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Pressure Coefficient and Phase Diagram of He' near the Upper Lambda Point*

HENRv A. K~zRSTzAD

Argue Sctiona/ I.aborufory, ArgonrIe, Ill&rois

(Received 26 January 1965)

Measurements are reported of the derivatives (dE/dT)q, (dp/dT)q, aud (dp/dE)q ou the lambda curve,
of (dE/dT) on the melting curve, aud of the pressure coeiiicient P,= (BE/BT), of the hquid very close to
the upper lambda point (Tz,Ez, I/'z }.The measurements are vrell represented by the equations

(dE/dT)y= 55 54—96.(T)—, Ta ),—T), Tv&~—12.5X10 s 'K;
(dp/dT}g= —43."/ —230(T),—T), ), T),—Tg &~12.5X10 ' 'K;
(dp/dE)g=0 "/868+2 8(Tg—Tg.) Tg —T),.& 12 5X10 s 'K.

(dP//d~}„= 29.43+326(T„—T), }, 0~& T'), —&„&47X &0-3 'K;
(BE/BT)„=939+769logio(T —Tz), V=V&, , 6X10 6 'K~&T—Tq~&6X10 s 'K;

where I'isin atm, 7 is in 'K, and p isin mg jcm, The temperature and pressure of the upper lambda point are

T),.——1.7633W0.0001 K, E&.——29.84+0.02 atm.

There is no evidence of a Grst-order transition in the solid in the temperature range -j.'7&(10 3 K
&T—Tg &4.3+10 3'K.

INTRODUCTION Helium gas was purified in a trap (not shown)
immersed in liquid helium, and was condensed into the
piezometer G through the low-temperature valve A,
which was kept closed during measurements. G was
isolated from the liquid-helium bath by the vacuum
case B. Its temperature was controlled by the heater F
and by pumping on liquid helium in E.

Changes in the pressure on the sample were measured
by the oil manometer K and read with a cathetometer
to 0.01 mm, which corresponded to about a millionth
of an atmosphere. The absolute pressure was read to
0.01 atm on the Bourdon gauge P, which was calibrated
against a dead weight tester. Small changes in the
sample density were produced by raising the oil in the
left limb of the manometer, forcing gas to condense
into G. A change of 0.01 mm in the oil level caused a
change of 2X 10 ' g/cm' in the density.

Temperatures were measured with a Radiation
Research Company Model CG-1 germanlurn resistance
thermometer in a potentiometer circuit using a
Honeywell No. 2773 double potentiometer. At the
upper lambda point the thermometer resistance was.
1483 0, and its sensitivity was 636 pdeg/Q. With 50 pA
of measuring current, the resistance could be measured
with a precision of 0.002 Q. The measuring current
heated the thermometer above the cell temperature,
but this effect was reproducible, and the same measuring
current was used in calibrating the thermometer. It was
calibrated against the vapor pressure of helium in E
on the T58 scale, ' using a tube separate from the
pumping tube. The change in the thermometer re-
sistance at the upper lambda point after warming to
room temperature and recooling corresponded to a tem-
perature change of less than 10 'K. All temperatures
were referred to the upper lambda point in order to

l
'HE thermodynamics of the lambda transition in

llquld He can be lnvestlgated most advanta-
geously close to the melting curve, where the anomalous
behavior of the thermodynamic properties is spread
out over a larger temperature interval than it is at lower
pressures. For example, Lounasmaa, ' working at I'= j.3
atm, found that at a temperature T which was only
2)&10 ' 'K from the lambda point Tq, the value of
P„= (r/I'/BT), was less than a fifth of its limiting value,
(dI'/dT)&, . In the work to be reported at 8=29.8 atm,
we found that P. was already nearly half of (dI'/dT)q
at T—Tj,= 10 4 'K. Another point of interest in this
region of the phase diagram is the upper triple point,
where the e-y solid-phase-transition line meets the
melting curve. The upper triple point has been re-
ported' 4 to be a few millidegrees above the upper
lambda point Tq~, where the lambda curve meets the
melting curve. We have accordingly studied the melting
curve, the lambda curve, and an isochore, all in the
region near the upper lambda point, with an apparatus
designed to measure derivatives directly. The resolution
was 10 ' 'K in temperature, 10 ' atm in pressure, and
2X 10—' g/cm' in density (hV/V= 10-')

EXPERIMENTAL

The apparatus used in these experiments is essentially
the same as that used by Lounasmaa. ' Therefore, it
will be described only briefly here. It is shown schemati-
cally in Fig. 1.

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' O. V. Louuasmss, Phys. Rev. 130, 847 (1963).
~ J. H. Vignos and H. A. Fairbank, Phys. Rev. Letters 6, 265

and 646 (3.961}.
'E. R. Grilly aud R. L. Mills, Auu. Phys. (N. Y.} 18, 250

(1962}.
4 G. Ahlers, Phys. Rev. 135, A10 (1964).

'H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan,
Nat. Bur. Stds. (U. S.), Monograph 10 (1960).
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directly, rather than as the intersection of two inde-
pendently measured curves.

The pressure coefficient P„=(BI'/BT), was deter-
mined by keeping the oil level in the left limb of the
manometer constant and measuring the height of oil
in the right limb at successively lower temperatures.
After the lambda point was passed, as judged by the
thermal response, the temperature was raised slowly
in order to determine the lambda point exactly.

UPPER LAMBDA POINT

1 K

FIG. l. Schematic drawing of the apparatus. (A) needle valve;
(&) vacuum case; (C) pumping and vapor pressure tubes (2) for
(E); (D) 30% Cu-Ni capillary tubing, 0.1 mm i.d. ; (E) tempera-
ture and vapor pressure compartment; (F) heater; (G) piezometer
packed with Gne copper wire for rapid equilibrium (volume 39.83
cm' at 1.76 'K, height 10 mm to keep hydrostatic pressure diGer-
ences small); (I) dashed lines enclose space immersed in liquid
helium bath; (I) germanium thermometer; (K) differential oil
manometer, 0.060 in. i.d. constant-bore glass capillary (left arm
40 cm long, right arm 90 cm long); (L) oil reservoir and leveling
device 611ed with Apiezon 8 oil; (M) to He4 supply tank and
purifier; (N) to pump; (0) to atmosphere; (P) 25-cm dial test
gauge calibrated against a dead weight tester; (Q) ballast volume
(1461cm') for balancing the right-hand side of K, held at constant
temperature by an ice bath; and needle valves.

correct for small changes in the thermometer or the
measuring circuit.

For measurements on the melting curve, the sample
was cooled below the upper lambda point, and the
pressure was raised until freezing began, as indicated
by an abrupt rise in temperature. Only a small amount
of solid was allowed to form, in order to ensure tem-
perature equilibrium and to avoid blocking of the 0.1-
mm capillary D. Then the temperature was raised, and
the increase in pressure was read from the manometer.
At each temperature no measurements were recorded
until equilibrium was established. The sample could
not be frozen above the lambda point without blocking
the capillaries because of the poorer thermal conduc-
tivity of the liquid and the much greater supercooling
observed with He I. A few points were obtained by
freezing at low temperatures and then warming through
the lambda point. Each of these experiments was ended

by blocking of the capillary a few millidegrees above
the lambda point.

Points on the lambda curve were found by warming
the sample slowly at constant volume. Because of the
large change in thermal conductivity at the lambda tran-
sition, the heating curve showed a sharp break, which
could be located to within a microdegree. The sample
was held at this temperature until equilibrium was
established before reading the manometer. Then the
density was changed slightly by raising the oil in the
left limb of the manometer, and the new lambda point
was found. The break in the heating curve was espe-
cially sharp with solid present in the cell, because the
heat of melting increased the apparent heat capacity.
Thus the upper lambda point could be determined

A number of absolute determinations of the upper
lambda point have been made, since this was used as
a reference point for the other measurements. In Table
I are listed seven measurements made with diGerent

TABLE I. Determinations of the upper lambda point.

Temperature
'K

Pressure
atm

Run No. 9

Run No. 10

Mean
Ahlers (Ref. 4)
Grilly and Mills (Ref. 3)
Vignos and Fairbank (Ref. 2)
Lounasmaa and Kaunisto (Ref. 6)
Swenson (Ref. 7)

(corrected to T~)

1.76330
1.76330
1.76331
1.76330
1.76324
1.76327
1.76327
1.7633~0.0001
1.763~0.001
1.760~0.001
1.765~0.003
1.762~0.001

29.830
29.844
29.834
29.84&0.02

29.67&0.01
29.90~0.05
29.71a0.01

1.760~0.003 29.64~0.03

amounts of solid in the cell during the course of two
separate cooling runs for which the thermometer cali-
bration was considered especially good. Pressures are
listed only for the last run, which immediately preceded
the calibration of the pressure gauge.

The absolute accuracy of the temperature measure-
ment was limited by the calibration accuracy, which
was estimated to be better than 10~ deg relative to the
1'58 scale. As a check on this, the temperature of the
lower lambda point, which is a 6xed point on the 2 58

scale, was measured by the same technique, using the
helium in E. The error found in this measurement was
3X10- 'K.

The absolute pressure measurement was limited by
the resolution of the gauge, about 0.01 atm. The gauge
calibration is subject to the same error, making the
over-all accuracy about 0.02 atm.

Several other recent measurements are listed in Table
I.&one of the temperature measurements deviates from
our value by much more than its estimated error,
except for that of Grilly and Mills. ' But there is addi-
tional evidence that the data of Grilly and Mills do not
have the precision claimed by them. They And the O.-p
solid-phase transition to be at the same temperature
as the upper lambda point, whereas Vignos and Fair-
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bank' and Ahlers4 have shown that the solid transition
is at least 10 mdeg higher.

It is noteworthy that the various lambda-point
pressures are in the same numerical order as the
corresponding temperatures. It seems likely that all
the investigators have measured melting pressures and
temperatures accurately but have had varying degrees
of success in locating the lambda point. Since we were
able to locate the lambda point with a precision of a
microdegree and to hold the sample within a micro-
degree of the lambda point for long periods of time,
we believe our result to be limited only by the absolute
accuracy of the thermometer and pressure gauge.
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Fzo. 2. Derivatives along the lambda curve. o(dP/dT)i„
~ (dp/dT)g. Solid lines: (dP/dT)i, = —55.54—96(Ty—T), ) atm/
'K; (dp/dT)i, =—43.7—230(Ti,—Tq) mg/cm' 'K. Dashed lines,
Lounasmaa and Kaunisto (Ref. 6).

6 0. V. Lounasmaa and L. Kaunisto, Ann. Acad. Sci. Fennicae:
Ser.'A"VI, No. 59 (196Q); Bull Am. Phys, Soc. 5, 29Q (1960}.' C. A. Swenson, Phys. Rev. 89, 538 (1953).

LAMBDA CURVE

The derivatives (dP/dT)i, (dp/dT)q, and (dp/dP)i,
are shown in Figs. 2 and 3. The solid lines are computed
from the equations

(dP/dT)i, = —55.54—96(Tg—Tg ) atm/'K, (1)

(dp/dT)i, =43.7——230(Tq —Tq ) mg/cm' 'K, (2)

(dp/dP)), =0.7868+2.8(Ti,—Ti, ) mg/cm' atm, (3)

where T~ is the lambda temperature for the pressure I'
and density p, and Tq is the temperature of the upper
lambda point, 1.7633 'K. The dashed lines are computed
by diff erentiating the cubic equations given by
Lounasmaa and Kaunisto. ' Swenson" finds —54.5 atm/
'K for (dP/dT)i, at Ti, . The agreement is as good as
can be expected since Lounasmaa and Kaunisto's
measurements were 10Q mdeg apart in this region, and
Swenson's temperature measurements were not of high
enough resolution to permit differentiating his data
accurately.

In the case of the density measurements, Lounasmaa
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pro. 3. Derivative (rip/dP)i, along the lambda curve. Solid hne:
(dp/dP)&, =0 7868+2. 8(Tq —

T. q ) mg/cm' atm; dashed line,
Lounasmaa and Kaunisto (Ref. 6}.

' L. Goldstein, Phys. Rev. 135, A1471 (1964).

and. Kaunisto's equation has a curvature (slope of the
line in Figs. 2 and 3) of opposite sign from that of our
data. It has been pointed out by Goldstein that their
equation has an inQection point at 1.87 'K. Our data
indicate that the inAection is probably an artifact
resulting from 6tting a cubic equation to on1y six
experimental points.

These data provide good experimental evidence that
the lambda curve is regular at its intersection with the
melting curve, as assumed by Goldstein' in his dis-
cussion of the thermodynamics of the lambda tran-
sition. We have, in fact, observed the transition in the
supercooled liquid. At a temperature of 2.4&10 ' 'K
below the upper lambda point, we found (dP/dT)i,
= —56 atm/'K and (dp/dT)i, =—47 mg/cm' 'K. This
measurement is not as accurate as those in Fig. 2
because of the small temperature interval (He II
cannot be supercooled much), but it proves that there
is no discontinuity or other irregularity in crossing the
melting line.

MELTING CURVE

In Fig. 4 are plotted measurements of (dP/dT)
along the melting curve from 17 mdeg below to 4.3
mdeg above Tqp. The line through the low-temperature
points is computed from the equation

(dP/dT)„= 29.43+326(T —Tg ) . (4)

The points above the lambda transition do not extend
to a high enough temperature to de6ne a line, but there
does seem to„be a change in slope at T~ .

The Clausius-Clapeyron equation gives, for the slope
of the melting curve,

(dP/dT)-= (~r—~.)l(~r—I'.) (5)

where Sg, S„Vg, and. V, are the molar entropy and
volume of liquid and solid, respectively. Differentiating



PRESSURE COEFFICIENT AND PHASE DIAGRAM OF He'

30

28—

~ 27—
E
a
E26—

I-'o
CL~25—

22
-20 -10 «5

10~{7-T),'},'K

FIG. 4. Derivative (dP jdT)~ along the melting curve.

wltll I'cspcc't to temperature~ llslllg (5) Rlld 'tile tllcl'Ino-

dynamic relations

(dS/dT) =C„/T„+Vcrnr)P/r)T)„(dP/dT—) 7, (6)

(dV/dT) =Vga Ir{dP/dT—) 7,

where C„=T(r)S/r)T)„, P= (r)P/r)T)„=cr/Ir, rr= V (IVc)/-
r)T)r, and Ir= V I(BV//N')r—, w—e find

(dIP/dT') = (VI—V,)
—'

&& {(C.I C-)IT-—+V«IL(dP/dT)=PI7'
V.lr, t'(dP/—dT)„p,7') . (8—)

Ahlers4 has measured a few values of the heat capacity
and compressibility of the gamma solid phase. Both
properties are an order of magnitude smaller than those
of the liquid, and presumably their variation is small
ln thc nclghboI'hood of thc laInbda point. Neglecting
then, thc terms referring to the solid, we 6nd that the
bracketed terms in. (8) are all positive, since C„, T,
V, and z are necessarily positive and the remaining
expression is squared. &Tow as V~ is greater than V.,
(d P/dT )gg Illust bc RlwRys posltlvc. It ls knowne'e

that C„l and —PI (see below) reach very large values
at the lambda point and are discontinuous there. The
compressibility ~g is also discontinuous. ' In all three
cases the value is smaller in He I than at the same
distance from the lambda point in He II. Hence
(d'P/dT') should rise to a large value at the lambda
point, drop discontinuously to a smaller value, then
continuously to even smaller values, passing through
a minimum (but still positive) before rising again as
C, increases at higher temperatures. Since Sg and Vg

are continuous, {dP/dT) should have a cusp but no
discontinuity. Figure 5 shows schematically how
(dP/dT) should behave in the neighborhood of the
lambda point, in view of our present knowledge of the
qualitative behavior of the other properties.

Grilly and Millso report the upper triple point, where
the e-y solid-transition line meets the melting curve,
to be at the same temperature as the upper lambda
point. We would like, erst of all, to dispose of the
argument that this situation would violate the phase
1'llle by I'Cqllll'lllg fGill' pllRSCS (rr-Solid p-SO11d HC I,
and He II) to be in equilibrium at TI~. Because the
lambda transition is of the second (or higher) order
and has no latent heat, He I and He II are not separate
phases in the sense of the phase rule, i.e., two homo-
geneous regions which have dQfereet physi ca/ pmperttes
in equilibrium with each other. He I and He II diGer
only in the way their properties change as the tempera-
ture or pressure moves away from the lambda line.

Grilly and Mills report no change in slope of the
melting line at the triple point. This is not thermo-
dynamically possible. As Vignos and Fairbank' have
pointed out, the discontinuity in slope is given by

(dPld T)vI (dP/d T—)-I= (Vv —V-) (VI—V.) '
XL(dP/dT)-I (dPldT—):7 (9)

Substituting GriHy and Mills' values for the volume
changes and slopes of the melting curve and the
transition line, we 6nd

(dP/dT) „I (dP/d T)—I (0.201/1.3——50) {25.3—11.6)
= 2.10 atm/'K. (10)

We see no way to reconcile our data with a discon-
tinuity of this magnitude, and we can only conclude
that the triple point is outside the range of our meas-
urements. Vignos and Fairbank, ' who discovered the
y phase, found the upper triple point 13+3mdeg above
the lambda point, and Ahlers4 found it 10~1 mdeg
above the lambda point. We intend to attempt to
continue our measurements up to the triple point.

It is diKcult to compare our results for (dP/dT) at
Tq. with those of other investigators because of the
large di6erence in resolution. Grilly and Mills' tabu-
lated melting pressures at 40-mdeg intervals (they did

90. V. Lounasmaa and E. Kojo, Ann. Acad. Sci. Fennicae:
Ser. A VI, No. 36 (1959).

FIG. 5. Qualitative behavior oi (dEjdT) in the
neighborhood of the lambda point.
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not state the interval between experimetstul measure-
ments); hence, they could easily have missed the rise
in slope near the lambda point. They reported a slope
of 25.3 atm/'K at 1.76 'K (their lambda point) and.
19.50 atm/'K at 1.72 'K. We 6nd 29.43 atm/'K at
1.763 'K and 22.91 atm/'K at 1.743 'K. By linear
interpolation of Grilly and Mills' values we obtain
22.88 atm/'K at 1.'/43 'K, so that we agree at 1.743 'K,
far from the lambda point. But the second derivative
calculated from these two values in their table is only
145 atm/deg', whereas ours is 326 atm/deg' Lsee Eq.
(4)t

Similarly, Vignos and Fairbank' show only five
measurements fairly evenly spaced between 1.7 and
1.765 'K. A rise at the lambda point would not be seen.
The slope of their melting curve in this region (scaled
from their graph) is about 27 atm/'K.

Swenson "measured 30 melting pressures between
1.7 'K and the lambda point. He calculated the slopes
numerically from carefully smoothed data, and his
(dP/dT) curve has the expected shape at the lambda
point (which he knew about) but misses completely the
triple point (which was not known at that time). This
illustrates the danger in smoothing data and probably
accounts for his low value for (dP/dT) „at Tq, which
was 27.5 atm/'K.

PRESSURE COEFFICIENT

This equation should apply to any point close enough
to the lambda line so that P„and Ir depend only on the
distance from the lambda line. Now solving for p~ we
have

(dpldT)~
ps=

BP/ r (dP/dT)g P„— (13)

from which p~ can be calculated for points on the iso-
chore along which we measured P„. Some calculated
values are given in Table II. If P„becomes equal to

TaaLz II. Calculated values of (Bp/BP)T of He I for points
(T,P) on the isochore terminating at the upper lambda point
(T), ,Pq ). P7, is the lambda point pressure at the temperature T.

was 15 pdeg below T~., and for the other it was 5 pdeg
above. These small differences are not regarded as
significant, but the observed lambda point was used in
each run in plotting T—Tq. Since this isochore meets
the melting curve at the lambda point, the measure-
ments in Fig. 6 refer to He I. One point was measured
in supercooled He II, where P„was found to be —27.6
atm/'K at T Tq ——1—.—08&( 10 ' 'K. This point is not
plotted in Fig. 6, but it is approximately the value to be
expected for T—T~=1.08)&10 ' 'K.

At the lambda line, it is easily shown that

P„= (BE/BT).= (dP/dT)), (pz) '—(dp/dT)y. (12)

The pressure coefficient P = (BE/BT), was measured
along an isochore which crossed the lambda line very
close to Tq . Results are shown in Fig. 6, plotted against
logts(T —Tz). The equation of the line is

P,=9.39+7.69 logto(T —Tx) atm/'K, (11)

where Tq is the lambda transition temperature for the
isochore. This graph contains points taken on two
different cooling runs. The lambda point for one run

5X10 '
10 5

5X10 '
10 4

5X10-4
10 '
5X1o-'

0.1735
0.3238
1.351
2.470
9.662

17.01
58.19

T—T ~ 10'(P —P)
'K atm

103(P—P),)
atm

0.1042
0.2316
1.426
3.084

18.11
38.53

219.5

(Bp/BP) z
mg/cm' atm

1.807
1.649
1.371
1.278
1.105
1.044
0.925

"Io—

l5—

-20—

l

IO-5 IO-'
T-T)t, 'K IO 3

I C. A. Swenson, Phys. Rev. 86, 870 (1952).

Fto. 6. pressure coefEcient p„= (BI'/BT), of He I along the iso-
chore V= V(Tq.). Equation of line: p, =9.39+7.69 log10(T T$)
atm/'K.

(dP/dT)t, at the lambda point, then s must become
infinite there. However, since P„ is much smaller in
magnitude than (dP/dT)q, even at T Tq 10 ' 'K—, it-—
will be dificult to observe an anomaly in ~.

The logs, rithmic dependence of P„on T—Tq is
similar to that found by Lounasmaa' and by Lounasmaa
and Kaunisto' at lower densities, and is consistent with
their observation that the two constants in Eq. (11)
both increase with increasing density. At a constant
small value of T Tq, P„ increases in m—agnitude with
increasing density, whereas its limiting value, the slope
of the lambda curve, decreases in magnitude with
increasing density. For example, at T—T&=10 ' 'K,
which is probably the limit of temperature resolution
now attainable, P„at the upper lambda point is —36.75
atm/'K according to (11),compared to —55.54 atm/'K
for (dP/dT)q. In Lounasmaa's experiment' at p=0.1654
g/cm' and Tq 2.023 'K, P„=—16.9 atm——/'K and
(dE/d T)q =—75.86 atm/'K. This shows the great



advantage, in investigating the nature of the lambda
transition, of working near the upper lambda point.

Goldstein' has pointed out that it is meaningless to
extrapolate equations like (11) to values of T „Tq-
vrhich are less than the root-mean-square statistical
temperature Quctuation, which is about. 10 " 'K for
Lounasmaa's experiments' ' as well as the present one.
In the experiment' at p=0.1654, if the logarithmic
equation is extrapolated to T—Tq 10-" '——K, P„ is still
not one half of its limiting value (dP/dT)q, ' whereas
in our experiment Eq. (11) predicts that P„will reach
its limiting value at T —Tg= 3.5&10—' 'K, weB outside
the range of statistical fluctuations. It is even possible

that a resolution of 10 ' 'K may sometime be achieved
experimentally.
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Nonlinear Optical Properties of Liquids

J. A. GioRDMAINE

Bel/ Telephone Laboratories, Murray IIN, Sew Jersey

(Received 28 January 1965)

Nonlinear optical polarization quadratic in the optical electric 6elds is shorn to occur in optically active
liquids and to lead to sum- and di8erence-frequency generation; second-harmonic generation is forbidden.
The nonlinearity is described by components of the second-order polarizability tensor X;;z antisymmetric
in jand k; the form of the antisymmetric part of X;;& is given for all the crystal classes and textures and for
isotropic media. The magnitude of nonlinear polarizability of liquids is estimated from second-order per-
turbation theory and calculated to be readily detectable in many opticalIy active liquids. The mechanism
of the nonlinearity is illustrated by a simple single-electron molecular model.

I. INTRODUCTION

f 'T has been shown by Franken ef al.' that in crystals
without a center of symmetry one can observe opti-

cal polarization quadratic in the applied optical electric
Geld. Radiation from this nonlinear polarization leads
to generation of second harmonics and sum and dif-
ference frequencies. It is now possible to convert over
20% of a laser beam into new frequencies through this
e6ect.' Bloembergen e$ u$. ,3 Kleinman, 4 and others' have
given theoretical analyses of the effect.

The second-order nonlinearities have been studied in
a variety of piezoelectric crystals, primarily by ob-
servation of second-harmonic generation. Higher order
nonlinearities have also been observed in centrosym-
metric media, including calcite and several liquids. 9

~ P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
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