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Spin-Wave-Spin-Wave Scattering in a Heisenberg Ferromagnet
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(Received 21 January 1965)

We have obtained an exact solution describing the scattering of two spin waves in a simple cubic Heisen-
berg ferromagnet by solving the Lippmann-Schwinger equation for states with two spin deviations. The
scattering amplitude is infinite at the energies of bound states discovered by Wortis, and the cross section
agrees at long wavelengths with the approximate result obtained by Dyson. The methods used here are
relatively conventional, and are generally applicable to any situation in which two excitations in a lattice
interact via short-range forces.

INTRODUCTION

E have obtained an exact solution describing the
scattering of two spin waves in a simple Heisen-

berg ferromagnet by solving the Lippmann-Schwinger'
equation (the integral form of the Schrodinger equation)
for states with two spin deviations.

The scattering amplitude has poles at the energies of
bound states discovered earlier by Wortis' and Hanus'
through the solution of the equation of motion of the ap-
propriate Green's function. The cross section agrees at
long wavelengths with the approximate result of Dyson4

for the ideal spin-wave system which he considered.
The methods we have used (discussed at greater

length by one of us' in another paper) are more con-

ventional than those used by Wortis or Dyson. They are
generally applicable to any situation in which two excita-
tions in a solid interact via short-range forces. A brief
account of this work has been published previously. '

In this calculation we have neglected the Zeeman

energy in an external magnetic Geld since it commutes
with the Heisenberg exchange Hamiltonian and is hence
a constant of motion. We have also neglected the mag-
netic dipole-dipole interaction, primarily because our
methods are adapted to the treatment of short range
forces only. We share this omission with Wortis, Dyson,
and other authors who have treated the spin-wave—

spin-wave interaction problem. '
Our unit of energy will be the Heisenberg exchange

integral J. Our unit of distance will be the lattice
parameter. We shall use the usual periodic boundary
conditions on a cube containing S atoms with X very
large.
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Define the total angular momentum

J=P S;. (6)

We 6nd that
$a, Jj=o

so that J' and J' are constants of motion.
We define a "number of spin deviations" operator by

rt =1VS+7' (g)

and proceed to discuss the subspaces invariant under H
which are characterized by m=0, 1, 2.

SUBSPACE n=0

We denote by ~0) (assumed normalized) the state of
total alignment defined by

Si ~0)=0, every j. (9)

SPIN OPERATOR FORMALISM IN A HEISENBERG
FERROMAGNET

Consider a simple cubic lattice with a spin operator
$; attached to each lattice site j. The fundamental
commutation relations for these operators are

S;)&S;= iS;, LSI,SIjtgt =0.
We shall also have occasion to use the operators S;+
and Sj, defined in terms of vector components by the
relations

S+=5'azS'.J

In terms of the latter operators the commutation rela-
tions become

LSt+ Ss j=2St*~» LSi*Ss+3= +S~+5ts (3)

In the Heisenberg model of a ferromagnet the
Hamiltonian is given by

II=-g St St+A,
jd,

where the index j+cL indicates the nearest-neighbor
lattice site connected to site j by the primitive lattice
vector A. The Hamiltonian can be written in terms of
components as

H= —Q (St'S;+A*+S;+Stga ) .
jh
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It is an eigenfunction of H, J, e with eigenvalues of
—XZS', ES, and 0, respectively. Z is the number of
nearest neighbors; 6 in our case. Since the zero point of
energy is of no fundamental significance, we shall reset
it in each subpace to avoid repeating nonessential con-
stants in our equations. Here, for instance, we add
EZS' to II so that

alo) =o.

SUBSPACE n= 1

We generate the vectors of this subspace from the
previously defined ground state

I 0) by operating once
with the ladder operators S;+. Define

I j&=s;+
I o&.

This is a single deviation state (e= 1). To evaluate the
effect of H operating on

I j) we require the commutator

I jk)=s,+s,+I o). (22)

Since
I jk) and

I kj) are the same state, our set of states
is redundant if we let j and k run independently through
all values. The norm of

I jk) is given by

(jk I jk) =4S'(1—8;g/2S) (1+5;g) . (23)

Hence, if S=-'„ the vectors
I jj) are null vectors and do

not represent physical states at all. Finally, we note
that distinct vectors of the set are orthogonal.

The effect of H operating on
I jk) is given by

HI)k&=s;+SJ,+Hl 0)+S;+[H,S +]
I 0)

+s,+[a,s;+]
I o)+[[a,s,+],s,+]

I o&. (24)

SUBSPACE n =2

We apply the ladder operators S;+ once to each of the
vectors in the preceding subspace to generate the two
deviation states

Since

we have

a
I j&= [a,s;+]

I
o&+s+a

I o&,

alj)=2sZ (lj&—lj+ a&)

(13)

(14)

[a,si+]= 2 2 (s+~'s' —si+s+~') (12) The first term yields the ground-state energy (which we
have set equal to zero). The second and third terms can
be diagonalized on Fourier transformation, just as in
the single deviation subspace, yielding the energies of
two free spin waves as in Eq. (17). The fourth term
evidently represents the interaction between the two
spin waves, for the evaluation of which we require the
commutator

As is well known, the Hamiltonian can be diagonalized

by Fourier transformation. We define the spin-wave
states IX) in terms of the localized states

I j) by
[[a,s;+] S,+]=2P &~;,,—S;+.,,)S,+S;+,+. (2S)

I
x&=cv-'&' p exp(a ~ j) I1) (13) In accordance with these remarks, it is natural to

define (for a basis) the set of two-spin-wave states

with the inverse transformation

))=iY—'~'Q exp( —iX j) IX) (16)

lxz'&=cv-'p exp[a j+a.' j']ljj'&

with the inverse transformation

(26)

Since
H

I X)= 2S (Z—P cosX 4)
I X), (17) Ijj') =zv 'p exp[ a j—iz' j']le, '&. (27)

Eq ——2S(Z—P co@, cL).

the spin-wave states IX) are eigenstates of H with Equation (24) becomes

eigenvalue

(18)
H

I
XX')= 2S Q (2—cosX cL—cosX' cL)

I
M.')+2% '

They are also eigenstates of J'. The identity

[J' S+]=2(J*S+—J+S *)—ZS+

enables us to show that

J'
I 1)= [ÃS(XS—1)+2$sb(X)]X).

Xg(1—cosX' 4) exp(iX j+iX' j) I jj+cL), (28)

where the interaction term may alternatively be written
as

(20) 2' p 8yyg~, kgb (1—cosX 'lk)

(&I&)= &jlj&=2S.

Distinct vectors in either set are orthogonal.

(21)

We write occasionally B(X) for 8i 0. The exceptional state
X=0 has J=SS, but its energy is continuous at X=0
with the energy of the other states for which J=ES—1.

The norms of IX) and
I j) are given by

Xexp( ik' a—) Ikk'). (29)

Unfortunately, the set of states defined in Eq. (26)
has the scalar product

(kk'IXX')=4S'8g+i, ,g+~ fb),~+8~~.—1/As}. (30)

so that the set is neither orthogonal nor normal. The
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&=-'(j+j'), R=j—j'. (32)

set is also redundant since
~
u ') and

~

Z'Z) are the same
state.

Since the departure from orthogonality is small, we

expect that we can achieve an orthonormal set with only
minor changes in our formalism. First, however, we
shall eliminate the total wave vector from the problem
since it is preserved by the interaction, and since states
of different total wave vector are orthogonal. We switch
to new coordinates in momentum space, the total wave
vector K and relative wave vector

K=K+I', ~=-,'(x—V).

Also, since the norm of the state
~
jj') and the interaction

between the two spin deviations depend only on the
relative distance between the two deviations, we switch
to the conjugate coordinates in position space, the center
C and separation R

the transformation Eq. f36) and an interaction V in
the following manner:

1+&a, ~-'/2
HO~R)= —4SQ cos-,'(K 4) ~R+6),

—1+~R, O

-1+g ~- 1/2

ViR)= —28RqiR)+45+ cos-, (K 4)

( 4, o '/2t' 4, ~ '"
y 1—] 1—

j 1— [R+X&. (38)
25 k 25

When we apply the transformation Eq. {36) to Ho we

get the energy eigenvalue (energy of two free spin
waves)

HD~~)=( —45+icos-', (K 4) cos~ ck}~~.)
=~."I &. (»)

The eigenfunctions of Ho in terms of the mixed basis
are

tA'e ebminate the coordinates X, in momentum space
and C in position space by defining the mixed ortho-
normal basis

with orthonormality relations

u, (R)= p'(1+4,o)(1+&„&)7-'/v2 cos R. (40)
~KR)=/l/-'/'P exp(iK C) Remember on comparing this to Eq. (36) that R and

C —R specify the same state, and we must not count the
XL25(25 4,0) (1+~R, 0)] '/'

~
CR& (33) same state twice.

The nonzero matrix elements of the perturbation V
in terms of the mixed basis are

—1+g
- I/2

~
Kg) = 1V '/2 P exp (jg.R)

R -1+&., 0-

with orthonormality relations

i KR), (36)

(K"~'~K~)=bx,x Lb„;+8.. .jL1+5(~)1-'. (37)

On inspection of Eqs. (35) and {36), we see that we
can split H into a part Bo which is diagonalizable under

{KR
~
KR)—&x,x~(&w,R+ ~a',—R}L1+&R,o] ~ (34)

For 5=—',, there is no physical vector
~
KO). However,

for convenience in calculation we adjoin such a vector
to our space.

In terms of this basis Eq. (24) becomes

1+&a ~ '"
H

~ R)= —28aq
~
R)—2 P cosi2 (K ~)

- 1+~a,o-

XL(25—~a, o) (25—~a,-~)O'"
I R+» (35)

We omit the total wave vector as an index since H is
diagonal in K. Also, we have subtracted 45Z from H to
eliminate a constant. Note that for 5=-,', there is no
matrix element for H between the unphysical state
~KO) and the physical states, so that our use of the
unphysical state cannot affect our solution for the ampli-
tude on the physical states.

Now we defjne new two-spin-wave states in terms of
the mixed orthonormal basis

~Ah

Voq ——Vq0= 4425( 1—(1—1//25)'"} cos-', (K 4) . (41)

The Green's function for our Schrodinger equation is
derived in the standard fashion:

uP (R)uP*(R')
G = (E—Hg) '=Q'

K

where the prime on the summation sign indicates that
we count each distinct state only once. Explicitly,

Gsx(R, R') =p 2(1+b~,o)(1+by, o)]

cosX R cosX R'
X2+

jv—E,~K

The Green's function wiII be evaluated in an Appendix.
We now have everything necessary to solve the Lipp-

mann-Schwinger scattering equation for the two-spin-
wave problem.

CALCULATION OF EXACT EXCHANGE
SCATTERING AMPLITUDE

The Lippmann-Schwinger equation is the integral
equation corresponding to the Schrodinger differential
equation with the boundary condition that the solutions
should be scattered waves. It is conventionally written
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in the form

4'=u+$E Ho+—iej 'V%' (44)

where I is an eigenfunction of Hp=II —V with energy
E (usually a plane wave), and the Green's function

to the form

a VEb 0
43b c+2d 0
0 0 c—d

. 0 0 0

0
0
0

c—di

(50)

G=ttE Ho—+ie] ' (45) The determinant of the matrix (1—GV) is

Det(1—GV) =DgD22, (51)

%=u+GV(1—GV) 'u. (46)

is asymptotically proportional to a spherical wave for
large R. A formal (and in this case practical) solution
is given by

E 8
D1= 1—6V2Gp1 COS (52a)

2%3 3 cos(E/2%3) j
2428

D2 ——1—6612—— Gpl ~

cos (E/2v3)

E
8= —cos P cosq,

2%3

Since the nonvanishing part of V is only 4)&4, the
nonvanishing part of the matrix V(1—GV) ' is similarly
4X4. It is easy to perform the matrix algebra needed to
calculate this matrix. The asymptotic behavior of 6 In these expressions, we have dered
for large R can be found by the method of stationary
phase, and is given in the appendix. Then the portion of
the wave function describing the scattering is, for large R

(52b)

(53)

4,= (1/R)I limp „(RG)]V(1—GV) 'u. (47)

8
bI'=
b

.b

b b b

c d
C

C&

(48)

and can be reduced by the matrix T

When. the total wave vector K is on the (111) axis,
the matrices 0 and V can be reduced to a sum of one
2/2 matrix and two 1X1 matrices. We will carry
through the calculations for this special case.

Let the row and column indices 0, 1, 2, 3 stand for
the values of R= 0, 2, g, 9, respectively. The matrices
G and V are both of form

and E'=E '+E '+E '=3E ' We occasionally refer
to the quantity 3+h/cos(E/2V3) as the relative energy.
The Green's functions |"p1 and t"12 are discussed in the
Appendix. It is shown there that they can be expressed
as the Fourier transform of products of three Bessel
functions whose arguments depend on K. In the case of
K along the (111)axis, the K dependence may be found
explicitly and removed from the integrals. The remain-
ing objects have been tabulated elsewhere. ' Since the
determinant appears in the denominator of the inverse
matrix, and hence in the denominator of the scattering
amplitude, the amplitude is infinite whenever the deter-
minant is zero. This condition determines E(K) for
bound states and scattering resonances, as will be dis-
cussed more completely in the following section.

The plane wave normalized to unit volume is

'1
0r—
0
.0

0
3—1/2

6—1/2

2—1/2

0
3—1/2

6—1/2

2—1/2

0
3—1/2

—2y61» &

0

u=2 ~
I (1+8&,,p)(1+Sap)P cosg'R. (54)

(49)
On inverting the matrix 1—GV and carrying out the
matrix multiplication, we get the scattering amplitude

- 1/2Q; sin'q;
f=ge '&'Q = L2312s.5' cos(E/2A)]-&

eye]ie sin gi cosgj cosgp-2

-h( a l 1t h2

x —
I
1+ —P cosh; cosq;

I
. (55)

Di E 3 cos'(E/2V3) l D~ k3 cos'(E/2%3) ' )

Let us look at the long-wavelength limit. There the
"D-wave" contribution (which has denominator Dm) is

of order A4 while the isotropic "S-wave" part is of order
X2. The radical in front and D1 are unity to lowest order.

Input and output velocities will be equal in this limit,

and so the total cross section will be given by

L(-,'K+X) ~ (-,'K—x))' (g g')2
~=4~I fl'= =, (56)

8wS'
' T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).
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where ~ and ~' are the wave vectors of the two spin
waves. This result was obtained by Dyson' by a diQerent
method. It is also of interest that the scattering ampli-
tude, Eq. (55), vahishes whenever one of the spin-wave
vectors ~, ~' goes to zero (regardless of the size of the
other).

The exact scattering cross section in position is given

by
d /df4=v, (f~ /v,

since (N*N) = 1. We have

V,=cos(E/2&3)PQ sin'q j'"
for this special case, so that

(58)

do'—=L8~S' cos'(E/2&3) j '(P sin'q;)'I'(P sin'X;) '"( P sin'q; cosq; cosy') '
dQ i oyolio

a ( a ) 1( hP

X —
i
1+ —P cosh; cosy;

)
. (59)

Di k 3 cos'(E/2P) J Dp E3 cos'(E/2V3) ' )

BOUND STATES AND SCATTERING RESONANCES if we define qp throug

In this section we will give a detailed discussion of
the bound states and„scattering resonances in one case.
Although the direct observation of these spin complexes
seems somewhat remote at present, the results are of
some interest as an illustration of the general methods
of Ref. 5. We will therefore locate the bound states and
scattering resonances as a function of K when K lies
along the (111) axis. The width of the resonances will
also be shown. Finally, we will exhibit the cross section
for energies close to the bottom of the spin wave contin-
uum for particular values of K. The restriction, of these
considerations to K along the (111)axis is prompted by
the great simplidcation this produces in the equation
giving the scattering amplitude.

Let us erst consider the s-like states. We must evalu-
ate Di. From Eq. (A9) of the Appendix, we have

v2
Gpi (8/a) =— exP (P' $$/ii) JpP (/) Ji(/)df, (60)

8S p

where a= cosE/2v3. This integral may be obtained from
tables given by Wolfram and Callaway. Let us first
note an important property. For 8/u( —3, Gpi is real.
From Eq. (53), we see that this corresponds to the bot-
tom of the spin-wave band for the particular K con-
sidered. This means that the equation D&=0 can be
satisfied only outside of the band. Further, since the
real part of Gp~ is negative near the band extrema, solu-
tions to D~=O can occur only when 8 is negativ" -that
is, the bound spin-wave states can only lie below, rather
than above, the two-spin-wave continuum. Within this
continuum, although the equation Di =0 can never be
satisfied, the equation ReD&= 0 can hold for some 8, E;
and in this case, there is the possibility of a scattering
resonance. Similar remarks can be easily seen to apply
to the d-like states for which the relevant quantity is D2.

Although the real parts of Dj and D2 must be deter-
mined numerically, simple expressions can be found for
the imaginary parts. It is shown in the Appendix, that

pA = &/~i+3~ (61)

that we have the following approximate expressions for
the imaginary part of Gpi.

ImGpi= —(8s V2uS) ' sinqp.

We denote the imaginary part of D& by D&,, Then

Di, ;——6&2(ImGpi) Leos(IC/2v3) —1]
3 ( 1

singpl 1—
4s S E cos (E/2&3) I

(62)

Hence, we see that, for fixed X, Dj,, is proportional to
qp for small qp.

A similar calculation shows that D2,; is proportional
to qp' for small qp.

The multiplicative factor under the radical in Eq.
(55) can be expanded in terms of the energy for energies
close to the bottom of the continuum for fixed X. We
have, to first order in qp', neglecting anisotropic terms

g; sin'q;

-~eye&ic Sin qs COSq~' COSqls
2

- 1/2

=
p (8+h/g) (64)

We will now give numerical results fot the s-like states.
The s-wave portion of the cross section, defined as
4n

~ f, ~', where f, arises from the first term of Eq. (55)
is shown in Fig. 1 as a function of qp' Lwhich is defined
in Eq. (61)j for several values of E. It will be observed
that there are no scattering resonances in this case.
Although the real part of Dj does, under some circum-
stances, vanish within the continuum, the cross section
does not exhibit a maximum except for q= 0.This results
from the rapid rise of the imaginary part of D~ within
the continuum. The cross section, can, however, become
quite large for q=O. This occurs for values of E such
that the real part of Di is small at q=O, and therefore
that a bound state is, in a certain sense, nearby. A
similar phenomenon is found in nuclear physics, where
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1000 5. If we consider a state of type P (belonging to the Pth
irreducible representation of some group; in this case,
the group of the wave vector I), the energy of a reso-

100

5-

10
bN

4-

2-

.1

00 .2
3& f/cos tK„/2)

1.0 1.2 1.4

FIG. 1. The s-wave contribution to the total cross section 0,
{in units of the square of the lattice constant) is shown as a func-
tion of relative energy above the bottom of the two-body contin-
uum. Only values of K along the (111) axis are considered. The
curves are labeled by the value of the component of E along this
axis.

II/8

Kx/2

3II/8 II/2

the scattering amplitude for two nucleon scattering is
quite large in the singlet state at zero energy as a conse-
quence of the low-energy virtual singlet state of the
deuteron.

Outside of the continuum, bound states are found for
large values of E as originally predicted by Wortis' and
Hanus. ' A crude physical picture of such states is that
of two Qipped spins bound together propagating through
a lattice. Computations of the energies of these bound
states were based on the tabulated values of the Bessel
function integrals as given by Wolfram and Callaway,
and extended to large negative values of 8/a by means
of asymptotic expansions (see Appendix). The results
are shown graphically in Figs. 2 and 3 for the case S=1.

In Fig. 2, the boundaries of the two-body continuum
are shown, with the s-like and d-like bound states ap-
pearing for large values of E.At the zone boundary, the
energies of these two branches coincide, and are given
by 8= 3—1/4S. The region containing the bound states
is shown in more detail in Fig. 3. The energies of the d-
like bound states depend only weakly on E. Inside the
continuum, these d states become resonances whose
width increases as E decreases.

A resonance has a width. General expressions for the
energies and widths of resonant states are given in Ref.

FIG. 2.The energies of the bound two-spin-wave states are shown
as functions of E, for total wave vectors lying along the (111)axis
and S=1.The upper and lower long curves are the boundaries
of the two-spin-wave continuum. The short curves (1) and (2)
represent the bound states; (1) showing the s-like states and (2)
showing the d-like states.

2.9

2.8

(2)

2.7

2.6

2.5

2.4
77

I I I I I l I I I

80 85 90
K&/2 (deg)

FIG. 3. The energies of the bound two-spin-wave states are
shown as functions of E for total wave vectors along the (111)
axis and S=1.This diagram is an enlargement of the portion of
Fig. 2 containing the bound states. The cross-hatched region
represents the two-body continuum. Curves (1) and (2) are the
s- and d-like bound states, respectively. The d-like bound states
connect with a set of resonant states in the continuum whose width
is indicated schematically.
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5-

~4

.2

-2

I
I

I
II

/
/

0

3 e E /cos (K„/2)

FIG. 4. The locations and widths of the d-wave bound states and
resonances are shown in another representation for E along the
(111)axis of the crystal. The ordinate is dimensionless. The solid
curve shows values of 2S cosX /2 for which a bound state or a
resonance occurs for a axed value of the relative energy 3+ 8/
cos(E,/2) I see Eq. (53)j.The dashed curve gives values of the
dimensionless width of a resonance as a function of relative energy.

waves system, perhaps the most important of the results
obtained here is the large s-wave cross section which
persists to moderately large values of the relative
energy. This suggests that spin-wave —spin-wave scatter-
ing may be reasonably effective in reducing the thermal
conductivity of a spin-wave system below that calcu-
lated using the long-wavelength approximation. In
this connection, however, it must be observed that the
cross section in momentum space, rather than that in
position space, is relevant for such a calculation. The
two quantities are di6erent in the case of anisotropic
energy surfaces. This point is discussed in more detail
ln Ref. 7.

APPENDIX

Evaluation of Green's Functions

We refer to Eq. (39) for the energy eigenvalues, and
to Eq. (43) for the Green's function appropriate to the
two-spin-wave problem. The Green's function has also
been discussed by Dyson and Kortis. The singularities
of Green's functions of a similar type have been discussed
elsewhere by Maradudin.

The summation is replaced by an integral in the usual

way. A small positive imaginary part is added to the
energy in the denominator to select outgoing waves. Ke
convert the numerator from a product of cosines to a
sum of exponentials. Define some new symbols:

o=E/8S) G, =cosoE;.

Then Eq. (43) for the Green's function becomes

nance is

Dp;Dp,
EP =EP 0—

(D~..')'+(D~, .')'
and the width is

(65)

L(1+hR,O) (1+t)a', o)]
Gsx(R, R') =

8S(2')'

PA (R+R')+e—gx (R—R')]
X de), . (A2)

h+Q c~ cosXg+zo

rp=
(Ds, .')'+ (Dt, '')'

(66)

The quantities Dp, „and Dp, ; are the real and imaginary
parts of the portion of the determinant of 1-GV coming
from representation P; thus, in our case, these are D,
and D2. The prime indicates differentation with respect
to energy. The real part of the determinant Dp vanishes
at an energy Ep, 0, and it is assumed that the resonance
energy is close to this; that is, the second term in Eq.
(65) is small. All the Dt) which appear in Eqs. (65) and
(66) are evaluated at E=Et),o.

The positions and widths of the d-wave resonances
have been computed from these equations. As might
be expected, for resonances close to the bottom of the
two spin wave continuum, Dp „'&)Dp . The results are
shown graphically in Fig. 4. Narrow d-wave resonances
are found close to the bottom of the continuum.

Kith respect to the question of possible experimental
observation of some of the features of the two-spin-

The Green's function can be evaluated in terms of
single integrals over triple products of Bessel functions.
Ke make use of the identity

(x+io) '= i exp—Li(x+io)t]dt, e&0, x real, (A3)
0

Gnx(R, R') =
—ig(1+ &z,o) (1+t)w, o)] '"

giant

8S(27r) o

X fg I(m+, a;)+0 1(wo;,a~)) dt, (A4)

' A. A. Maradudin, in Phonons end Phonon Inteructions, edited
by T. A. Bak (W. A. Benjamin, Inc., New York, 1964l.

to move the denominator in Eq. (A2) into the exponents,
permitting separation of variables in the integrand. Our
Green's function can then be written in the form
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where

I(ns;,a;) = exp/i(mA, +a;t cosX;)]d)(, (A5)

of Eq. (A4) are

(t+=X (R+R')+tLh+P a, cos)(,]. (A12)

and we have written the integral components of the lat-
tive vectors as

m;+= (R+R');. (A6)

The integral in Eq. (A5) is proportional to a Bessel
function:

(A7)

and therefore

Ge (R,R') = (—i/8S)l (1+~a,p)(1+&R,o)] '"

X exp(iht)(iE"~' g J„;+(a;,t)

+iE™~g J; (a,t))dt-. (A8)

We now exhibit the nearest-neighbor Green's func-
tions:

Gpp ——Gii" (0,0) = ( i/8S—) exp(iht) Jp(a, t)

XJo(a„t)Jo(a t)dt,

At a point of stationary phase in 0d space, the gradient
of p is zero by definition. For large R, and for R'((R,
the term containing R' becomes vanishingly small
relative to the others, and both phases yield the same
satationary points. When we set the gradient of (t equal
to zero in the limit of large E, we get the following equa-
tions which determine the stationary points q, )0.

tp=R(Q ato sin'q;)"',

R/R= r= (p a; sinq; e;) (p atp sin'q, )»', (A13)

h= —P a; cosq, .

It can be shown that for a general value of the total
wave vector K, only one value of q, tp satisfies these
equations.

We assume that the integral in Eq. (A4) for large R
receives contributions only from a small neighborhood
of qtp. We expand P in this neighborhood and keep the
lowest order terms. The integral is then easy to perform,
yieMing the asymptotic form of the Green's function:

Gii ——Ge"(x,x) = ( i/8S)—

XJp(a„t)Jp(a, t)dt,
(A9)

exp(iht)

Gpi-—Ge*(0&x)= (2»'/8S) exp(iht) Ji(a,t)
0 Q;aP sin'q;

Xj
-~cyo&ic Ci CZ'Ck Sln gi COSgg COSg&,2, ' 2

1/2

where q is the scattered relative momentum.

Gex(R,R') = —$8~SR(1+JR,p)'I'] 'e' ' ocoasq R'

(A14)

X[Jo(a,t) —Jp(a, t)]Jo(a„t)Jo(a,t)dt,

Gio GQ (x,y) = (i/4S) exp(iht) Ji(a.t)
0

XJ,(a„t)Jp(a, t)dt,
and cyclic in x, y, s.

These functions are tabulated for

The identity

G(8,a) = (1/a)G(8/a, l) (A11)

Imaginary Parts of the Green's Functions

It is sometimes possible to derive relatively simple
expressions for the imaginary parts of the Green's
functions GE(* (R,R') for small R, R'and for energies.
near the bottom of the spin wave continuum for that
K. First, we observe from (A2) that, because of the
inversion symmetry of the denominator with respect to
X, the Green's function GQ would be real were it n.ot
for the presence of their. This indicates that we can ob-
tain the imaginary part of Gsx from the imaginary part
of the expression

permits us to use the same tabulation to evaluate the
Green's functions when the total wave vector K is
on the (111)axis.

Asymptotic Form of the Green's Function

%'e shall evaluate the asymptotic form of the Green's
function for large argument by the method of stationary
phase, as described for instance by Callaway. '

The phases of the two exponentials in the jn&egrand

lim (oo+i p) '=P(1/po) i7rt')(x)—

&mGeK(R R~) = $64S~ (1+lIR ()) (1+ha p) ]
doyj eA ~ (R+R')+eD (R—R~)]

X()Lh+P a, cos)(~]. (A15)

We see from (A15) that the Green's function can have
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Green's Functions for Energies Below
the Continuumpqo'= (h/a)+3. (A16)

an imaginary part only when h is the spin-wave con- It should be noted that the approximations here involve
tinuum. We will proceed further only for E along the the size of qp rather than the size of qoR.
(111) axis. Then put a(——up

——ap ——a; and define a
parameter qp through

Then we have

ImG»K(R, R') = —$64S»'a(1+ t) ) '('(1+() ~ ) '('] '

dp/[eix ~ (R+R') +eix ~ (R—R~)]
XhL(-', qp') —3++ cosh;]. (A17)

We obtain the desired approximation by expanding the
cosines in powers of A. . We have, to fourth order

Expressions for the Green's functions for energies
below the two-spin-wave continuum and u small can
be obtained by the following device. We illustrate for
the case of op~, and it is readily apparent how the pro-
cedure may be applied to the other functions. We con-
sider only the case in which K is parallel to the (111)
axis.

With the use of (A11), we have

21/2 oo

3—P cos)(,= -'X' —(1/40) X'—(1/24)
Gp( —— e'p"'J((t) Jp'(t) dt.

8Sa p

(A21)

X (X,4+X„4+X,4—Pp)(4) . (A18)
Put 8/a= —w, it= ». Then for w) 3, we can write

The third term in (A18) is the leading term of cubic
rather than spherical symmetry. We neglect this term,
together with all contributions of order X' and higher.
We may then integrate over angles, obtaining

ImGE (R R') = —LS~Sa(1+t(R o)'I'(1+()a p)'I'] '

sinl(~R+R'~ sink)R —R'~
X AX

/RyR'/ /z —z'[

X () (qp' —X'+X4/20) . (A19)

The integration over ) may now be performed, yielding
to order q'.

ImG»K(R, R') = —L16prSa(1+t)R, )'"(1+()a,)'"] '

sinLqp(1+qoo/40) (R+R'(]
X (1+qo'/10)

[R+R'/

»nCqo(1+qoo/40) I
R—R'I]

f
R—R'i

If the terms in qp' are neglected, we have the 6rst
approximation

ImG K(R,R') = —(16»Su(1+t), )'"(1+t),o)"'] '

21j2

Gp) ——— e "'Ig(»)Ip'(»)d», (A22)
8Su p

(»/2) ++2r

I.(») = Z
~=p r!(I+r)!

A straightforward calculation shows that

1 15 155
~p~= 1+ + +

8V2am2 4+2 8+4
(A23)

Knowledge of Gp~ suKces for the evaluation of D). To
evaluate Dp in this limit requires an expansion for G».
By the same method, we have

G)p= — e "'Ig'(»)Io(»)d»,
4Su p

in which Ip, I~ are Bessel functions of imaginary argu-
ment. An asymptotic expansion of Gp~ in decreasing
powers of T/V is generated by expanding the Bessel
functions in increasing powers of s:

sinqp[R+R ) sinqp)R R [

X + . (A20b)
IR+R'I

1 6 75
1+—+ +

8Sem'- ~' 2m
(A24)


