eg&) (dE/dx)+ egg(dE/dx) oUp(x) j i e 0, (33)——
where U+(x) is a unit step function. Using Maxwell's
equations to relate E to H and labeling H just inside or
just outside the surface as H; and II„respectively, the
solution of Eq. {33)is

H,/H;= 1+egg. (34)

Combining Eqs. (32) and (34), one finds for p, the ratio
of H to E just outside,

{35)

The solutions for both g and A are most conveniently
expressed in terms of a dimensionless frequency diGer-
ence 6 and linewidth y, in addition to a carrier Fermi
velocity eo„given by

6= ((o,—a))/(o, {36)

(37)

(38)

Recalling that r= r(1+nor) and ri=n ia, substitution-
of Eqs. (28)—(30) into Eq. (35) gives the desired result
for g'. Dropping the "lattice" term, e~, at microwave

Substitution of the current density, Eqs. (23) and (27)
into the wave equation then gives the basic equation
for E to order (r,/8)'.

(1+ed/) d'E/ dx+ (a)/c) 'erE
+eg&(dE/dx)oh+(x) =0. (31)

Thus, inside the metal the held to second order varies
exponentially with a propagation constant given by

(ck/co) '= er/(1+ elf) .
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frequencies,

$2= S2 K2—2$SK

X10~4
I-z
IIJ
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II-

Qll

I
Ial I 'I4

BII1, E Ill, Hll 2.——8 II), E II1, Hll 3---- LOCAL CALCULATION
0 ' 1 ep. ' pi '(1+i')(h —iy)

(1+i') 1—— . (39)
M 10 c N (6++)

Since p«1 and the nonlocal contribution in the square
bracket is regarded as small, one finds x—0„/o~ and
rr—D„y/2p& (which is the local result), so that x))rr.
Thus from Eq. (2) the power absorption is very small;
A—4e/xs, so that the sample is said to be "cut-off."
Since the "local" skin depth, Bo, would be given by
8p

——(o&x/c) —(I„/c, the nonlocal term in Eq. (39) is seen
to be of order (r,s/10hps) multiplied by a resonant factor
when co—or, . Including the nonlocal terms, one has

I
0

I I I I I I I I I I I0
0 2 3 4 5

B ( K ILOGAU SS)

FxG. 4. Observed power absorption versus magnetic 6eld for 8
and E along axis 1 (binary); the propagation vector k is along
either axis 2 (bisectrix) or axis 3 (trigonal) (from Ref. 1).

f2coy 1 ep s pp, s (1—rsh)
1+—

En, 10 cs ~s (~'+~')

which is schematically plotted in Fig. 3.
The local case, obtained by setting ep, ——0 in Eq. (40),

shows no resonance for E parallel to B along a principal
axis since there is no coupling between E and the cyclo-
tron motion. However, the nonlocal eftect to order

(r,/8)s contributes resonant terms of both "dispersive"
shape and "absorptive" shape. Since the maximum
value of d/(b, '+ps)=1/y, one notes that the power
absorption A near 6=0 has a Lorentz line shape which
is predominantly "absorptive" with a little "dispersion"
mixed in, of order y= 1/&pr«1. The peak of the reso-
nance occurs for cv very close to co,. Such a shape results
from the almost cut-off condition since the dispersive
term must compete with unity whereas the absorptive
term must compete with y«1.

At sufficiently high frequencies the "lattice" dielectric
constant must be taken into account. In fact, when

ei) 0 '/oi' Eqs. (35)-(39) show that in the local theory
rl'= ei—0 s/o~s whereas x=0„'y/2e; consequently, e&)x,
and the sample "opens up. "Under such circumstances
the nonlocal terms give a resonance which is predomi-

nantly dispersive with a little absorption mixed in, just
the reverse of the low-frequency shape. Thus when the

V. RESONANCE IN BISMUTH

The experimental power absorption coefFicient A,
measured by SHB as a function of 8, is shown in Fig. 4
for B and E along axis 1 (binary); the propagation vec-
tor k is along either axis 2 (bisectrix) or axis 3 (trigonal).
The resonance at about 250 G was identified by SHB
as a tilted-orbit cyclotron resonance (see Sec. I) which
is due to electrons in ellipsoids "b" and "c."

At approximately 3.l5 kG there is a resonance which
is very large for k along axis 3 but almost absent for Ir

along axis 2. It occurs at the cyclotron frequency for
electrons in ellipsoid "a." Since this ellipsoid is not
tilted with respect to B for B along axis 1, the nonlocal
theory offers no explanation. Careful experimental
orientation studies showed that the observed resonance
did not result from misorientation of either B or E with
respect to axis 1, and yet could definitely be attributed
to electrons in ellipsoid "u" because of the known mass
anisotropy. Consequently, the resonance was tentatively
attributed by SHB to electron spin resonance of the sort
suggested by Cohen and Blount. However, later cal-
culations of the spin resonance intensity by Hebel,
Blount, and Smith, given in the immediately preceding
article, show that the observed line is much too "strong"
by at least two orders of magnitude to be due to spin
resonance.

The theory with a lightly nonlocal current-field rela-
tion ofters an excellent explanation of the 3.15 kG reso-
nance. As can be seen by comparing Figs. 3 and 4, the
line shape is as predicted by Eq. (40), an absorptive
shape with a slight dispersive character; the amount of
dispersion is that appropriate to a line width factor
y—1/20 and has the proper sign to agree with Eq. (40).

In addition, the size of the change in 2 is approxi-
mately that predicted by the theory for k parallel to

I

0
(a)c —a)) r~

FIG. 3. Plot of power absorption A (6) versus
n= ((u,—ro)/(u from Eq. (40).

40)
nonlocal terms are small, the shape will be determined
by whether the real part of the total dielectric constant
is positive or negative.
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3 R ferring to Eqs. (28), (37), (38), and (40), with

(4.3 mm), one finds

1 8 co —0.2,
10 C M

and at the peak

Th the current-field relation is barely local in theus)
wings of the line; the resonant factor results in a vio
tion of r,«8 when &v=o&, for this orientation of 8 an Ir.

1 d' t the size of the line under these
circumstances, the peak height, estimated in Eq. ( ),

Moreover, the line is almost absent for k para e to
axis 2. Such an e6ect is also predicted by the theory.

1 oe 'whichispro-The nonlocal terms are proportional to ep, w
'

l [See Eq. (38).j For k parallel to axis 3,
h the resonance is large, n —,' on the o er a

for k parallel to axis 2, o., becomes of order uni y r
ing in a ccorrespondingly smaller resonance.

ce at 1.55 kGStill in reference to Fig. 4, the resonance a
is identi e as'fi d the 2nd harmonic resonance o the 3.15
kG line due to higher terms in the expansion o e
sli htl nonlocal electric 6eld. An accurate calculation
f 't '

e involves a much more accurate tof its size inv
e surfacet 'e currenh t due to electrons which strike the

e here. Theand a quantitative estimate will not be made here. e
line at 5.25 kG is identified as a resonance due to holes,
resu ting rom1

'
f the slightly nonlocal electric fiel . The

37 38sizeiscose o a1 to that estimated using Eqs.
ers of~ Oj ith 8 —8 meV and the mass parameters o

SHB. The 3.15 and 5.25 kG resonances give t e o
lilg cyc 0 ion m1 t n masses for the hole ellipsoid and electron
ellipsoid a with B parallel to axis 1:

for electrons,

m =0.126mp,'

for holes,
M =0.210mp.

The value of M is that given by SHB and divers from
G 1 ' b 18%%u. The value of m, lies between

f SHB and Gait, differing from either one by %%u&.

T ese cyclotron mass values, obtained from p
of the two resonances, should be quite accurate since

'
. 4 at a roximately

shift are small.
The remaining resonance of Fig. a appr

900 G is believed to be a spurious one due 'gdue to a sli ht
sample misabgnmen .t It occurs at the same field va ue
as the large tilted-orbit cyclotron resonance shown in

'
. 5 f 8 d E along axis 2 (bisectrix). In Fig. 5,

one also notes a small resonance at 5.25 kG whic is
attribute o cyc'b d t lotron resonance of the holes due to

X&03
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~ em%

~laa~ ~~
I m

2 3 4 6
, B (KILOGAUSS)

Observed power absorption versus magnet' ic field 8 for 8
and R along axis 2 (bisectrix) (from Ref. 1).

nonlocal terms. The resonance field is exactly the same
as for B along axis 1, in agreement with the assume
model for the hole momentum ellipsoid.

There are additional small resonances of nonlocal
origin 1Il ig. aF' 5 t fields just below the onset of absorp-
tion (&u—co,) for the large tilted-orbit cyclotron reso-

. As discussed in preceding sections, such a cyc o-nance. s i
tron resonance occurs for R parallel to ino B in a local
theory ony w en is1 h B is not along a principal axis of the
mass ellipsoid. The calculation on nonlocal terms in
such a case is more dificult than that presented in Sec.
III, since the s motion is coupled to the x-y motion even
in 6rst order. In the local theory the dielectric constant
is very arge near co—cv„1 ar co—cv thus the phase velocity wou

albe low which is the very condition in which nonloca
terms are important. The fact that the observed non oca
resonances are small is undoubtedly due to the large

coe cient is very smam.
' t '

small and the sample remains essen-
tia y cu o eve
'

ll " to6" even with additional nonloca terms.
Several other figures in SHB, dealing with resonances

The dominant eGects were due to hybrid resonances, as
.discusse in ec.u in Sec. I. There are small resonances present
in the curves which were tentatively attribute to spin
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APPENDIX A

The first transformation, shown in Fig. 1, is a rota-
tion about the s axis through an angle C from laboratory
(crystallographic) coordinates (x,y) to principle ellipsoid
coordinates (x',y') and is given by

x—x= (x'—x') cosC —(y' —g')»nC',

y
—g= (y —g ) cosC+(x' —x') sin@,

(A1)

where (x,g) and (x',g') label the orbit center. The trans-
formed momenta along the orbit are then given by
transforming Eq. (9), so that

2 h, =n„p. '+n„p„'=28—n,p, ', (A3)
where

and combination resonances but which are now be-
lieved to be due to small nonlocal terms. In the hybrid
geometry the analysis is considerably complicated by
the fact that the electric field inside the sample is
elliptically polarized in such a way that resonance at
or =co, does not normally appear in a local theory. It can
be shown that such is the case even with nonlocal terms
to order (r,/8)'.

As a result, the nonlocal eGects in the hybrid geometry
have important contributions from terms of order
higher than (r,/8)', which also give rise to the observed
resonances at subharmonics of ~,. Such resonances call
for more accurate treatment of the currents near the
surface than is attempted in this paper. However, the
results would be qualitatively similar to what is ex-
pected from the discussion presented in Sec. IV, that is,
lines at subharmonics which are predominantly absorp-
tive in shape when n«~ (absorption 2 cutoff) and pre-
dominantly dispersive in shape when e))~.

propagation direction in the laboratory system and the
orbital angle P in the (ui, u&) system, namely Eq. (19):

(x—x)=(2@in /~ )'~ cosg. (A10)

APPENDIX B

Xexp L
—8/o~, rjUgcosf —cosgo j, (B1)

where ULcostP —cosgof is a unit step function to restrict
the orbit to be within the metal. I,j, is most easily evalu-
ated by changing from dx to dfo using Eq. (26). The
eGect of the unit function can then be lumped into the
limits of the integral over P from —Po to Po. One finds

Izl (Benz(dzr)/(1+a) 'r') (B2)
After averaging Kq. (B2) over the Fermi distribution
and combining the remaining constants from Eq. (14),
the final result is that of Eq. (27), namely,

2 Spa dEJ.'( )x=ne'n, —
S oi' dx o (1+~,'r-')

(B3)

For specular reRection, in addition to the term I,q

calculated in Eq. (B1), one must continue the integra-
tion over all paths between successive wall collisions to
obtain a second contribution I,2. This second portion
may be shown to be identically zero to order (r,/8)'.
Developing I,o in. a similar way to Eq. (43) one can use
the reentrant orbit discussed in Sec. IIID2, except
that the 8 integration now runs from fo—g to m and
cos(i/+8) changes by 2(m —Po) with each collision. One
has

To obtain J,', Eqs. (14), (20), (24), and (26) must be
combined. For diGuse reQection the integration is per-
formed over the angle 0 only until the particle in ques-
tion strikes the wall. The result depends on an integral
I,& over the path given by

Iz, ——(2ir)
—'(2g,n oo ')'i'

m ~gp
dx dP d8LcosQ+8) —cosgj

nz=nzI COSA+nor Sill 4
&

n„=n„cos'C+n; sin'C,

nzo= (nzi noi) Sin@ COS4.

(A4)

(AS)

(A6)

where

x —x = (no~) (ui cosh —uo sink),

y' —g'= (n..)—'~'(u& cosX+u& sinlw, ),

(A7)

(AS)

tan) = —(n /n )'I'tanC. (A9)

Next one transforms to coordinates Nj and u2 shown
in Fig. 2, as discussed in Sec. III, by choosing

where

for

with

&(8)=8+2(m+1)(x-—po) (B5)

A—4+2mko& 8&go—(+2(my 1)go

fo

4'o @ d8L cosg+I (8))
—40

—cospj Xexp) —8/o~, rj, (B4)

One then obtains a circular motion as discussed in Sec.
III with a simple relation between distances along the

m=0, 1, 2

Thus the result for I,2 may be written as an infinite
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series

I.s" Z 4'o
40

one can sum the series as a binomial expansion of
$1—exp( —2go/co, r)). One 6nally obtains

cosh(lb/ . )I,s ~ dips dlp-
o o slnh(fo/foer)

d8{ cosLP+8+ 2 (ere+ 1)(sr —lbo) ]
—coslb) exp[ 8/c—o,rj, (87)

where cs= ifio /+2—rrsfo and b =if' iffy+2—(rN+1)fo.
Changing variable,

2/0

&( d8'Leos(8' —14)—cosi/r j expL —8'eo, rg. (88)

The result in the form of Eq. (38) may be shown to
be identically zero because contributions to I,2 at the
surface are 180' out of phase to contributions at dis-
tances of order r,.
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Magnetization Distribution in a Palladium-Rich FePd Alloy*
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A ferromagnetic Feo.013 Pd0. 987 single crystal was examined with the polarized-beam neutron-diBraction
technique in a study of the distribution of the localized magnetization in the alloy. Intensities of all nineteen
Bragg reGections out to sins/X =0.90 A ' were measured at 4.2'K in a Geld of 14 kOe, yielding the magnetic
form factor averaged over all atoms. These data are fitted to a linear combination of calculated 3d and 4d
free-atom form factors, resulting in a moment of 0.050+0.006 pg of M-like moment and 0.088+0.008 pg
of 4d-like moment per average atom. A Fourier inversion of the magnetic scattering amplitudes emphasizes
the aspherical shape of the unpaired-electron distribution. The over-all E,/T~, ratio is 0.39&0.02. The
measured saturation magnetization of this aOoy is 0.114+0.004 pg per atom at 4.2'K, which is considerably
smaller than the total moment of 0.138pz seen by neutron di8raction. This discrepancy suggests a negative
conduction-electron polarization of —0.024&0.011 pg per atom. The temperature dependence of the mag-
netic scattering amplitude and the saturation magnetization indicate that the conduction-electron polariza-
tion disappears near the Curie temperature, which is about 55'K. In addition, these data suggest that the
3d moment on an Fe atom and the 4d moments o+ surrounding Pd atoms are strongly coupled, although the
range of the pd polarization is not determined. The total fE moment associated with the moment cluster
around each impurity site ls 10.7+0.6pg.

"ANY alloys in which a 3d atom impurity is
present in a 4d atom matrix exhibit interesting

magnetic properties. ' ' Dilute solutions of Fe in Pd are
ferromagnetic at suitably low temperatures for all com-
positions which have been studied (except for an ex-
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the Department of Physics at the Massachusetts Institute of
Technology in May, 1964 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.
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tremely dilute sample') and apparently ferromagnetism
will exist at fractional-percent Fe concentrations. An
FePd alloy was chosen for this study because of the
relatively high Curie temperature and large moment
per Fe atom reported earlier. ' ~ (The measured Curie
temperature is 55'K and the saturation magnetization
is 8.8&0.5 ps per Fe atom in our sample. ) From these
moment values it is evident that not only the Fe atoms
contribute to the ferromagnetic moment, but each Fe
impurity polarizes some Pd atoms, resulting in an en-
hanced moment per Fe atom. The large paramagnetic
susceptibility' of pure Pd shows that the 4d bands are
not filled, and apparently a ferromagnetic impurity can
trigger the Pd matrix into a ferromagnet.
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