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Positron-Hydrogen Scattering at Low Energies*
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The complete Dalgarno-Lynn second-order adiabatic potential is used to compute the s-wave elastic
scattering of positrons by atomic hydrogen below the threshold for positronium formation. Comparison with
the deinitive results of Sehwartz indicates that the potential is too attractive, as expected. A simple, one-
parameter modi6cation of the potential, related to the monopole distortion term, can yield exact agreement
with Schwartz's value for the scattering length. Without further adjustment of the parameter, excellent
agreement is also obtained for all energies up to the positronium threshold, and fairly good results are found
for higher partial waves. The results encourage one to attempt similar work with more complex atoms, for
which detailed variational ealeulations are impractical.

I. INTRODUCTION

" QOSITRON —hydrogen atom scattering below the
inelastic (positronium) threshold is of interest

as a representative single-channel, three-body scattering
problem. It is not complicated by symmetry considera-
tions, and is una6ected by any lack of information
concerning the two-particle interactions, which are
simply Coulomb potentials.

Schwartz' has used a straightforward, extensive
variational method, with many parameters, to compute
what are probably the best existing values of s-wave
elastic-scattering phase shifts and scattering length.
Rotenberg' has used an expansion in so-called Sturmian
functions, which form a complete set without con-
tinuum. An excellent general review is the paper by
Burke and Smith. i

The main purpose of the present work is to examine
the adiabatic approximation, often used for atomic
scattering calculations, for a particularly simple case,
in an attempt to determine whether it is accurate
enough to be useful in more complex cases. In particular,
prcvlous RdlRbatlc calculations hRvc used qucstlonRblc
truncations and further approximations to simplify
the numerical work, and have thus obscured to some
extent the errors due to the adiabatic method itself.

Section II consists of an adiabatic calculation, which

makes use of the exact second-order polarization
potential elegantly derived by Dalgarno and Lynn. 4

ThLC positron is assumed to move in this potential, and
the resulting s-wave phase shifts and scattering length
are obtained numerically, and compared with those of
Schwartz. '

In Sec. III we consider the hypothesis that the excess
attraction of the Dalgarno-Lynn potential is due to
its short-range part. The principal short-range contri-
bution comes from the monopole distortion, which has
no long-range part. The second-order monopole polari-
zation potential is derived, and the s-wave scattering
is recalculated, with a monopole suppression factor
adjusted to give exact agreement with the scattering
length obtained by Schwartz. ' Without further adjust-
ment of the parameter, excellent agreement is also
obtained over the full energy range. In addition, p- and
d-wave phase shifts are computed, and the problem of a
position-hydrogen bound state is considered.

Scctlon IV con'tRllls R discussion and mentions R

variational extension of the present work.

II. THE ADIABATIC CALCULATION

In atomic units, with energy in rydbergs, the Hamil-
tonian for an electron at r and a positron at x in the
Geld of a proton Axed at the origin is

H=H, —V' '+ V(r,x),

H, =—V„s—2/r

V(r,x) =2'-' —ix—ri-'j.
The total energy E equals k' —1, where k is the positron
momentum, and below the threshold for positronium
formation k'& r.

Let us consider the following reason. able adiabatic
type of wave function Rs an approximate description
of the scattering:

*The main results of this paper were outlined in a talk given ~ ( *)=L~+«")&~()"(). (2)
at the American Physical Society, 1964 Chicago meeting Dlulj
Am. Phys. Soc. 9, 626 (1964)j. C'(r) is the wave function describing the ground' C. Schwartz, Phys. Rev. 124, 1468 (1961).

'M. Rotenberg, Ann. Ph s. (Q.Q.) $9, 262 (]962). (A long- s at of the hydrogen atom, satisfying the equation
standing discrepancy between the results of Refs. i and 2 seems
to have been eliminated. Both Rotenberg and Sehwartz have (K+&)c(r) =0. (3)
recalculated the Sturmian results, and have detected a numerical
error in Ref. 2 (private communications). ) x~(x) is a one-particle scattering function for the' P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).

4 A. Dalgarno and N. Lynn, Proc. Phys. Soc. (London) A7ll, pos'«o» and G(r,x) is an adiabatic correlation function,
225 (195'1). which describes the cGcct on the ground state of
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hydrogen of R fixed (or slowly 1110V111g) posltl'011 R't

position x.
Assuming that Eq. (2) represents the scattering

fairly weO, one inserts it into the Schrodinger equation,
uses Eq. (3) and obtains

[a+1—I jy,
=4(r) [1+G(r,x))[V(r,x) —V.'—II2]x(x)

+x(x)[[II„G(r,x)$—7,'G(r, x) )C (r)
—2C (r) V'.G(x,r) .|7.x(x) =0. (4)

In R subsequent p Rpcr this cquRtlon will hc used
varlR'tloliRlly (scc Scc.V) bil't liel'c ollc 81111ply lrillltlplics
on the left by C (r) and integrates over r. Defining

O.I5

O.IO

:0.65

(Q(r,x))—= d'r4(r)Q(r, x)C (r), (5)
-0.05

[ t . t [ 1
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k

Rnd Iioting that ([II„,G3)=0, ollc Obtallis tile followlllg
equation for x(x):
-(1+«))(~:+1')x+{V+V.)x

—(V','(G)+27'.(G) 17.)x=O, (6)

where Vl—= (V) and V1=(GV). Dalgarno and Lynn
have obtained the function G(r,x) correct to first order
in the potential V, as a solution of the differential
CquRtlon:

[G,II,]C (r) = (V—(V))4 (r) . (7)

For a first-order wave function (G) can be taken equal
to zero with no loss of generality. Hence the complete
adiabatic equation, correct up to second order in V, is

[—(~'+&')+Vi+ Vljx(x) =0 (8)

Here, Vi ——2e—' (1+(1jx)),while Dalgarno and Lynn'
have obtained

Vu=x '[5—(4x'+Sr+10)e '*+(4@'+7@'+8@+5)e'*
—2(&+1) (e-.+e-.) (Ei[2*j—2»[2v*j)
—2 Ei[—2x) ([x—1]'e'*+[x'+2m —3j

+4I ~+1)e-")f, (9)

where Ei[—sj= —J;"e "dy. y ', and. in' is Euler's
constant, 0.577. ~ .. For small values of x, we have
V~ —+ 2x '—2 and V2 —+ —1, while for large values of g,
we have V1-+ —4.5x '. The differential equation (8)
for the scattering of s waves takes the form

—U"+[VI+VI—k'jU=O, U=xx.

The equation was integrated numerically, using the
starting RpploxlIQRtlon

U x+x'——,'(1+k')x', (11)

which can be obtained from the above behavior of Vg

and V near @=0.For k/0, the phase shifts are obtained
easily from the large-x behavior of U and O'. For k =0,
the scattering length requires a correction, due to the
long-range polarization potential. ~ Figure 1 shows the

' A. Temkin, Phys. Rev. Letters 6, 354 (1961).

FIG. i. Phase shifts in radians for s-wave scattering. The curve
marked a=j. corresponds to the fuB Dalgarno-Lynn adiabatic
pOICI1't1al (Rd. 4) while et=0 colTcspOQIs to fU11 1110110p018
suppression. The triangles indicate Schwartz's r'esults (Ref. 1).

resulting phase shifts in comparison with those of
Schwartz. ' (The scattering length is —2.54 versus
8chwarts's —2.10.)

Notice that the adiabatic results indicate an CGective
interaction which is more attractive than that of
Schwartz. This is expected, since the adiabatic potential
RssuIQcs thRt thc hydI'ogcn RtoIQ CRQ lcRrrRngc ltsclf
to follow exactly the motion of the positron. This is
clearly not true even for zero energy, since the positron
accelerates toward the atom during part of its [classical'
tra]ectory, hut 1t becomes cvcn less true Rs 0 lnclcRscs.
These qualitative expectations are borne out by the
results of Fig. i.

In fact) thc Rdlabatlc potcntlRl ls llkcly to bc least
RCCUI'Rtc close to thc nuclcUs, Rnd Rny Rttcmpt to
improve the results of Fig. 1 IQust involve ways of
modifying the form of the potential for small g.

Thc derivation of pp hy Dalgarno Rnd Lynn uses
elliptical coordinates to solve Eq. (7) is closed form.
It Is Rlso possible, llowcvcl', to cxpalld G (r,x) in Lcgendrc
polynomials,

G(rp, 8)= g G (r,g)I {cos8),

where 8 is the angle between r and x, It can be easily
shown that for m&0 the leading term for large x falls
off like some inverse power of x. For m=0, however,
only short-range contributions occur. Nevertheless, the
1110110polc (8k=0) contribution 'to Vs ls 110't ncghglbic~
since it is eg6raly responsible for the short-range parts
of the potential Vg.

The monopole correlation function satis6es the
CqURtlon

(13)
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where

O.IS—

The modiied adiabatic calculation uses a parameter
0, to specify how much of the monopole correlation term
Go is to be retained in Eq. (12). That is, the modi6ed
potential

Vi+ Vs+ (rr —1)Vso (17)

is used in a Schrodinger equation which replaces Kq.
(8). Clearly n=1 corresponds to no suppression and
a=0 to full suppression of the monopole part of G.
The higher multipoles are assumed to require no
modldcRtlon.

By x'cpcatlng thc zero-energy CRlculatlorl foi VRrlous

values of 0., it is found that agreement with Schwarz's'
scattering length is obtained at n=0.1. Figure 1 shows

the phase shifts for this value of the parameter, as well

as those for 0.=0.It is clear that this latter value, which
corresponds to Vs(O) = 0, is also not seriously in error, '
yielding a scattering length of —2.07.

It is now straightforward to calculate the scattering
for higher partial waves. One simply adds the centrifugal
potential term and solves the equation

—Ui"+LVt+ Vs+ (rr —1)Vso

+l(l+1)x-s—k'jU, =O, (18)

with the starting conditions near @=0

P ~xi+i+ (l+ 1)-1xl+s

—
I ks+o.+21(1+1)-'$(4l+6) 'x'+' (19)

The results are shown in Fig. 2 for the value of +=0.1

o The desirability of having Vg(0) =0 has been indicated by
V. D. Ob'edkov, Opt. i Spectroskopiya 17, 189 (1964) LEnglish
transl. : Opt. Spectry. (USSR) 17, 101 (1964)g.

Inserting the appropriate forms for each of the potentials
as well as C =e "/s'" one finds

d'Go/dr'+2(1/r 1)—dGo/dr= Vo—Vi (14)

This inhomogeneous equation can be solved by
quadratures for both r~~x, and using the corresponding
homogeneous equation one obtains a complete solution
ln both rcglons, continuous Rxld with continuous dcrlvR-
tive cROed Pp, g.
F(———,'I Q(r)+2 Ei(2x) —e"/xj Vi

+I 1—x-'3Dnx —-'x3 —1, (15a)

4'——Vt *—'+ 1jonr 1/—2»j+ I
-', Vi—x-'j», (15b)

where

Q(r) =
I

es"—1jr '+2»+2Llnr —Ei(2r)j. (15c)

However, (F)WO, so the full solution is

O.I6—

O.I4—

O.I2—
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FIG. 2. Phase shifts in radians for p- and d-wave scattering. The
solid curves are for 0.=0.1, and the vertical bars indicate 0,=1.0
and +=0 limits. The triangles are Bransden's p-wave values
(Ref. 7); the lower bound given by Kleinman et u1. (Ref. 8) is
shown, for l=l, by the broken curve, and, for /=2, is almost
incHstinguishible from the a =0.1 curve, whj, le their extrapolated
values are shown (with estimated errors) by the dashed curves.

determined above, and the error quoted represents the
extreme values obtained for 0,=1 and 0,=0. Notice
the insensitivity of the higher phase shifts to 0., especi-
ally for small k. This is due to the fact that the cen-
trifugal potential keeps the positron so far away that the
short-range potential becomes unimportant. The results
are to be compared Dor l= 1jwith those of Bransden, '
obtained by including a virtual positronium term.
Kleinman, Hahn, and Spruch' have reported lower
bounds Rnd extrapolated values for l=1 and 2, which
are also shown.

There has been some recent intereste in the question
of the posslblc cxistcncc of R bound state of tIlc systcxQ
e+—e —I'. There is no evidence for such a state, and
the present calculation gives a nodeless k=0 wave
function, which supports the idea that no such state
exists. For some more massive positive particle a bound
state must occur, since the H~+ ion is bound. Handler'o
has used a Hylleraas trial function with up to 20 terms,
Rnd hRs shown that R posltivc particle of xnass ts ls
bound to the hydrogen atom if m&3m, . (The varia-
tional nature of the calculation does not rule out the
existence of a bound state for a still lower mass. ) The

~ B. H. Bransden, Proc. Roy. Soc. (London) A79, 190 (1962).
8 C. J.Kleinman, Y.Hahn, and L. Spruch, Bull. Am. Phys. Soc.

9, 39 (1964), and private communication.
9 C. Fronsdal and A. Ore, Physica 19, 605 (1953);M. R. Baker

and G. S. Handler, Bull. Am. Phys. Soc. 8, 631 (1963)."0, S. Handler (unpublished).
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nonvariational method described here can be easily
modi6ed to examine this question. One simply calcu-
lates the zero-energy scattering length for various
values of the mass m in the equation

—U"+tn[Vr+Vs+ (rr —I) Vsp]U=0. (20)

A change of sign of the scattering length indicates the
appearance of the bound state. For 0,=0.1, the critical
mass is 3.6m„while for a=1 it is about 3.1m, . Both
of these results are reasonable, but one expects n to
increase with m as the adiabatic model improves. In
any case, as ns increases, the effective attraction would
increase for other reasons (as the Hs+ limit is ap-
proached) and these results should be considered as
suggestive only.

IV. DISCUSSION AND CONCLUSIONS

1. The adiabatic method has been considered of
interest for some time. Its appeal lies in simplicity and
concreteness. Nevertheless, a general recognition of the
incompleteness of the method has apparently pre-
vented one from taking it quite seriously. The philoso-

phy behind the approach reported here is to use the
exact second-order adiabatic potential and then to seek
modifications. Earlier work usually began with rough
approximations to this potential, " a procedure which
prevents an easy evaluation of deviations from adia-
baticity.

The second-order potential used here is evidently
somewhat too attractive for s waves, and the excess
can be traced to the monopole or short-range part, and
corrected eGectively by adjustment of a single energy-
independent parameter. This is, in itself, a signi6cant
fact, and it remains signihcant although the adjustment
is only empirical.

2. One may question the great reliance placed upon
the second-order potential; surely higher corrections
might be significant and could change the qualitative
situation. In particular, the complete adiabatic potential
is known" and gives the potential-energy curve for the
H2+ ion.

An answer can be given as follows: The complete
adiabatic problem assumes two fixed positive particles,
in whose field one electron moves quantum-mechani-
cally. The electron can spend as much time in the
vicinity of the incoming particle as the target. This
evidently would be realistic for low-energy p-H scatter-
ing. For e+-H scattering, however, the small reduced
mass of the positronium system suppresses, to a large

"For example, the method of polarized orbitals fA. Temkin
and J. C. Lamkin, Phys. Rev. 121, 788 (1961)] uses a wave
function essentially equivalent to the present Eq. (2), but restricts
the detailed evaluation to the region r&g and a limited number
of multipole terms. For the electron-scattering problem the former
restriction introduces very little error due to the requirement of
antisymmetrization of the wave function of the electrons.

~~ E. A. Hylleraas, Z. Physik 71, 739 (1931).

extent, the exchange of the electron between the proton
and the positron. It is this necessary suppression which
rules out the use of the H2+ potential and favors low-
order perturbation theory. Nevertheless, these argu-
ments weaken considerably as the positronium threshold
k'=-', is approached, and some additional positronium
contribution to the wave function may be required for
l)0, as Bransden's workr (Fig. 2) indicates. In the
present context, additional positronium corresponds to a
closer approach to the H2+ potential and a consequent
increase in attraction. This question is presently under
investigation.

As the mass of the incoming positive particle in-
creases, also, one expects that the H2+ potential should
become increasingly realistic. Since this potential gives
greater attraction than does the second-order potential
(except at x=0 and x~ eo), the results of Sec. III
must overestimate the critical mass m necessary to
produce a bound state.

3. The wave function assumed in this work LEq.
(2)], with the monopole part suitably suppressed or
the short-range part suitably modified, is applicable
as well to a strict variational calculation. This will be
discussed in a subsequent paper. It suffices here to note
that an eGective one-particle equation will have to be
solved which contains (besides Vr and Vs) a third-order
potential, a "normalization factor, " and two terms
which give nonadiabatic eGects, including a velocity-
dependent term discussed previously by Mittleman
and Watson. "Separate variational parameters can be
used to measure suppression and other short-range
modifications of the higher multipoles. The detailed
calculations are rather complex, but a simplified three-
parameter variation has already produced the rigorous
upper bound' to the scattering length of —1.62.

4. Since it is at present too dificult to use the rigorous
variation methods of Schwartz' for several-electron
atoms, the adiabatic approximation for positron-atom
scattering should prove useful. Since there is no clear
way to determine the parameter n, one probably must
be satis6ed with using complete monopole suppression, '
0.=0. The simple shielded hydrogenic approximation
is now being employed in an attempt to compute the
low-energy scattering of positrons from helium.
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