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Continuity between Bound and Unbound States in a Fermi Gas*
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A soluble model of a gas of independent fermions in the presence of an attractive localized potential
Xe (r) is considered. It is shown that the properties of the system as a whole are smooth (analytic) functions
of ), even at those values of X where new single-particle bound states appear. Thus for the system as a whole,
the transition from screening" to "binding" is smooth and the concept of a bound state cannot be given a
sharp meaning. Implications for certain metals and alloys are discussed.

i. INTRODUCTION

$p HEN s sineis particle moves in an exiernsi,
short-range potential Xti(r), there is a sharp dis-

tinction between bound states and unbound states. In
in6nite space the former are quadratically integrable,
the latter are not. If, as is customary, the system is
enclosed in a large box of volume Q and if ti(r) is taken as
localized near the origin, then the normalized eigen-
functions have the properties

limn jp(0))'=p)0 bouild state, (11)=0 unbound state.

Thus there are quite sharp criteria to distinguish be-
tween these two types of states.

Let us next consider a particular state as a function
of X, first for 6nite but large Q. The energy Eo(}t) will
have the qualitative behavior shown in Fig. 1(a). As
Q ~~, then En(X) ~E„(}i),shown in Fig. 1(b).This is
nonanalytic at X=) ~, which separates the bound from
the unbound ranges. These are all familiar facts.

In the present note, we consider the properties of a
degenerate Fermi gas, when placed in an enclosure with
an attractive potential }i,ti(r) in its center. Now in
analogy with what has just been said, one might expect
that when X exceeds certain critical values X~ X2, the
potential will bind 1, 2, ~ ~ particles and that at these
values of X some properties of the system will change in a
nonanalytic fashion. %e shall, however, show in a
simple, soluble example that this is not the case. The
example is a gas of noninteracting particles in a spherical
box containing a spherically symmetric potential at its
center. We shall see that even though individual states
behave nonanalytically at ) ~, X2, the properties of
the ersfsre system are analytic there, even in the limit
where 0~, while the density is kept constant. Thus
for the system as a whole, the transition from very

small X (screening) to large }t (binding) is completely
smooth. This means that the very notion of "bound
state" in such a system is not meaningful.

Hf—=$—(d'/dx')+he(x))P= EiIr. (2 1)

For simplicity we assume s (x)=0 for x)u and, through-
out, we shall restrict X by the requirement

(2.2)

where A. is a fixed but arbitrarily large number. ' %e
write the radius of our enclosure E=L+u (see Fig. 2)„
so that the eigenfunctions P„(x,}t) of H satisfy the
boundary conditions

$„(0,))=P„(L+u,}i)=0.

Suppose wc are dealing with E particles. ' Then the
physical equilibrium properties of the system as a whole
are determined by the density matrix,

(2.4)

where the f„are the real normalized eigenfunctions. For

v (x)

2. ANALYTIC PROPERTIES OF THE
DENSITY MATRIX

Because of the spherical synunetry of our system, we
can separate in spherical coordinates which leads to a
series of one-dimensional problems. Ke shall from here
on deal only with /=0, which is governed by the
differential equation

FIG. i. Transition
between bound and
unbound states for a
single particle.
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Flo. 2. The po-
tential o(x) and the
intervals.
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~This avoids certain irrelevant problems of uniform con-
vergence.

~ %e ignore the spin degree of freedom, which is of no interest in
this model.
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example, the density is given by

~(*,x) =t (x,~; x),
and the total energy is

B B
h (x)=- — t (x,x'; x)

2 BS BS

(2.5)
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FIG. 3. Eigenvalues for
real X.

(Note added iN proof In t.his model of noninteracting
electrons certain response functions, e.g., that corre-
sponding to optical excitation by light of finite fre-
quency, show nonanalyticities at X=X&, 'A2, . How-
ever, even those nonanalyticities disappear as soon as
interactions are included because they lead to an Auger
broadening of excited levels of the system. Thus our
conclusion that there is no sharp transition between
"bound" and "unbound" states remains valid. )

We wish to establish the analyticity of p as function of
X in a strip enclosing the real X axis, which remains of
6nite width even when I ~~. This will imply the re-
quired result that, for real X, p remains a "smooth"
function of A, up to the arbitrarily large limits ~A.

We must then de6ne an analytic continuation of
p(x,x'; X) into the complex X plane. For this purpose we
introduce the function f(x; E,X) which, for all complex
X and E, satisfies the differential equation (2.1) and the
initial conditions

f(L+a; E, X)=0, (2.11)

from which we find

&4'(L+o; E, X) Bg(L+a; E, X)
(2.12)

Thus E(X) can be singular only where also

8$(L+a; E, X)
-=0

BE
(2.13)

At such a point it has in general a branch point of the
square-zoot type. ' If we denote such a point by (X„E,),
then we have, in its vicinity,

(E E.)'=c( X.)—+" . — (2.14)

Next we note that Eqs. (2.1) and (2.9) yield immediately

N (E.(~),X)
(2.7)f (0; E,X)=0, f'(0; E,X) = 1.

dE„P,)
i (x)LP(x; E.(X),X)]'Ch, (2.15)

0 dA.

It is known' that this is an entire function of both E
and X. Next we define the complex eigenvalues E„(X)as
those values of E for which also the second boundary
condition (2.3) is satisfied, i.e.,

so that in view of (2.13),5

ii(z)&(~ z. y)iE~ (2 6) Let us begin by examining the singularities of E (X).
These eigenvalues are, by definition, roots of the
equation

f(I.+a; E (X), X)=0.

The complex normalization is defined by

(2.8) (2.16)

N(E, X)=Xi(E—E,)+Big,—X,)+ . . (2.17)

N(E„X.) =0.
Thus, near this point we may, in general, write

N(E,X)—= [P(x; E,~)$'d*. (2.9)

Figure 3 shows a schematic representation of the eigen-
values E„P,) for real X. When X acquires an imaginary
part, the eigenvalues move into the complex plane. A
singularity of p as function of X could then arise either as
a result of a singularity of one or more of the E„(X),or
from a zero of N (E„(X),X), or a combination of both.

3 H. Poincare, Acta Math. 4, 215 (1884}.

With these definitions, the analytic continuation of p
into the complex A. plane is given by

O(*;E-(~),~)O(*'; E.(~),~)
t (**'X)=P (210)

+=i N (E„(X),X)

Now, for X near X„let us call the two roots of (2.14) E„
and E„and assume that both p, and v are ~&N. Then
clearly the slm of the two contributions of p and v to
(2.10) is single-valued as we go around A.. Also from
(2.14) and (2.17) we find that at X=X, this sum is finite,
because of the cancellation of the singularities.

Thus we draw the following conclusion: Only those
branch points of the multivalued function E(X) can give
rise to a singularity of p(x, x';X) which involve one
eigenvalue, E„with ti (~ N, and another E„with v &~ N+ 1.

4 Higher roots would require higher energy derivatives also to
vanish. In general, the resulting set of equations linking X and E
is then overdetermined. We shall therefore not pursue this possi-
bility further. We shall also ignore the accidental possibility of
having &p/BR=0 as well.' We exclude the accidental case where the numerator of (2.16}
also vanishes at (X„E,}.



CONTINUITY BETWEEN BOUND AND UNBOUND STATES

Coalescence of two eigenvalues E„and E„with both p
and ~ ~& X does not make p singular.

Next we turn to the possibility of singularities of p due
to those zeros of E which are not associated with a
bIRllch polllt (X,E ). A't sucll R singularity, (X,E), tile
following relations would have to be satis6ed:

plans

x(Xs)

S

f(L+a; E, X)=0, (2,18)

g(x El)b]'eh=0 (2.19) Fro. 4. Coalescing of eigenvalues in the g plane.

and, since by assumption dE/AN ~, one finds from
(2.15) also

Thus the coalescence cannot occur, and hence p
cannot have a branch point, as long as

v(x)[P(x; E,X)]'Ch=0. (2.20) (3.4)

These equations are overdetermined and in general will

have no solution. We shall therefore give no further
consideration to this conceivable source of singularities.

lj, "=min(X 'X ")

4. CONCLUDING REMARKS

(3.5)

where X~' is a number independent of 1.; provided that ~

lies inside the shaded half-strip 5 of Fig. 4, and provided
that 1.is sufficiently large; then

dK 5$

L
(3.2)

where m is a positive number independent of I..'
Now suppose that «„(p&&1V) and z„(v&~X+1)coalesce

for X,=X,1+6,2 For rea. l X the roots e„(e))1) have,
with an accuracy of 0(L '), the same spacing s/L as for
free particles. Hence, for X=A, ,~

(
~„—x„~)vr/2L. (3.3)

AiSO, SinCe e„(X,1) iS inSide Our Strip and henCe mOre

than a distance ~/4L from its boundary, it is evident
tllat, Rs X cl1Rllgcs f10111 X&1 to X&1+zX~2, tile slllll of tllc
distances traced out, inside our strip, by ~„and I~:, must
exceed n./4L (see Fig. 4). By (3.2), this means that X,2
must have a certain minimum value. In fact, from (3.1),
(3.2), Rnd (3.3), lt follows tllat lI, 2 cRllllot be less tllall
both Xg' and X2"——n/Sm.

'This result is precisely what one would guess from a per-
turbation estimate.

3. ABSENCE OF BRANCH POINTS IN A FINITE
STRIP ENCLOSING THE REAL X AXIS

In this section we wish to show that two eigenvalues
E„(y&~E) and E,(v~&X+1) cannot coalesce unless
lImlb I

exceedsacertainX2 ' which remainsfinite when
I.—+~. It is convenient to work in the I~: plane, with the
notation x =E.

The following result is proved in the Appendix:
Provided that

We have just proved the smoothness of transition be-
tween bound and unbound states in a degenerate Fermi
gas, for a certain simple model. There is little doubt that
this continuity will hold under a much wider set of
conditions, e.g. , 6nite temperature, a periodic array of
potentials (with certain exceptions), and systems with
suKciently weak interactions. We believe that the con-
clusions of this paper have relevance to such dilute,
nonmagnetic alloys as Zn, Ga, Ge, and As in a Cu
matrix. ' The properties of this sequence of systems
appear indeed to be smooth functions of the valence of
the solute.

The present paper may also shed some light on recent
experimental results' showing the possibility of a
smooth transition between two phases of metalbc Ce,
one of which is generally regarded as arising from the
other by the release of an f electron from a "bound"
state into the conduction band.

However, very strong interactions between electrons
may well lead to radically different situations. There
exists today strong evidence, both experimenta19 and
theoreticaP' for the occurrence, in some cases, of
jocalized magnetic moments associated with impurity
atoms. These differ qualitatively from our model be-
cause electron-electron interaction is essential for their
existence.
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APPENDIX: DEPENDENCE OF EIGENVALUES ON X

To locate the branch points P, of p which correspond
to the coalescence of eigenvalues, we must now study in
somewhat greater detail the dependence of these eigen-
values on X. We therefore turn to the eigenvalue prob-
lem defined by Eqs. (2.1) and (2.3).

In the interval 0~& x~&a we must solve the equation

fc Plane

FiG. 5. The two regions
SI, SII.

I

—(d'/ cx') +x e(x) x—'jyz(x; x,)~) =0, (A1)

where we have written A=K'. To the boundary con-
dition

To progress further we divide the inside of the half-
strip Sof Fig. 4 into two regions, SI and SII, as shown in
Fig. 5, where KII is a large value to be chosen presently.

we may add
qi(0; x,) )=0,

Region SII

(p, '(0; x,X)=1,
which has the important consequence that this p& is an
entire function of both K and X'. We denote the loga-
rithmic derivative of q», at x= a by

L(x,),)=$(d/dx) (pz(—x; x,)i)/q i(x; x,X)j, , (A4)
e (x) sin'xxdx, (A13)

Since & is limited by l)zl &~A, we can choose Kzz so
large that for all X under consideration g can be esti-
mated by Born approximation,

In the interval zz &~x ~& L+u, we solve the free equation which gives, by (A12), for large enough L

(—(d'/dx')+a') q s(x; x,)I,)=0,

subject to the boundary condition

(AS) dK 1
e (x) sin'xxdx.

dA, LK 0

(A14)

This gives
q s (L+a; x, )z) =0. Hence we can find a sufficiently large xzz such that in Pzz

Ic./c)
I &m/L, (A15)

qs(x;x,X)=A sinLx(x —L—a)j. (A7)

—x cotxL=L(x,X). (A8)

The dependence of K on ) is obtained by equating the
logarithmic derivatives of y~ and y2 at x=a. This gives v(x)dx.

KII 0

Region SI

(A16)

L (K))i)/K= +Z. (A11)

For a given A. , the roots of this equation are the required
eigenvalues. Equivalently we may define the phase shift

if(x,)~)=—cot—zl —L(x,)~)/xj+xa, (A9)

and replace (AS) by

ti(x, 'A) =x(L+a)+zsx, zs=0, ~1, . (A10)

This expresses the fact that K and P are multivalued
functions of each other. Since y~ is an entire function of
)i and x, it follows by (A4) that I L(x,)i)/xj is a mero-
morphic function of these variables. Hence, by (A9), ri

is an analytic function of K and A. except where

Restrict first K to the real axis. Then y is regular for
real )i, by (A11), since L (x,)~) is real for real x and )i. Let
)i=lz+ils be that solution of (A11) which has the
smallest

Ilail.

Now if K is allowed to become complex, but confined
to the narrow region Sz, of width n./L, it is clear that, for
L large enough, all solutions )z of (A11) will have
IIm)I, I) Ilsl/2. Hence if we consider only such )i for
w»ch IIm) I &14I/4, then lan/W I

and l~~/~xl have
finite bounds, say b& and b2. Hence, for L large enough
we have in SI,

I ck/d)z I &m"/L, m"= 2bi, (A17)

provided that
We shall wish to establish the upper bound (3.2) on

I ca/d)i I. By (A10) the required quantity is given by
IIm) I

&)i, , (A18)

Cx flrf/8)~

d)z (L+zz) riri/r)x— I ca/dXI &m/L, m=min(m', m"), (A19)

where )zs'= Ilsl/4.
Combining (A15) and (A17) gives the required

(A12) result,

Therefore, we need to show that, under the conditions
stated in Sec. 3, I Brf/8)il and

I Brf/fixl have finite
bounds, independent of L.

under the conditions given in Sec. 3.

"This expression diverges if s(x)~1/x for small x. But also in
this case one can easily establish a result of the form (A15).


