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The electronic excitation transfer cross section between identical atoms in S and P states in the gas phase
was investigated theoretically in the low-incident-energy range by means of the impact-parameter method.
With respect to the P states of an atom, all three degenerate P states of mutually orthogonal polarizations
were taken into account. The direction of P polarization was taken into account using two different methods.
These methods were the "6xed-atom approximation" and the "rotating-atom approximation, "respectively.
The difference between the solution from coupled equations with respect to the direction of P-state polariza-
tion and those from the respective approximations mentioned above was studied. The fixed-atom approxi-
mation was found to be better than the rotating-atom approximation for the computation of the over-all
cross section of S-P—type excitation transfer. The cross section obtained from the coupled equations was
nearly one-half of that from the rotating-atom approximation and nearly 1.5 times as much as that from
the Gxed-atom approximation. It is shown that the total cross section can be written as 0.=3.36m-e2p2/Av,

where v represents the relative velocity of an incident atom, e the electronic charge, and p the transition
dipole matrix element between the S and P states under consideration.

INTRODUCTION

'HE collisional charge transfer problem H++H ~
H+H+ has been investigated theoretically and

experimentally by many authors. '—' On the other hand,
the electronic excitation transfer problem has not yet
been so actively investigated because the direct meas-
urement of the cross section is rather dificult. 4 However,
the process of the collisional excitation transfer has re-
cently been studied with respect to the basic mechanism
of the eGect of radiation on matter. Mori, Watanabe,
and Katsuura' investigated the problem of the elec-
tronic excitation transfer between identical atoms in
S and P states through dipole-dipole-type interaction
with two simple approximations concerning the direc-
tion of P-state polarization during collision. The
"6xed-atom approximation" is that in which the direc-
tion of P-state polarization is assumed to be fixed in

*The author is indebted to IBM Japan Ltd. (Tokyo) for the
use of an IBM "/090 computor in carrying out numerical calcula-
tions from matrix elements to transition probabilities and cross
sections.
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Scienti6c Publications Ltd. , London, 1964), Chap. 12.
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space as it is initially. The "rotating-atom approxima-
tion" is that in which the direction of the P state is
assumed to point toward the S-state atom during
collision. In the present paper we have treated the
problem in which a P-state atom is incident to an
identical atom in an S state with an arbitrary direction
of polarization. All three degenerate P states of mutually
orthogonal polarization were taken into account at all
times during the collision process. Either the S or P
state may be considered the ground state. The opposite
state will then be the excited state. We also restrict
ourselves to the case where the relative kinetic energy of
atoms is so low that we can apply the impact parameter
method extended by Gurnee and Magee' with high
accuracy. Since the problem can be treated by the use
of a classical procedure, the probability of excitation
transfer from one atom to the other during collision
is determined by the impact parameter of the incident
atom. The cross section of the excitation transfer is
obtained from the probability by integrating it over the
impact parameter.

When a P-state atom with a certain direction of
polarization is incident and interacts or collides with an
S-state atom, both of the following processes are
possible: (1) the interchange of the excitation between
the S- and P-state atoms and (2) the change in the
direction of the polarization of the P-state atom with
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the 5-state atom still in the same 5 state. The transition
probabilities of all the conversion and transfer processes
as well as the total cross section of excitation transfer
were obtained.

The comparison was made of calculated results
without any approximation with respect to the direction
of the E-state polarization (the results from coupled
equations) with the values obtained using the two
approximate methods. The relationship between the
calculation from the coupled equations and that with
the rotating or the axed-atom approximation was also
discussed. Some remarks concerning 8' value measure-
ments in gas-phase experiments and gas-laser experi-
ments have been given.

FORMULATION

Consider the case where an S-state atom (A) with
a nucleus 2 and Ã electrons @=1, 2, ~ 37, exists at
rest at the origin of the coordinate system, and a
P-state atom (8) with a nucleus 8 and g electrons
v= X+I, %+2, 2N, is incident along one axis of the
Cartesian coordinate system, the f axis, with impact
parameter E0 as shown in Fig. 1.The g axis is taken to
be orthogonal to the t axis in the plane of the two nuclei
and the t axis is orthogonal to the other two axes. In
this treatment only the cases where the cross section
of the excitation transfer is so large that the cIRssical
trajectories of the incident atom are straight lines will
be considered. The direction of the E-state polarization
can be expressed by each axis component denoted by
I'~, I', or Et according to the vector model of the
electronic angular momentum. Then, the problem under
consideration is that of transition among the six states,
i.e., Pg state of A atom and 5 state of 8 atom, 5 state
of A atom and I'~ state of 8 atom, and so on. These six

TABLE I. Six states of the system of two identical
atoms under consideration.

1
2
3

5
6

Incident atom
Wave function (8 atom)

$3
f4
$5
$6

Collided atom
(A atom)

where E is the total energy of the system, and C; is
the codBcient of each state eigenfunction and the
function of time t or internuclear distance R Let 3C be
the total Hamiltonian, X() that of two atoms at an
in6nitc distance Rnd K thRt of their lntcI'action, l.c.

X=Xp+X'.

Since the electronic interaction at large internuclear
distance will be important in the excitation transfer
process, the exchange between an electron p in 3 atom
and an electron v in 8 atom can be ignored. Accordingly,
every state f; is assumed to be a single product of the
respective self-consistent Geld (SCF) wave function of
an atom 2 and an atom 8 as expressed by

states may be denoted as states 1, 2, ~, and 6 as
shown in Table I.

The electronic state 0 of the two-atomic system can
be assumed to be expressed by the linear combination
of the above six states fg, $2, $6, as

0'= e&'~'@' P C (t)P i = I 2 ~ 6

I ncident atom
(8 atom)

0 axis

g axis

us A

The function 4 should satisfy the Schrodinger equation

i'�(8%/Bt)=X%.

A solution of @ can be obtained, if all the C;(t) are
known for each value of t or E.. Out of all possible
solutions of 0', it is necessary to obtain the final value
of every I C;I' at t= ~ under the various initial condi-

i&5 at t= —~. The cross section for each transition

0;;can be evaluated from the expression

an electron i

Oo!Iided atom
(A atom)

FIG. 1. Two identical atoms in an excitation transfer process.
Atom A is located at rest at the point E0 distant from g axis.
Atom 8 moves along the g axis with a constant relative velocity
v from g= —~ to g=+c).

~;~j——2&

where C;(~) is the solution under the initial condition
I~'I'=» Ictl'=0 for iSj.

The method of Gurnee and Magee' can be extended

by analogy to the case of six states of the system
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&ore, =&/; (i=1, , 6), where the solution of the
Schrodinger equation for 4 leads to the equation for C;: P orbitaI $ 8XiS

Q H;,C; =ik Q S,;Cg for i, j=1, 2, , 6. (5)
XlS

In Eq. (5) H;; and S,, are given as

2N

f~' (r~~' ' ' ~rm)3. 0"(r~ ' r»)II «~«
Jtl, V

and

S'j= f (rl ' ' ' r2N)$ (rl ' ''' r2N) g ««
P, y V

(6)
Xls

ls

where iP; is expressed by the product of the SCF
electronic wave functions of atom A and atom 8 as
shown by (3).

K' can be expanded by using two-center expansions
at the positions of nuclei A and 8 with Legendre
polynomials. Note that the displacement vectors from
the nuclei A and 8 to the electrons p and v are r„, and
r„&, respectively. Since E))r„„rv& in the above case, K'
is expressed as a dipole-dipole-type interaction in terms
of r„„rvq, R, cos8„„cos8„q (the direction cosines of r„,
or r„z with respect to the t axis, respectively):

X'= (e'/R')lQ(r„. r„q) 3Q r—„.cos8„.r„q cos8„t) . (7)
P, , V P, V

Neglecting the exchange between electrons p, and v

from the orthogonality relation, Eq. (5) can be reduced
to

0 Hg2

H2g 0
0 0
0 0
0 0
0 0

0 0 0
0 0 0
0 H34 0

H43 0 H4g
0 Hg4 0

HG3 0 HGg

0 &C,
'

0 C2

H36 Cs
0 C4

II56 C5
0 . .CG

Cg

C2
=ih C3 . (g)

C4
C5

,CG

Using u& ~, u4 for C3, CG which are dered by
the relations

ug= Cg+C4,

u2 ——c5+c„
u3= C3—C4,

u4 ——Cg—CG,

Eq. (8) can be reduced to three sets of simultaneous
equations for C& and C2, u& and u2, and ua and u4.
Introducing the axes 0., ~, rr instead of the axes $, g, i as
shown in Fig. 2, f&b fr „, PJ r can be expressed by the
angle between g and 0., 8, and the usual P-state eigen-
functions |tz, Pz~, fr characterized by t-he directions
of a, x, f.. Accordingly, every matrix element of the
equations can be expressed in terms of the internuclear
distance R, the angle 8, and transition-dipole matrix
elements p, with

FIG. 2. Coordinate systems of r, ~, vr, and g, q, g.

wheren, P= a or b; X=0,s, or vr; and rq„means X compo-
nent of r„.Then the following equations can be obtained:

0 1 Cz

0- -C2-

d Cg

dX C2

3g2—2

—3x(1—x')'"

3g2 2

—3x(1—x')"'

—3x(1—x') '"- -ug-

1—3S2 u2

—3x(1—x') "'- -ug-

1—3$2 u4

uy

dx u2

(12)

(13)

Q H;,C;*=—ikc;*.

The inner product of (Cq*, Cm*, , C~*) or (C~, C2,
C6) and each Eqs. (14) in matrix form can be written as

Q Q H;,C;*C;=ibg (C;*C;)
i

with i.= eu'/ihRO'e and x= sin8. In the above equation,
the initial and the 6nal states correspond to the states
at x= —1 and +1, respectively. When an incident atom
has an arbitrary direction of P-state polarization, the
6nal probability can be obtained from appropriate
linear combination of the final values of C, using the
three initial conditions jC, ~'=1 fori=1, 3, and 5.

From the Hermitian property of H;, and orthogonal
property of f;, the conservation rule that g;

~
C;

~

'
=const can be derived. In Eq. (5),

Hg= H;;* and S;,=6,;
so that

Q H;,C;=ibC;,

IJ= 4' s 2 rx 4'pz& II« (10) Q Q H;C,C,*= ik Q (C,C—;*).
i i
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Thcsc equations rcducc to

From the unitary property of
I
4

I

' and Eq. (16),

(16)

Denote a matrix L as

3$2 2

—3x(1—x')"'

and matrices L„as

—3x(1—x')"'
(22)

(1"I)
L.= L(x')dx' L(x")dx" L (gl I 1)dgl Il

In the approximation with which Eq. (8) was derived,
the following relations hold:

gn-1

L(x&"')dx&"& u=0 1 2 3 (23)

PIC;I'=&Vs for i=3, 4, 5, 6,
(18)

where L0 means the unit matrix. Then, the solution of
Eq. (13) is obtained, in the following form with above
notations:

MI+'Jjd'g= 1.

From the relations between the equations which are
satis6ed for u„u, and u„u, LEqs. (12) and (13)j,
ug(x) and u4(x) are obtained by replacing k by —k.
Since k is pure imaginary,

ui(x)*=u3(x), and up(x)'=u4(x).

Using these relations and Eq. (9), it can be shown that

-ui(x)
=E g k"L„(x)]

um(g) n-0

-ui( —1)-

u2(-1)
(24)

as shown in the Appendix.
When ui(x) and u2(g) can be obtained, the relation

(20) gives the excitation transfer probability from a state
i to a state jP;; funder the initial condition Reui( —1)
=1j as

Ca(x) = Reui(x),

C4(x) = Imui(x),

Cg(x) =Reum(x),

C6(x) = Imu2(x) .

(20)

P, g
——IReui(1) I',

2', 4
——IImui(1) I',

P, g ——IReug(1)l',

Z,„,= IImu, (1)I',

From Eq. (8) it can be seen that states 1 and 2 do not
interact with any other state in the case of dipole-
dipole type interaction. Thus, the case of initial condi-
tion ICII'=1or IC&I2=1canbetreatedseparatelyfrom
other ~ases. When ICII'=1 at x= —1, we obtain from
Eq. (11) and

k (Ci+C2) =d (Ci+C2)/dx,

k (Ci—C2) =d (Ci—Cm)/dx,

the same results as Grunne and Magee' at x= 1:
Ci ——cos(2ko),

Cg ——sm(2k 0),

C;=0 for i& 1, 2 with ho= —ik.

Because of the simultaneous property of the equations
for C~ through C& in Eq. (8), C~ through C6 can not be
solved by the same procedure. It will be convenient to
start with Eqs. (12) and (13) instead of Eq. (8). Since
one can easily find that Eq. (13) is the same as Eq. (12)
if k is replaced by —k, it will be enough to consider only
Eq. (12) under the initial condition of Iuil'=1 and

and so on. The excitation transfer cross section from a
state $ to R stR'tc J 0'; l ca11 bc cstlI11Rted fl'OI11 Eq. (4).

The fixed-atom approximation corresponds to the
approximation Hsq=B45 ——0 in Eq. (8). In this approx-
imation Eq. {12)has solutions

ui(x) = expL+k (x'—2x—1)jui( —1)
and

u, (x)= expl yk(x —x )ju, (—1).
(26)

Since Nq and Nm do not mix in the approximation, we
6nd

IRcui(x) I'=cos'I +k(x' —2x—1)$,
IImui(x) I'=sin'I +k{x'—2x—1)j,
I Reu2(x) I'=0,
I Imum(x) I'=0,

(27)

as in the case of initial condition ui( —1)= 1,u2( —1)=0.
In the case of initial condition ui( —1)=0, u2( —1)= 1,

IReui(x) I'=0,
I Imui(x) I'= 0,
IReum(x) I'=cos'I+k(x —g')j, (28)

I Imui(x) I'= sin'L+k (x—x')j,
can be obtained in a similar way. Thus, we can obtain
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$.0

FIG. 3. Probabilities
of the excitation transfer
Eq„; versus impact pa-
rameter Eo under the
initialconditionof ~Ca~'
=1 (an incident atom
is initially in E, state).

C

O

CO

P3-5

1.0 2.0
impact parameter R, (x ~v

)

3.0

the solutions of (12) in different forms:

-ut(x)- 00 -ut( —1)-
=exp(+k(x' —2x—1))(Pk"M (x)]

ua(x) u, (—1)

cients rt(x) and ra(g) change with x in the form

rt(x) =cosf—2k(x+1)]rt(—1)

ra(x) =sin( —2k(g+1)]ra(—1)
(32)

and
(29) Equation (12) can also be solved in terms of u-fold iter-

ation integral 0 (x) of matrix 0(x):
-ut(x)-

ua(x)

00 -ut( —1)-
=exp( —k(x—x'))~ P k"N„(x)]

e o =u, (—1)
(30) as

ut(x)

ua(x)

where M„(x) and N„(x) are similar u-fold iteration
integrals of matrixes

3x2 —3x(1—x')"'-

3(1—x')

-ut(x)-
=exp) —2k(x+1)][+ k"0 (x)] . (33)

ua(x)

and

M(x) =
—3x(1—x')'"

3g(1 g~)t/a-

3(1—2x')

The factor g k"0 (x) similarly means correction
from the rotating-atom approximation.

RESULTS OF CALCULATION

N(*)=
3(x'—1)

—3x(1—x')'"

—3g(1—ga) tra-

0 k rt(t)--
b 0 ra(t)

-r, (t)-
= its

ra(t)
(31)

as is L„(x).Comparing these forms with Eqs. (26) and
(28), one easily finds the factors P k"M„(x) and
P„k"N„(x) give corrections to the fixed-atom approx-
imationin the casesof theinitial conditions ut( —1)=1,
ua( —1)=0, and ut( —1)=0, ua( —1)= 1, respectively.

In the rotating atom approximation, the excitation
of an atom A transfers to an atom 8 by the equation

The calculations for each matrix component of L„,
M„, N„, and 0 have been carried out with aid of an
IBM 7090 computor. These calculations involve only
numerical multiple integration (from single integration
to 50-fold integration in this case). The numbers of
intervals used in the integrations, using Simpson's
method, were 64, 128, 256, 512, 1024, 2000. In the last
two cases, the calculated values are the same to within
the relative errors of 0.5)(10—' for e=0 20, 0.5)(10 '
for m=21 40, and 0.5)(10—3 for m=41 50.6

The transition probabilities and the cross sections
have been also estimated with the computor by the
four expressions, (24), (29), (30), and (33). The error
was evaluated by the deviation from the conservation

where b= —2e'u'/Za, rt(t) are the coeKcients of A atom
eTsntomn Watanabe, J. Fac. Eng. , Univ. Tokyo (to bein S state and 8 atOm ln P state and A atom ln E published). The tables for L.(1) through o.{1)may be obtained

state and 8 atom in S state, respectively. The coefB- by writing the author.
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FIo. 4. Probabilities of the

excitation transfer 9 ~; versus the
impact parameter R0 under the
initial condition of ICpl'=1 (an
incident atom is initially in I'~
state).

1.0

Impact prameter R, X ~ "
2.0 3.0

rulc (18) and also by comparing the solutions obtained
from the four expressions. The transition probabilities
are shown in Figs. 3 through 6 as the functions of impact
parameter Ro. The calculation is not so accurate in the
1'cgloll kp(= —'Lk))3.00) bccallsc tllc 'tl'allsl'tloll prob-
abilities do not always obey the conservation condition
(18) there. The transfer cross sections were estimated
from the equation

g, ,=2m. P;;(Rp)RpdRp+g;
&oe

@oc

EodRO

Rp.'= (e'pslhkp, v), and kp, ——3.00,

because the excitation transfer may be equally distrib-
uted to every state, on an average, in the cases 80&20,
(or kp) kp,).The respective cross sections were obtained
as follows:

o 1 s——3.14spsg'/hv, o s p
——1.04lrpsgs/hv,

gs~s=4.09mpse'/hv, os s=1.12prpse'/hv,

gs s= 1.12v.p'e'/hv, o s s= 1.05m''g'/hv,

opsis=

0.781m-y, 'e'/hv.

The total excitation transfer cross sections to the
other atom in the cases where the directions of P-state
polarization are initially on $, li, l axes are

o s
——o.l„s——3.147''e'/hv,

op= gs~s+gs~s= 5.13' o /Av y

or=os 4+gs p
——1.83vp'e'/hv,

respectively.

Thus, mean excitation transfer cross section 0- can be
written as

o'= s (g$+gp+gr)
=3.36lris'g'/». (37)

This value can be compared with that obtained from
the rotating-atom approximation (xs)lr'issg'/hv and that
obtained from the fixed-atom approximation 2lr'use /hv.

The magnitude of mean excitation cross section is

nearly one-half of that given in the rotating-atom case
and nearly L.S times as much as that given in the 6xed-
atom case.

TAB&.x II. Some typical cross sections of the excitation transfer
between identical atoms in thermal energy.

Atom
(3f=mass
number)

H
(M=1)

He

Ll
(m=7)

Ne
{m=20}

Na
(M =23)

Ar
(3f=40)

Ground and'
excited states

(transition}

15—2I'
1S—3P
15—4P

1 '5—2 'I'

1 15—3 1I'
1 '5—4 'I'
2 'S—2 2I'
225—3'P
2 25—4 '2I'

2P6 'SP —2P 5(2E112)3g 'P1

3 '51(2—3 'E1(2

3 '51m —3 'I'3/2
35—4 2I'

3p' 'Sp 3p '('Pyn)4s 'Pi—

Cross section' of
excitation transfer

1.32X10&
2.12X10'
7.37X10
1.06X10

(8.42X 10'}'
2.60XHP
9.52X10
3.2 X104
2.0 X102
1.9 X10~
2 X10'

4.9 X104
5.8 X10~
4.3 X10'

Oscillator strengths and transition wavelengths are obtained from
Landolt-Bernstein Zahlenmerte und Punktionen, 6 Au+age (Springer-verlag,
Berlin, 1950), Vol. I, Chap. 1, p. 2M.

b The value of oscillator strength is obtained from W. F. Miller and
P. L. Platzman, Proc. Phys. Soc. (London) AVO, 299 (1957).



COLLISIONAL EXCITATION TRANSFER OF 5-P TYPE A 1579

1.0

Fzo. 5. Probabilities of the
excitation transfer from an
incident atom to a struck atom
P, and P~ versus the impact
parameter R0 under the initial
conditions of ( Ca )

e = 1 and
( Ce ('= 1, respectively.

o 0.5k
O

tfJ

etj

P

1.0 2.0

impact parameter R, (X ~v
)

3.0

In order to obtain the excitation transfer cross
sections in gas-phase experiments at room temperature,
the relative velocity of the atoms in thermal motion is
adopted to the value of p in Eq. (37).The mean excita-
tion transfer cross section o in a gaseous system at
room temperature is given as

o = 238@'QM, (38)

where M is the mass number of the atom. ' The cross
sections of the excitation transfer in some typical
cases are tabulated in Table II.

The summations P,=s' Ps; and P; s'Ps; are cal-
culated for a given kp(R) from kc ——0 through ks=10
by the four methods of solution. From the largest
magnitude for k~ for which the conservation condition
(39) is fulfilled, one can select the most appropriate
expression to use. The critical values of ko are obtained
as shown in Table III. From the magnitude of the
matrix elements of M„(1), N„(1) and O„(1), the
excitation-transfer probability curves versus Eo in
Figs. 5 and 6, and Table III, the method of expansion
based on the rotating-atom approximation is considered

DISCUSSIONS

The impact-parameter method including the straight-
line trajectory which was adopted in the present
approach should be appropriate for the discussion of
the problem concerning large transfer cross sections.
The expressions (35) through (37) will be valid for the
cases in which the cross sections are estimated above
the order of 10'trac'. The results (35) through (37) will
be valid for p'QM)10 tac' in the cases of thermal
motion. This condition may hold in almost all S-I'-
type transitions of atoms. The matrix elements in O„(1)
for comparatively large e are larger than the corre-
sponding elements in M (1) and N„(1).' This feature
shows that the convergence of the series (33) is not as
good as that of the series (24), (29), and (30). The
conservation property (18) can be expressed as

6 6

2 2's-f=1, 2 ~s-i=1.
j=3

(39)

' In the previous paper (Ref. 5), the mean excitation transfer
cross section was estimated with the rotating- and the 6xed-atom
approximations for the case where an atom was incident with
thermal velocity and the other atom at rest. The relative velocity
of two identical atoms both in thermal energy is V2 times as much
as that of the incident atom in the former case. The cross section
of the excitation transfer between two identical atoms in thermal
motion is 1/K2 times as much as that in the former case.

Conservation
property Expansion used

Critical
(maximum) ko

based on the initial state
[Eq (24)3

3.20

based on the initial state
[Eq. (24)j

3.30

6

Z P5,;——1

6

Z Ps; ——1
i=3

based on the g-polarization
fixed atom state [Eq. (29)g

based on the q-polarization
fixed atom state [Eq. (29)j

based on the g-polarization
fixed atom state [Eq. (30)j

based on the |-polarization
fixed atom state [Eq. (30)g

3.00

3.10

3.00

3.10

based on the
state [Eq.

rotating atom
(33)j

2.70

based on the rotating atom
state [Eq. (33)j

2.30

TABLE III.The value of maximum k0 for which the conservation
ProPerties Z; ee Pe„, 1and Z;:e Pe, ——1——[Eq. (39)g obtain
within the error of 0.5X10 '.
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P].P~.(.P .

i L
'I.O 2.0

Impact Parameter R, (X ~v
@frt /

FIG. 6. Probabilities of the
excitation transfer from an
incident atom to a struck atom
P~ versus the impact parameter
Ro under the initial condition
of (Ctle=1 (an incident atom
is initially in Pp state), and
probabilities with the Gxed-
atom approximation under the
respectIve initial conditions of
Ictl'=4 leal'=t »d Ical'

Pf $p Pf re Pf f and that
with the rotating-atom approx-
imation P„. (Probabilities Pg
and those with the Gxed-atom
approximation under initial
conditfonof )C, )a=i»a [Ca)e
=1 are identical with each
other. Probabilities with the
fixed-atom approximation
under the initial condition of
)Ca)a=i Jrr ta zero owing to
the symmetrical property of
electronic wave function with
respect to incident atom path. )

to yield the largest amount of error among these
methods. Thus, it may be concluded that the 6xed-atom
approximation may be better than the rotating-atom
approximation.

Since the transfer cross section is extremely large
compared with that of other collision processes, this
excitation transfer process may play an important role
in gas-phase experiments in which electronically excited
atoms are involved, such as, measurements of 8"values
in the radiation effect on gaseous systems, experiments
with gas-lasers, gas-phase experiments in photochem-
istry, experiments on magnetohydrodynamic power
generation) etc.

In these experiments, one can classify thc gas pressure
(in this case the ground state of the atom is restricted to
S or E state) into three regions according to the process
of 5-P-type excltatlon transfer. The 6rst region ls a
low-pressure one in which the excitation transfer
scarcely occurs during the life-time of the excitation
ulldcl consldcrat1on (independent cxcltatloll I'cgloll).
Thc second 18 a middle-prcssure 1cglon where thc
excitation transfer occurs during the life-time of the
excitation, but not as frequently since the mean free
path of the excitation transfer is smaller than the mean
distance between identical atoms (excitation transfer
region). The last is a high-pressure region where the
excitation transfer occurs so frequently that the mean
free path of the transfer exceeds the mean distance
between atoms (collective-excitation region). In the
last case, the excited state of an independent atom is
not in a good eigenstate, and the "exciton state" or the
"collectively excited state" should be taken into
account.

The lower limit of thc excitation transfer pressure
region Pg can be obtained from the following relation:
The mean free path of the excitation transfer / equals
the excited-atom range r, as l=ree Here i=Toe; Eo is

the concentration of the identical atoms and r,=mr,
v being the life-time of the excitation. Since z. is expressed
in terms of p and the emission frequency of the excita-

10$-

10-

Pf,

Pr, l=2OOOA

10'
10-s

Pf, l=3000A
I I I

10 * 10 I

Sguare of transition dipole mlnent p' (in frag)
10

FIG. 7. Three prcssure regions of the gaseous system of identical
atoms with respect to their excitation transfer and their critical
pressures versus the square of the transition dipole matrix el-
ements. (M is the mass number of the atom and X is the wave
length of the excitation. ) I. Independent excitation region;
II. excitation transfer region; GI. collective excitation region.
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tion coo„ass

r= (3/4) (kc /e )teen tt

Eg is written as

A(x) is a given tptXm-matrix function and k is a
constant. Our objective is to obtain a solution U of
(A1) with a given U(xp). Since (A1) is equivalent to

molar volume (~p.l'
Pt ——

I x I I, (~o)
~Avogadro number 3X3.36 E c I

which is independent of both p and e, and dependent
only on coo . The higher limit of the excitation transfer
pressure region E~ can also be obtained from the
condition that l equals the mean distance between the
identical atoms L(=Ep 'ts). Thus, one may have

U(x) = U(xp)+k A(s) U(s)ds,
SQ

one expects to have the solution in the form

U(x)= P k"A.(x)U(xp)

with Ap ——I, A„de6ned by

(A2)

molar volume ) 1
Ix

(Avogadro number) a P~'
A. (x)= A„r(s)dz, (N=1, 2, ).

The critical pressures P~ and Py, versus the square of
the transition dipole matrix element p2 are shown in
Flg. 7.
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APPENDIX

In order to solve Eq. (12), consider it in a general
form:

d U (x)/dx= kA(x) U (x), (xp&x), (A1)

where U= U(x) is the unknown m-vector function,

' L. I. SchiiI, Quantum Mecttanecs (McGraw-Hill Book Company,
Inc. , New York, 1955), 2nd ed., p. 261.

Actually, (A2) gives the solution if the series on the
right side converges uniformly with respect to x in the
interval in mind, say, on xo&x&x&. Suppose that
IIA(x)II is bounded by a constant Ez in the interval
xp&x&xr, where IA(x)II means the norm of the matrix
A(x), i.e., IIA(x) I

=max, ~pIIA(x) VII/II VII. Then it can
be easily veriied by induction that

IIA-(*)II
& (1/~!)(*—*o)"&~"=(1/~~)~~",

(tp= 0, 1, ~ ) (A3)

for any x in xp&x&x&, 3I& being (x&—xp)Xz. Noting
IIk

"A (x) U (xp) II
&

I
k I "A„(x)II II U (xp) II, it can be seen

that the absolutely convergent numerical series with
the ttth term

I
k

I
"M~"/tt! majorizes the series in (A2).

This implies the required uniform convergence and also
the estimate

II U(x) II &exp(Ik IM~) II U(xp) II, (xp&x&xr) .

Incidentally we see from (A3) that every matrix
element of A„(x) at each point x is of the order (const) "/
n! for large tp. This is also the case with L„(x),M„(x),
N„(x) and 0 (x).'


