
advantage, in investigating the nature of the lambda
transition, of working near the upper lambda point.

Goldstein' has pointed out that it is meaningless to
extrapolate equations like (11) to values of T „Tq-
vrhich are less than the root-mean-square statistical
temperature Quctuation, which is about. 10 " 'K for
Lounasmaa's experiments' ' as well as the present one.
In the experiment' at p=0.1654, if the logarithmic
equation is extrapolated to T—Tq 10-" '——K, P„ is still
not one half of its limiting value (dP/dT)q, ' whereas
in our experiment Eq. (11) predicts that P„will reach
its limiting value at T —Tg= 3.5&10—' 'K, weB outside
the range of statistical fluctuations. It is even possible

that a resolution of 10 ' 'K may sometime be achieved
experimentally.
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Nonlinear Optical Properties of Liquids
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Nonlinear optical polarization quadratic in the optical electric 6elds is shorn to occur in optically active
liquids and to lead to sum- and di8erence-frequency generation; second-harmonic generation is forbidden.
The nonlinearity is described by components of the second-order polarizability tensor X;;z antisymmetric
in jand k; the form of the antisymmetric part of X;;& is given for all the crystal classes and textures and for
isotropic media. The magnitude of nonlinear polarizability of liquids is estimated from second-order per-
turbation theory and calculated to be readily detectable in many opticalIy active liquids. The mechanism
of the nonlinearity is illustrated by a simple single-electron molecular model.

I. INTRODUCTION

f 'T has been shown by Franken ef al.' that in crystals
without a center of symmetry one can observe opti-

cal polarization quadratic in the applied optical electric
Geld. Radiation from this nonlinear polarization leads
to generation of second harmonics and sum and dif-
ference frequencies. It is now possible to convert over
20% of a laser beam into new frequencies through this
e6ect.' Bloembergen e$ u$. ,3 Kleinman, 4 and others' have
given theoretical analyses of the effect.

The second-order nonlinearities have been studied in
a variety of piezoelectric crystals, primarily by ob-
servation of second-harmonic generation. Higher order
nonlinearities have also been observed in centrosym-
metric media, including calcite and several liquids. 9

~ P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
Phys. Rev. Letters 7, 118 (1961).' R. . Terhune, P. D. Maker, and C. M. Savage, Appl. Phys.
Letters 2, 54 (1963).

3 J. A. Armstrong, N, Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

4 D. A. K.leinman, Phys. Rev 128, 1761 (1962).
~ P. S. Pershan, Progress in Optics, edited by E. Wolf (North-

Holland Publishing Company, Amsterdam, 1965, to be published).
6 R. C. Miller, Appl. Phys. Letters 5, 17 (1964).
7 R. Vf. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev.

Letters 8, 404 (1962).
8 J. A. Giordmaine, Proceedhngs of the Third Conference on

Some of the higher order e6ects arise from magnetic-
dipole and quadrupole interactions and lead to very
weak second-harmonic generation and mixing; higher
order electric-dipole effects produce weak third har-
monics as well as other nonlinear effects. In this paper,
we shaB consider only electric-dipole-type nonlinearities
of second order which produce in noncentrosymmetric
materials a macroscopic polarization quadratic jn the
applied Gelds.

The tensor X;;I,' "" relating the polarization P " to
the applied fields E;" and K~" in second-harmonic
generation is inherently symmetric in the indices j and
k. This symmetry expresses the fact that Gelds E and
E' applied, respectively, along the x and y axes, for
example, produce the same quadratic polarization as
the GeMs E and E' applied along the y and x axes, since
the fields are indistinguishable. The tensor X,;~'"""
must therefore have the same form for the various
crystaBographic classes as the piezoelectric tensor re-
lating electric polarization to the stress, a symmetric

Quantum Electronics, Paris, 1963, edited by P. Grivet and N.
Sloembergen (Columbia University Press, Nexv York, 1964), p.
1549.

9 P. D. Maker, R. W. Terhune, and C. M. Savage, Proceedings of
the Third Conference on Quantum Electronics, Paris, 1963, edited
by P. Grivet and N. Sloembergen (Columbia University Press,
Ãevr York, 1964), p. 1559.
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second-rank tensor. "This equivalence has had detailed
experimental confirmation.

In sum- and diGerencc-frequency generation, how-
ever, the fields E "& and E„"2 need not produce the
same quadratic polarization as the 6elds E,"' and E„"~
of the same magnitudes. The purpose of this paper is
to show that the portion of X,;I, aeksymnsetrk in j and
k introduces a new tensor coefFicient in noncentrosym-
metric crystals of various classes (leading, for example,
to nonlinear polarization in crystals of the class OL432j,
in which piezoelectricity and second-harmonic genera-
tion are forbidden); of greater practical importance, the
antisymmetric portion allows sum and diGerence fre-
quency generation in certain liquids, gases, and poly-
crystalline media. The antisymmctric CBccts will usu-
ally be much weaker than the symmetric when both are
allowed; however, the former should be the dominant
nonlinearity in isotropic noncentrosymmetric materials
such as optically active liquids.

In Sec. II, the form of the antisymmetric part of
X;;q is given for aQ the crystallographic point groups as
well as for textures" and isotropic media. In Sec. III,
we describe briefIy the macroscopic features of the inter-
action of light beams in nonhncar isotropic media. A
quantum-mechanical expression for the part of X;;I,
producing nonlinear polarization in liquids is derived
in Sec. IV and an estimate made of its magnitude. In
Sec. V, a simple molecular model showing nonlinear
polarization in the liquid phase is analyzed.

II. SYMMETRY

We write the nonlinear polarization P in the form

Xcj7rEjF8 q

where E and F are optical electric fields of different
frequency. (If E; and E8 are monochromatic 6elds of
frequency co~ and co2, the values of X;;I, for sum and
diGerence frequency generation will, of course, be dif-
ferent; in this section, we shall consider only the sym-
metry requirements on X;;8.) The tensor X;t8 can be
expressed. as the sum of components S;;~ and A;;~ sym-
metric and antisymmetric, respectively, in j and k,
and defin. ed by Eq. (2):
&'= 4 (x't8+x'8t) (EsF8+E8Fs)

+4(X,18 X,e,) (E,F8 E8F~), (—2)—
= 2S448(EsF8+E8F;,+2~';8(EsF8—E8F~) .

notice
=A;g;"&"3"&. In what follows, however, when the fre-
quencies are not displayed, it will be assumed that their
order is fixed, i.e., A;;8 ———A;8t, but S;;8——S;8;. Summa-
tion over repeated indices is assumed in Eqs. (1) and (2).

The symmetric tensor S;;~ is identical with the
'8 J. F. Nye, Physical Properties of Crystals (Clarendon Press,

Oxford, 1957).
~'A. V. Shubnikov et al. , Etude des Textlres Pksoelectriques

(Dunod Cie., Paris, 1958);V. A. Bazenhov, Piesoelectrk Properties
of 8'ood I',Consultants Bureau, New York, 196j.).

piezoelectric tensor and is given for the crystallographic
and continuous point groups in Refs. 10 and j.i, re-
spectively. The form of A;;I, for the various point groups
is apparently not available in the literature. We have
calculated the coeKcients of A;;~ by the methods
described in Ref. 10, except that use is made of the
relation A;;I,=—A;I,; rather than S;;~=S;q;. The results
are shown in Table I for the noncentrosymmetric
classes. To avoid ambiguities as to axis conventions and
as an aid in comparison, we also list the symmetric
matrices. The conventional contracted notation is used,
l.e. $11=S111=xlll $14=S128+S182=x128+x182 t814= 2128—Ai32 ——Xj23—X~32, etc. The crystal classes are labeled
with the SchoenfIics symbol followed, in brackets, by
the Hermann-Mauguin symbol for the point groups.

The following features appear on comparison of the
A;;8 with S448. (1) In optically biaxial crystals, the tri-
clinic, monoclinic, and orthorhombic systems, sg and
a;; have the same form, except, of course, that u;q
=a;~——e;3——0 by definition. This behavior is expected,
si thesym etryel ents f th syt si 1 de
only twofold rotation axes and mirror planes. The
CBccts of these elements can result only in the require-
ments s;;=+s;; and a;;=+a;;, so that the symmetry
or antisymmetry is irrelevant. (2) In optically uniaxial
crystals, the trigonal, tetragonal, and hexagonal sys-
tems, as well as the optically isotropic cubic system,
the presence of higher rotational symmetry intro-
duces relations among the coe%cients which differ
for s;; and u;;. Consider, for example, for crystal class 0
thc cocKcicn t $36 whl. ch appear s ln the rcla tlon Ig

= ($38/2) (EQ„+E„F,); one of the symmetry elements
is the fourfold rotation axis z. A 90' crystal rotation
about a transforms P, E, and F as follows: F,—+ F„
E +Sf' Eff + E F ~Fff and Fy + F ' there"
fore, by symmetry, F,= ($88/2) ( E„F, E&„)= —F, — —
and $88 ——0. However, for a84 in the relation F,= (a88/2)
)& (E+„E„F,), the same—operation leads to the rela-
tion F,= (a88/2)( —E„F,+E&„)=F. and leads to no
restriction on a88. (The other symmetry elements re-
quire that a88

——a28 ——a14.) The main results are that an
additional nonzero coeKcient X3~~ appears for classes
C4, D4, C3 D3 C6 D6 and nonzero coefBcients become
allowed for class 0. (3) New nonzero coefficients appear
for textures" and liquid crystals'2 of the classes C„and
D„. (4) The noncentrosymmetric class oo oo, which
describes isotropic media in which an arbitrary direc-
tion is a C„axis, but having no mirror planes, is found
to have nonvanishing coef6cients Xi23 ——X23j ——X3~2. The
other class of isotropic media, co ~no, in which every
direction is normal to a mirror plane, has a center of
symmetry. It will be obvious that 0O ~ liquids include
the class of optically active liquids. "

n G. W. Gray, Molecllar Strttctlre awd ttte Properties of Littttid
Crystals (Academic Press Inc., New York, 1962).

'3 An interesting discussion of the symmetry properties of con-
tinuous media is given by A. V. Shubnikov et al. , Colored Symmetry
(The Macmillan Company, New York, j.964).
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TABLE I. Form of the third-rank symmetric and antisymmetric tensors for the crystallographic and continuous point groups.

Ce. [3m]
0 0 0 0 s15 slg

S= Slg —
. Slg 0 $15 0 0

s31 s31 s33 0 0 0

Triclinic crystals
Ce [17

$11 $12 $13 $14
$= $21 $22 $23 $24

$31 $32 $33 $34

000 0 8150
8= 000 —815 0 0000 0 0 0

$15 Slg 0 0 0 814 815 ulg
s25 s2g 8= 0 0 0 824 a25 82g

$35 $3g 0 0 0 834 835 83g
Hexagonal crystals
Ce [6]

0 0 0 s14 s15 0
s= 0 0 0 s15 —s14 0

s31 s31 s33 0 0 0

Monoclinic crystals
Ce [27

0 0 0 s14 0 slg
S= S21 $22 $23 0 $25 0

0 0 0 s34 0 sgg

000 814 815 0
8= 0 0 0 —815 814 0000 0 0 83g

0
8= 0

0

0 0 814 0
0 0 0 825
0 0 834 0

alg
0

83g
Ceg, [6]

$11 $11
$= Slg —Slg 0

0 0 0

0 0 slg
0 0 —sll 8=0
0 0 0

C, [m]
Sll $12 $13 0 $15 0

s= 0 0 0 s24 0 s2g

$31 $32 $33 0 $35 0

0
8= 0

0

0 0 0 815
0 0 a24 0
0 0 0 835

0
82g
0

0
0

83g
Orthorhombic crystals
De [2227

0 0 0 s14 0 0
s= 0 0 0 0 s25 0

0 0 0 0 0 s3g

0 0 0 814 0 0
8= 0 0 0 0 825 0

0 0 0 0 0 83g
Ce. [6mm]

0 0 0
s= 0 0 0

0 0 0 a15 0
0 0 —815 0 0
0 0 0 0 0

0 s15 0 0
slg 0 0 8= 0
0 0 0 0$31 $31 $33Ce. [mm2]

0 0 0 0 s15 0
s= 0 0 0 s24 0 0

s31 s32 s33 0 0 0

0 0 0 0 815 0
8= 0 0 0 824 0 0

LO 0 0 0 0 0
Dg, [6m2]

0 0 0
s= slg —slg 0

0 0 0

0 0 slg
0 0 0 8=0
0 0 0

Tetragonal crystals
C4 I4j

0 0 0 s14 s15 0
s= 0 0 0 s15 —s14 0

s31 s31 s33 0 0 0

Cubic crystals
T $23j

0 0 0 s14s=00 0 0
0 0 0 0

0
0

0
8= 0

0

0 0 814 815
0 0 —815 814
0 0 0 0 0 0 0 0

s14 0 8= 0 0
0 s14 0 0

0
0

0 814 0
0 0 814
0 0 0

83g

814
S4 [4]

0 0 0 s14 s15 0
s= 0 0 0 —s15 s14 0

$31 —s31 0 0 0 sgg

0 0 0 u14 815 0
8= 0 0 0 815 —a140

0 0 0 0 0 0 s=o

0 [4327
0 0 0 814 0 0

8= 0 0 0 0 814 0
0 0 0 0 0 814

De [622]
0 0 0 s14 0 0 0 0 0 814 0

s= 0 0 0 0 —s14 0 8= 0 0 0 0 814
0 0 0 0 0 0 0 0 0 0 0

D4 t422j
0 0 0 s14 0 0 0 0 0 814 0 0

s= 0 0 0 0 —s14 0 8= 0 0 0 0 814 0
0 0 0 0 0 0 0 0 0 0 0 83g

Tg [43m]
0 0 0s=0 0 0
0 0 0

s14 0 0
0 s14 0
0 0 s14

Ce. [4mm]
0 0 0 0 s15 0

s= 0 0 0 s15 0 0
s31 s31 s33 0 0 0

0 0 0 0 815 0
8= 0 0 0 —815 0 0

0 0 0 0 0 0

Textures
C-L

0 0
s= 0 0

$31 $31

0 s14 s15 0 0 0 0 814 815 0
0 s15 —s14 0 8= 0 0 0 —815 814 0

$33 0 0 0 0 0 0 0 0 83g

Bee[42m]
0 0 0 s4 0 0

s= 0 0 0 0 s14 0
0 0 0 0 0 sgg

0 0 0 814 0 0
8= 0 0 0 0 —814 0

0 0 0 0 0 0

C. [mm]
0 0 0 0 s15

s= 0 0 0 s15 0
$31 $31 $33

0 0 0 0 0 815 0
0 8= 0 0 0 —815 0 0
0 0 0 0 0 0 0

Trigonal crystals
Ce [3)

$11 —$11 0 $14 $15 Slg
$= Slg Slg 0 $15 $14 Sll

s31 s31 s33 0 0 0

D, [32]
$11 $11 0 $14 0 0

s= 0 0 0 0 —s14 —sll
0 0 0 0 0 0

0 0 0 a14 815 0
8= 0 0 0 —a15 814 0000 0 0 83g

000al4 0 0
8= 00 0 0 814 0000 0 0 83g

0 0 0 s14 0
s= 0 0 0 0 —s14

0 0 0 0 0

Isotropic media
Lao c)j

s=0

0 0 0 0 u14 0 0
0 8= 0 0 0 0 814 0
0 0 0 0 0 0 83g

0 0 0 a14 0 0
8= 0 0 0 0 a14 0

0 0 0 0 0 814

It is now of interest to ask what symmetry properties
a molecule must have in order to show optical non-
linearity when randomly distributed in the liquid phase.
It follows from the form of the u matrix for the ~ ~
class that any coefficients u;; other than u&4, u25, and u36

which occur for a molecule in the standard orientation
are "washed out" in the averaging which occurs when
the molecules are distributed with random orientations.
Only molecules having nonzero values of u&4, u», or u36

can therefore show nonlinearities in the liquid phase.
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Consider further a molecule having coeKcients u14, a25,
and u36 referred to laboratory-6xed axes. After an arbi-
trary rotation, the quadratic polarization will be given
by I',' = (a14/2) (E„'F,' E.—'ll „') and similar expressions
for P„' and P,', where the primed quantities refer to
axes Axed to the molecule. The P,', E, and Ii can be
written as functions of the P;, E;, and F; referred to
laboratory-Axed axes in terms of the Eulerian angles. '
When the Eulerian angles are averaged over all orienta-
tions of the molecule, one obtains

P= L(4214+trss+423Q)/6]EX F. (3)

The quantity t214+ass+trM is a pseudoscalar property
of the molecule; it can be shown that this quantity,
which is ~qual to X122+X221+X312 X122 X212 X221 is
the only scalar invariant of the general third-rank
tensor.

It follows that a necessary and sufhcient condition
for nonlinear optical properties to be allowed in the
liquid phase is that a14+ass+uss&0. By inspection of
Table I, the symmetry requirement can be stated as
follows: Molecules can have nonlinear optical properties
in the liquid phase if they possess no center of sym-
metry, no mirror plane, and no reflection axes. (Note
that a center of symmetry and a mirror plane are equiva-
lent to one- and twofold reflection axes. ) The symmetry
requirement for nonlinear optical properties is therefore
identical with the symmetry requirement for optical
activity in liquids. '5

The requirements on molecules stated above are
obviously the same as those on the crystal symmetry
of individual crystallites in a random polycrystalline
medium. In many kinds of polycrystalline matter, how-
ever, the crystallite size will be of the order of magnitude
of an optical wavelength or greater, in which case the
assumption of microscopic random orientation is invalid.

III. MIXING OF LIGHT BEAMS IN LIQUIDS

In this section, the mixing of two plane waves in a
liquid is described phenomenologically. The description
given here applies equally well to gases and optically
isotropic polycrystalline matter. In this discussion, we
ignore, for simplicity, the rotation of the plane of
polarization due to optical activity and assume that
the light is linearly polarized. From Sec. II, the non-
linear polarization can be written vectorially as

P(r, t) = (42,4/2) Elx E2,

where E1 and E& are fields at frequencies ~i and co2,

and the dispersion of a14 has been ignored for the
moment. The fields may be written in the form

F =(E + F )e ("tt-lt')+c.c.1 ll I 1L ~ ~ )
(3)

Er (Estt+ E21)e'&"" "l+c.c.,
'4H. Margenau and G. Murphy, The 3fathematics of I'hysics

amE Chemistry (D. Van Nostrand Inc., Princeton, New Jersey,
1956), 2nd ed. , pp. 286-289."F.L. Eliel, Stereocttemestry of Ctsrbon Compounds (McGraw-
Hill Book Company, Inc., New York, 1962), p. 9 G.

In Eq. (6), 4o~=col+4os and k~ ——kl+k2. We ignore, in
what follows, the longitudinal components of P, since
they do not couple to the radiation field at co+ and co .
Let y represent the angle between kl and k2. After
some straightforward vector manipulation, one obtains
Eqs. (7):

+14 ( k2 kl)
++It sing'~ +ltt~21 +~n~stt

k+ k+3

I'~t = (4214/2) sin 4pE1„E2„,

P—It

t214 ( k2 kg
sing

~

—~lt I~21 +~ll+2t t

2 k k k

(7)

(t214 /2) slnp+1t@2tt ~

In general, a14 and @14' will be different, since the set of
frequencies in the sum frequency experiment is not the
same as in the difference frequency experiment (Sec.
IV). If both incident beams are plane polarized parallel
to the IP, the sum and difference radiation will be polar-
ized perpendicular to the IP. If one beam is polarized
parallel to IP and the other perpendicular, the sum and
difference radiation will be polarized parallel to the
IP. The sum and difference radiation disappears when
the two beams are parallel, since the nonlinear polariza-
tion is then completely longitudinal.

The problem of radiation from a plane-wave polariza-
tion distribution as described by Eq. (6) is treated
fully in Refs. 3—6. Equation (6) may easily be general-
ized to the case of sum and difference frequency gen-
eration in anisotropic noncentrosymmetric crystals;
however, for this case the contributions from 2;;I, may
often be masked by larger effects of S;;I,.

IV. QUANTUM-MECHANICAL DESCRIPTION

Ke derive here a quantum-mechanical expression for
the part of the second-order polarizability responsible
for the nonlinear optical properties of liquids; this ex-
pression will be found to have a close relationship to the
analogous expression for optical rotatory power and
allows a crude estimate of nonlinear optical polariza-
bility in liquids.

In the electric-dipole approximation, " the perturba-
tion energy of a molecule in an applied local field,

E= Ele'""+Ese'""+c.c.,

"P. A. Franl4en and J.F.Ward, Rev. Mod. Phys. 35, 23 (1963).

where the
~) and J subscripts refer to transverse com-

ponents of the electric 6eld parallel and perpendicular,
respectively, to the plane of interaction (IP) defined by
the propagation vectors kl and ks. The transverse com-
ponents of nonlinear polarization have the form

P= (P+„+P~,)e'&" +—t ~+'&

+.(p +p )et(tt —t-lr —r)+c c (6)
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is given by

H'= eE—r= Hie'" '+H2e'""+c.c.,
where

Hl =—e (E,lx+E„,y+E.ls)

and

H2 =—e (E,2x+E„ky+E,2s) .

(9)

where Mk=Wk/k. The coefficients ok&" and a &2& are
calculated from Eq. (9) with the aid. of standard first-
and second-order perturbation theory. Let p+ represent
the components of the expectation value of polarization
at frequencies M+

——Ml+M2 and M =Ml—M2. The non-

linear polarization has the form

We denote the wave functions of the unperturbed
states by u; and discuss a molecule originally in a state
with wave function u, . The wave function of the per-
turbed molecule can be written

I e
—z~gl+p a &»Nke z~kl+—p a &2&N e z~m—l (10)

Is fll

In Eq. (11), terms of frequency 0, 2Ml, and 2M2 are ig-

nored, since they make no contribution to the anti-
symmetric polarizability. We reproduce here only
antisymmetric terms of the type aj4, a», and F36, as
discussed in Sec. II, all other terms vanish in the aver-

aging over random orientations. The term p,+ has the
form

g3 1
pz+ (EglEz2 EzlEg2) p +gm(ykgemk skgymk)

2 jg2 mk - (Mkg+Ml) (Mmg+M+) (Mkg+M2) (Mmg+M+)—

++mg(ykgsmk Skgymk)
—(Mkg Ml) (Mmg M+) (Mkg M2) (Mmg M+)-

++km (ykgemg &k gymg) (12)
Mkg &1 &tng &2 kg &2 +mg &1

Expressions for p„+ and p,+ can be obtained from Eq. (12) by cyclic permutations of x, y, and s. The macroscopic
nonlinear polarization is defined by

P= P+e'"+'+ P e'"-'+c.c. (13)

As discussed in Sec. II, P is obtained by averaging the coefficients appearing in p„p„, and p, and summing over
the S molecules per unit volume. The result for P+ is found to be

where
P+=X+~EiX E2, (14)

1V n'+2 1 1
tkgm

'
(@kg Xtkmk')

6h' 3 mk M 2+M+ Mkg+Ml Mkg+M2

1 1
~@km' (@kg'XPmg') . (15)

k (Mmg+M2) (Mkg Ml) (Mmg+Ml) (Mkg M2) ]

In Eq. (15), the electric-dipole moment operator er has
been written as p'. The eGect on the linear polarization
at adjoining sites of the local fields due to the nonlinear
polarization has been taken into account by the Lorentz
correction (e+2+2)/3, where 22+ is the refractive index
at M+.2 The local fields E appearing in Eqs. (8)—(14)
are related to the macroscopic applied fields E~ appear-
ing in Maxwell's equations by Eq. (16).

E,= [(22,2+2)/3]EP. (16)

As shown by Eq. (15), the nonlinear polarizability
has the following properties. (1) XkI z involves products

of three electric-dipole matrix elements and must
vanish for molecules having a center of symmetry.
(2) xk z includes a vector cross product and is therefore
a pseudoscalar. Since Ei)& E2 is an axial vector, P is a
polar vector. (3) EiX E2 and X&z, are antisymmetric
with respect to interchange of Mi and M2, P is symmetric.
(4) In the limit Ml -+ M2, Xlgi, becomes proportional to
(Ml —M2) and vanishes when M, =M2. This result is
expected from the symmetry discussion in Sec. I.
(5) The molecule which is the mirror image of the
molecule described by Eq. (15) has &igz of opposite
sign, since X~I, is a pseudoscalar. A racemic solution
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containing iV/2 molecules of each optical isomer will
therefore have vanishing P. The quantity P is given
by an expression similar to P+ and vanishes in the limit
~i —+2co2, since the difference frequency experiment

the inverse of thc forblddcn
harmonic generation experiment.

A crude estimate of the magnitude of X» can be
obtained from a comparison of Eq. (15) with the quan-
tum-mechanical expression' for the optical rotatory
power of a liquid, Eq. (17):

fully allowed values of p, '. In this approximation,

S et~'+2 1
XNL+

65 3 N~g —
GP+

1
X — 1»srs' {Peg'XPsrx') . (19)

M~g —Gli G)~g —Q)2

For comparison of the magnitudes of C and X~I,+, we
set the energy denominators equal, i.e.,

32ss Xc I'+2 u s' us ~
Imp

3 X k 3 & Mug GP
(17)

In Eq. (17), Im stands for "the imaginary part of";
C is the optical rotatory power in rad cm ' for molecules
in the state g; X is the optical wavelength in the liquid;
c is the velocity of light; and p is the magnetic-dipole-
moment operator (s/2mc) (rXp), where y is the electron
momentum operator.

Certain similarities between Eqs. (15) and (17) will
be apparent. Equation (17) shows that a state k can
contribute to the optical rotatory power only if con-
nected to the ground state by both electric- and mag-
netic dipole moments. %hen an inversion center occurs,
either pgI,

' or pf, g must vanish for all states k, since
parity is defined. Now the dissymmetry in molecules is
not strong. For a strongly allowed transition in an
optically active molecule, the large value of p,

' is gen-
erally accompanied by a relatively small magnetic-
dipole moment. For a transition which is weakly allowed,
because of a selection rule arising from approximate in-
version symmetry, the small p' is accompanied by a
large p . It is a well-established empirical fact that
y'p, has about the same value for both weak and
strong transitions in optically active molecules. '~

For purposes of comparison with Eq. (15), suppose
that the transition gE in the optically active molecule
is strongly magnetic dipole allowed, but, as a result of
approximate inversion symmetry, has only a small
electric-dipole moment pg~'. Since g and E have the
same parity (in the absence of the dissymmetry), there
will, in general, exist intermediate states ns for which
p, g

' and p~~' have fully allowed values. In the approxi-
mation that the state E accounts for thc bulk of the
optical rotatory power, we write

32e' 1Vc ns+2 u rr'u~ ~
Xm

3 X'A 3 M~g CO

In Eq. (15), we make the approximation that the state
E also accounts for the major part of X~~, and we repre-
sent the intermediate states sss described above by a
single equivalent state M connected to both E; and g by

"E.U. Condon, Rev. Mod. Phys. 9, 432 (1937).

%C notice that in the ratio of X» to C the small and
unknown matrix element p~g' disappears, since it
appears linearly in both quantities. From Eqs. (18)
and (19), the ratio is

Taking X=6)&10 5 cm, p'=2.5&(10 " and p~=1.0
)&10 "cgs units, we obtain

X~~=3 6X10 "4

Consider a strongly optically active pure liquid such
as nicotine. 's The speci6c rotation for sodium light is
$n]= —162 deg decimeter ' gm ' cm', and the optical
rotatory power is C =2.8&10 ' rad cm '. The expected
magnitude of x»+ ls 1.0+10 cgs units. Higher values
of X»+ will be expected as co+ approaches the 6rst
electronic transition. This value is smaller by about two
orders of magnitude than the value of X~I. in KDP, '9
but larger by two orders than the CGective value of
X» occurring in centrosymmetric media as a result of
magnetic dipole and quadrupole nonlinearities. 8 On
the basis of thc experimental observation9 of third
harmonics in media without phase matching, "we con-
dude that sum and difference frequencies in strongly
optically active liquids should easily be detectable.

V. MOLECULAR MODEL

The simplest molecular model which can give rise to
nonlinear optical properties in the liquid or gaseous
phase is one consisting of a single electron in an appro-
priate asylnmctrlc and aIlharIQonlc potential. Consider
the potential

V= -,'(k,x'+key'+k, ss)+Mays. (22)

The quadratic terms represent the most general har-
monic potential and contain both mirror planes and a

I Betook of Chenistry agd I'hysics» edited by C. D. Hodgman
(Chemical Rubber Publishing Company, Cleveland, Ohio, 1960),
42nd ed. , p. 1120.

'A AshkIn» G D Boyd» and J. M DziedzI, c» Phys Rev
Letters 11, 14 (1963).

~ J. A. Giordmaine, Phys. Rev. Letters 8, 18 (1962); P. D.
Maker, R. %'. Terhune» M. NisenoB, and C. M. Savage, ibid. 8,
21 (1962).
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center of symmetry. The cubic term must be selected
to allow the total potential to satisfy the symmetry
requirements given in Sec. II. Terms of the form x' or
x'y leave mirror planes while removing the center of
symmetry; combinations of terms such as (Ax'y+By's)
satisfy all the symmetry requirements but introduce
nonlinearities only in a higher order of approximation
than a single term of the proper symmetry. The only
single cubic term capable of removing all mirror
planes from the harmonic potential is Ass. Notice
that the k; must be all different to avoid mirror planes.
The same potential has been discussed by Condon,
Altar, and Eyring" as a model for optically active mole-
cules, and further description of its properties is given
in Ref. 21.

In this section, we make a semiclassical calculation
of the nonlinear polarization produced in molecules de-
scribed by the potential of Eq. (22). The calculation
has the merit of displaying the important features of
the nonlinear polarization of a liquid in explicit form.
The parameters in Eq. (22) have been identi6ed with
the potential coefBcients in optically active molecules
such as secondary butyl alcohoP'; however, the predic-
tions of optical rotatory power are usefully accurate
only for optical wavelengths near the lowest electronic
transition.

In the absence of the anharmonic perturbation, the

wave function is a product of three harmonic oscillator
wave functions having frequencies &g;= (k,/gn)'I', with
i = u, 0, c. The energy of the state (nin2n3) is W (nin2na)
= (ni+-', )Aor +(n2+, )AMi+(n3+q)Puo, . We make the
approximation that the anharmonic term is a small
perturbation, in the sense that the linear response of the
system to the applied 6elds, i.e., the response calculated

by first-order perturbation theory is unaffected by the
anharmonicity. The only effect of the anharmonicity is
assumed to be the introduction of small components at
sum and difference frequencies to the expectation values
of x, y, and s.

Consider that the electron is initially in the state
(ninmna) which we denote g. We calculate 6rst the s
component of polarization at ~+ and co as a result of
6elds at frequency ~& and co2 applied in the xy plane.
The perturbation energy associated with the applied
6elds is given in the electric dipole approximation by
Eqs. (8) and (9), and the perturbed wave function

~t. by Eq (1o).
In line with our assumption that the linear response

is unaffected by the anharmonicity we make the ap-
proximation that Axys =A (xy)z, where

(xy) = (/*I xy I It )= (xy)+e'"+'+(xy) e' -'+c.c. (23)

From Eqs. (8), (9), (10), and (23), we obtain after a
straightforward calculation the result

g2

(*y)+=— (E*iE»—EgiE*2)(L».y-. (xy).-—x-6 "(xy).-]
2fg2 Ns

1 1
I+L»d-. (xy) ~-—*-d"(xy)~-]

&(Mi+~~.) (~++~-.) (~2+~~.) (~++~-.)&

( 1 1
I+L»gy-~(xy)-g x-u»—(xy)-g]

~(—~i+~sg)(~g+~~g) ( ~2+~ig)(igi+~~g)~

and a similar expression for (xy) . In Eq. (11),only the part of (xy) antisymmetric in E»E» and E»E» has been

retained. For an electron in state g(nin2na), the summation over gn and k extends over the eight states [(ni&1)n2ng],
Lni(n2+1)ng], and L(ni+1) (n2&1)n3]. The matrix elements have the form

((ni+ 1)n2na I
x

I ninin3) = $(hing, /2k. ) (n, +1)]ii',
((nl+ 1) (ng —1)n3 I xy I nin2ng) =

I
(k'ig, igq/4kgq) (ni+ 1)nm]'Is, etc.

Summation over the 24 nonzero combinations of gn and k in Eq. (24) leads to the result

(xy)+ = — (E.iE„2—E„iE,2) .
2tn (GOp

—
Cg ) (Cgn

—
Cgg ) (Mi —Mg ) (G)2 —ig )

(25)

We notice that (xy)+ is independent of the original state (nining) and also does not contain 5. In the presence of
the perturbation A(xy)s, we calculate directly from first-order perturbation theory the value of (s), with the same

~ E. U. Condon, W. Altar, and H. Eyring, J. Chem. Phys. 5, 753 (1937).
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method as above for (xy). For a molecule in state (eiliei), we obtain

s = s+e'"+' s e'"-' c c.

e' A
S+=—— (g i@„2—g„iQ ~)

g ~ 2 ~ 2 (ioi2 (0 2) ((jg
~ (gb2) (ioim (gb2) (MM22 Oi 2)

(26)

From Eq. (13) and a similar calculation for (s), we find that polarization p, has an antisymmetric component

e'"-'+ c.c. . (27)

From Eq. (14),p, and p„can be written immediately by cyclic rearrangements of hays and &o,&o&~,.The polarization

p calculated above refers to a particular molecule in a speci&ed orientation. As shown in Sec. II, the volume po-
larization is obtained by averaging the coefFicients of p„p„, and p, and summing over the S molecules cm
The 6nal result for the volume polarization per molecule becomes

P= (Ee /6m )A((EiX E2)F((oi(oi(a~a) (ow,)e'"+'+ (EiX Ei*)F(coio)mio co,a)go,)e'" '+cc ],

F(G)iMgdyG)gM)Mq) = +Ltwo similar terms obtained by
OP M Q) y M G)2 Mg EO

—
bled Q) —

Qp

the cyclic permutations (ro.&0&co,) —& (co~,~.) and (~,co&a&,) ~ (o&,~.~&)]. (29)

It can be easily verihed that this result is identical with
the result of a completely classical calculation under the
same assumptions. In Kqs. (28) and (29), the Lorentz
and local-6cld corrections discussed in Sec. IV have
been omitted.

The following features of the result are apparent
from Eqs. (28) and (29): The function F and the ex-
pression EiX Eg are both antisymmetric in u&, and &u2,

the over-all expression for I' is necessarily symmetric.
As expected, F(Ã (dio)2)+~ 0 as &oi ~ a)2, fol. tlie dif-
ference process, F(&oi~2o& ) -+ 0 as a&i ~ 2~2. The func-
tion Ii changes sign for noncyclic permutations of
co,~go„such as or ergo, —+ ergo, co„ the optical isomer

RvlDg x~ p~ Rnd 8 cliRlRctcllstlc fI'cqucnclcs +pi co&, Rn

co, will produce an opposite volume polarization in the
llquld phase. It follows that R racemic sohltloIl coIl-
taining equal concentrations of the two isomers will

pl oducc no Dct DonllDcRr polRl lzRtloli this result ls

expected, since the racemic solution is identical with
its mirror image, having the symmetry ~ ~no. As ex
pected F —+0 for each of the limits co —+~q, co~ —+ co„
co, ~co, since in each limit the molecule acquires a
mirror plane. The symmetry conditions of Bloembergen
et ul. ' are satis6ed for cyclic permutations of the indices
and frequencies, since F(a»cu2~+) =F(~+&oi~2) =F(~2~+a»).

A large value of the cubic coeKcient 2, as well as
substantial differences among or„roy, and m„ lead to
large values of optical activity, as well as strong non-
linear optical effects. It follows that for molecules in
which this single-electron model of both processes is
relevant, a large nonlinear optical coeKcient wiB ac-
company a strong optical activity. This result is ex-
pected from the more general discussion of Sec. IV.

VI. CONCLUSION

It appears that detectable sum and difference fre-
quency generation should occur in optically active
liquids, as well as in other noncentrosymmetric ma-
terials having a high degree of rotational symmetry in
which second-harmonic generation is forbidden. The
magnitude of the effect will be substantially less than
in piezoelectric crystals, although much greater than
residual nonlinear polarization in centrosymmetric
media. Although thc techniques of phase ma, tching in
anisotropic crystals are not available in liquids, it
should be remembered that phase-matching solvents
for optically active liquids are conceivable. Dyes having
suKciently narrow absorption bands with high oscillator
strength between the frequencies ~», co2, and ~+ intro-
duce dispersion in the proper direction to decrease the
phase mismatch in the mixing process.

The Donlincaritics responsible for sum and difference
frequencies in liquids usually arise from highly localized
and identihable features of organic molecules, for ex-

ample, an asymmetric carbon atom. The magnitude and
spectrum of the nonlinear optical effects may provide
conhguration information supplementing that available
from optical activity and optical rotatory dispersion
measurements.
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