SPIN-LATTICE RELAXATION IN Cs

a function of Hy?as have other workers at this frequency,
and the fact that Kissinger and Weidner! found no such
increase at higher frequencies indicates that this phe-
nomena is quite possibly a frequency-dependent effect.
While the dilution dependence of line 3 can be explained
qualitatively, the behavior of lines 1 and 2 is anomalous
and so far eludes explanation. The temperature de-
pendence indicates that cross relaxation and direct
processes are dominant over most of the temperature
range, but that the transition to relaxation governed by
indirect processes begins as temperatures increases to
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4.2°K. The fact that Kissinger and Weidner observed
no transition to indirect processes indicates that this
also is a frequency-dependent effect.
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The phonon is discussed as an example of a collective mode which restores a symmetry property (in this
case, translational invariance) to a system whose Hamiltonian is invariant under the symmetry operation,
but in whose ground state the symmetry is broken. The crystal lattice is first studied within the time-
independent Hartree approximation. It is then shown that allowing small time-dependent changes in the
Hartree field generates an equation for the normal modes of vibration. The three k=0 modes with w=0
are shown to represent uniform translations of the solid, as expected. The k%0 modes are analyzed to
extract those three which may be identified as one-phonon modes, and the contribution of these modes to the
free energy is computed. The recent theory of Brout is found to be equivalent to the Hartree approximation
with the further assumption that the atoms are infinitely heavy. No restrictions are made here on the inter-
atomic potential other than that a hard core is absent. The reduction of the present theory to well-known
results in the case of harmonic forces is demonstrated. An extension to include hard cores, analogous to the

Brueckner theory, is discussed.

I. INTRODUCTION

HE ordinary facts of lattice dynamics—the exist-

ence of phonons, the existence of a finite phase
velocity of acoustic phonons in the infinite wavelength
limit, a relation between phonons and atomic displace-
ments, and so forth—can all be regarded as manifesta-
tions of the theory of broken symmetry. The essential
idea of this theory is that it may be convenient to choose
“as zeroth approximation to the ground state (or equi-
librium ensemble) of a system, a state (or ensemble) in
which some dynamical variable X has a definite nu-
merical value X, even though it can be rigorously
shown that (X2)!27 X, or even though the fluctuations
of X in the true ground state (or true equilibrium
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ensemble) are infinite due to the uncertainty principle.
When such an approximation is made, it is generally
possible to study the elementary excitations of the
system in such a way that all the incorrect implications
of the zeroth approximation are removed and the
rigorous consequences of symmetry are recovered. This
usually implies a renormalization of the original ap-
proximate ground state (or equilibrium ensemble). In
this paper we shall demonstrate these ideas explicitly
in the case of a monatomic lattice.

In the case of a crystal lattice, the variable X is the
coordinate of the center of mass of the crystal. The
invariance of the Hamiltonian under arbitrary transla-
tions implies that the total momentum of the system is
a good quantum number and has a definite value in
equilibrium. By the uncertainty principle, the center-
of-mass coordinate which is canonically conjugate to
the total momentum must therefore have infinite
fluctuations at equilibrium. However, any useful start-
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ing approximation for the study of lattice dynamics
must assign a definite finite value of the center-of-mass
coordinate.

The most common way of doing this is by taking the
zero order of approximation to be one in which the
kinetic energy is neglected, so that each atom sits on a
definite lattice site. In the case of reasonably light
atoms this is a very poor approximation because the
zero point motion of the atoms must be quite large. In
such cases it is tempting to use a Hartree approximation
in zeroth order. This has been done for the solid rare
gases by Nosanow and Shaw.! In fact, the Hartree
approximation never gives terribly good answers for
reasons which we shall indicate very briefly later on.
However, it is interesting to see how, starting from the
Hartree approximation, one can study the elementary
excitations of the lattice and recover all the familiar
facts about phonons, even though a harmonic Hamil-
tonian never appears in the formulas.

We shall study the elementary excitations of a lattice
by the modern method of calculating the linear re-
sponse of the lattice to a suitable external probe and
looking for the analytic singularities of this response
function. If it is found that the system is capable of
absorbing energy from an external probe of definite
frequency w and crystal momentum k, then we may
conclude, at least at zero temperature, that there are
excited states of the system with energy w and crystal
momentum k (we adopt units in which #=1). We shall
use this terminology of excited states or elementary
excitations even at finite temperature, although this
interpretation is perhaps less justified in that case. The
term elementary excitation is really appropriate only
in the case when the singularity is an isolated one, i.e.,
a pole. A continuum of singularities, or branch cut,
obviously corresponds to multiple excitations. We shall
call “phonon” an isolated singularity in which there is
a finite displacement of each atom. In particular, we
shall calculate the displacement response, and we shall
denote by the term “phonon” an isolated singularity
of that response function. One can argue quite generally
that for any self-consistent calculation there must be
such a singularity for k=0, and that the frequency at
which this singularity occurs must be zero. This is
simply a consequence of the translational invariance of
the Hamiltonian, together with the corollary fact that
the total momentum commutes with the Hamiltonian.
If the interaction between the atoms is not of very
long range, we may expect that phonons also exist for
finite k. Since this is essentially a continuity argument,
it really applies only in the case of small &, that is, long
wavelength or sound waves. Although we shall produce
large and involved formulas which apply for arbitrary
wavelengths, we cannot make any such assertion about
what happens at wavelengths comparable to the lattice

spacing.

1L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).

D. R. FREDKIN AND N. R. WERTHAMER

Our calculation is simply an application of the time-
dependent Hartree approximation. That is, it is an
application to the dynamics of the crystal lattice of the
ideas used by Ehrenreich and Cohen? in the study of the
electron gas and of the ideas of Vlasov and Landau3
in the study of classical plasmas many years ago. We
make the approximation of letting each atom have its
own private density matrix. We write a Liouville equa-
tion for the motion of this one-atom density matrix
in the presence of a self-consistent field produced by all
the other atoms. This self-consistent field is, of course,
itself in motion. That is, it is consistent with the moving
single-particle density matrix, not with the static or
zeroth-order density matrix. It is this element of self-
consistency which restores all the consequences of
symmetry and therefore produces phonons to restore
the translational invariance of the system. We include
an external force in the Hamiltonian which has the
general form of a sum of terms, each of which refers to
a single atom. We calculate the (in principle self-
consistent) linear response of the single-particle density
matrix to this force. Through the use of the fluctuation-
dissipation theorem, we are then able to obtain such
things as the autocorrelation function of the atomic
displacements with one another and the correlation
function of the particle density with itself at different
times. The displacement response quite clearly shows
collective excitations or poles, which we call phonons,
and higher continua of excitations, which we can
alternately think of as multiple-phonon states or as
localized excitations in which individual atoms oscillate
in excited single-particle states. It is clear that these
two descriptions overlap, and the former is the more
customary one. However, in the present formalism the
localized excitation point of view seems most natural,
and we hope that this provides an alternate point of
view to the study of multiple-phonon effects and an-
harmonic effects. Of course the so-called multiple-
phonon effects, which occur in the displacement re-
sponse function, are related to the phonon self-energy
function or polarization function. Similar continua arise
in the density-correlation function, or form factor,
where they presumably have to do both with the single
phonon polarization function and with the possibility
of producing several phonons in, for example, inelastic
neutron scattering.

In the next two sections we shall develop the for-
malism of the time-dependent Hartree approximation,
using a notation which is conveniently adapted to the
assumed crystal-lattice symmetry. Although the nota-
tion necessarily is somewhat cumbersome, it should be
remembered that we are actually doing a very simple
thing, namely, we are calculating a self-consistent time-
varying single-particle density matrix. It should be
borne in mind that this calculation is interesting not

2 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
3 A. Vlasov, J. Phys. (USSR) 9, 25 (1945); L. D. Landau,
J. Phys. (USSR) 10, 25 (1946).
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merely because it shows how translational symmetry
can be restored to the Hartree approximation; it also
shows how, starting from a self-consistent calculation
of the ground state, one can calculate response func-
tions and therefore spectra of elementary excitations,
which retain all the symmetry properties of the Hamil-
tonian simply by maintaining in a dynamical calcula-
tion the self-consistency that was built into the static
calculation.

Also in Sec. III, a number of properties of the
equations are discussed; in particular, the symmetry-
restoring k=0 phonon is shown to exist with zero fre-
quency. It is further shown that w? is always real, where
o is the energy of an elementary excitation, and (in an
Appendix) that w? is positive (w itself is real) if the
static Hartree calculation gave a local minimum of the
free energy.

In Sec. IV it is shown how the results of the dynami-
cal calculation just discussed can be used to obtain an
improved estimate of the free energy. It is conjectured
that the improved value is, in fact, always less than the
value calculated by the ordinary Hartree approxima-
tion. However, reasons will be given why this improve-
ment in energy is not expected to be particularly
significant, and the method of calculating the free
energy given in this paper is not expected to solve all
the difficulties of calculating the free energy of systems
such as solid helium. Finally, in Sec. V, in order to
make contact with the standard textbook results, the
interatomic potential is expanded in powers of the dis-
placements of the atoms from their equilibrium posi-
tions, and the usual results are obtained.

Because we are working in the Hartree approximation,
there is no possibility of including the effects of sta-
tistics on lattice dynamics. In a sense, this means that
we are in no way making a more truly quantum theory
of lattice dynamics than is standardly given. It also
means that it would be quite pointless to burden our-
selves notationally with the presence of spin, and so
we shall neglect this feature which to some extent dis-
tinguishes the lattice dynamics of solid He?® from He®.
However, as has been repeatedly stated, we hope that
the method presented in this paper does represent a
step in the right direction toward a true quantum
theory of lattice dynamics. It is entirely possible, al-
though somewhat more complicated, to apply the self-
consistent techniques exemplified here to calculations
in which the effects of statistics are taken into account.
When this is done in the case of solid He3, we may ex-
pect to obtain a sensible calculation of the dynamical
magnetic properties of that solid. In the last section of
this paper some discussion of the possibilities for the
future along these lines is given. In addition, some dis-
cussion is also devoted to the prospects for using the
techniques of this paper to treat anharmonic effects
without making an expansion in powers of the atomic
displacements.
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II. REVIEW OF THE TIME-INDEPENDENT
HARTREE APPROXIMATION

We first review the time-independent finite-tempera-
ture Hartree approximation, leading to single-particle
wave functions and to an upper bound on the system
free energy. In the present context, the Hartree ap-
proximation consists in writing the system density
matrix P(Xy,-«+,Xy; X1, + +,Xn’) as a factored product
of one-particle density matrices:

Pp(xy,- -+ xy; X1, x0') =ILips(x5%) . M
We choose a Hamiltonian for the system
=2 Xit3 2 Vi, 2)
7 %,7

where, in the coordinate representation,
Ki=—W/2M)V?, Vij=v(Xi—X,), €)

and we assume central forces. The Liouville equation
for the time-independent system density matrix is just

[PH,SC:l: 0 . (4)

Taking the trace of this equation over all but one pair
of coordinates gives us the single-particle equation,

[pi3C:E]=0, ®)

where 3C;#) is the Hartree Hamiltonian for the ith
atom,

5(1,‘(”) (Xz) = (h2/2M)V12

+2

i

dPxip; (X5,%))0(xi—X;) . (6)

At this point we must recognize that we are interested
in solutions of Egs. (5) and (6) which describe an
ordered crystal. That is, we expect the sth atom to be
localized to the immediate neighborhood of the ith site
of the crystal lattice labeled by position vector R;.
Except for this localization of each atom to its own
individual site, we should expect the motion of the
atoms about their sites to be similar. Thus, we make a
coordinate transformation and set

pi(xi,x{)=p(x;—Ri, x/—Ry). (7
The transformed one-particle density matrix satisfies
[p,3*]=0, ©)

3 (x) = — (h/2M) V2

+2

77#0

&Bx'p(x' X )o(x—x"+1), (9)

where = is a lattice translation vector and we assume,
for simplicity, a Bravais lattice. If we are correct in our
assumption that the system indeed forms a crystal
lattice, then the Hartree Hamiltonian 3¢ will have
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eigenfunctions ¢, (x), of which at least the lowest must
be localized to the region x=~0. Correspondingly, at
least one of the eigenvalues Q, must be discrete.

We find that p satisfies Eq. (8) if it is diagonal in the
a representation:

P(X,X/)=Z ‘Pa(x) ‘pa* (Xl)fa- (10)

It is well known that the lowest value for the free
energy, with respect to the class of density matrices
(10), is obtained when the distribution f, has the
thermal equilibrium value

Ja= B0/ ¢ 0%, (11)

Equations (9) and (10) take a somewhat simpler form
in the limit of zero temperature. Then

5O = — (Ji2/2M)V*

+§) @[ o (xX) [P0(x—x'+7), (12)

and we see that only the ground state Hartree function
¢o must be determined self-consistently.

If the interparticle potential v(x;—X;) is integrable,
so that V@) is everywhere finite, then the ¢, form an
orthonormal set complete over all space. Also, the
spectrum £, will then have a continuum above a certain
number of discrete levels. On the other hand, for inter-
particle potentials with a hard core, the Hartree po-
tential is infinite everywhere outside the Wigner-Seitz
cell. The spectrum is now purely discrete. Because of
this and other complications associated with hard core
potentials, we reserve the treatment of them to a later
publication and here only consider integrable potentials.

The system free energy computed with the Hartree
density matrix is

Fu=E—TS=Tr{Py(3c-+6" InPy)}
=Tr{2 piRit+3 2 pipf VB2 pilnps},

%] 7
F 13
G —B1In Y % (9
N ]
—HE fofu [ 0| o] ()
X3 v(x—x'+7).

770

The first term is just the free energy of a particle with
energy spectrum 4, while the second term is the usual
Hartree correction to avoid overcounting the inter-
actions. In the zero-temperature limit, we obtain the

ground state energy.
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III. THE TIME-DEPENDENT HARTREE
APPROXIMATION

A. Response to a Disturbance

We now consider the application of an infinitesimal
disturbance to the system, and examine the response to
this disturbance. We expect that the response will be
determined by the free modes of vibration of the system
about its equilibrium configuration and by the relative
strength with which the disturbance excites these
various modes. Stated differently, we expect the linear
response function to exhibit singularities, which corre-
spond to the low-lying excitations or collective modes
of the system. In the case of a crystal lattice, the col-
lective modes are traditionally termed phonons, and
their character is well known. We should hope to be
able to separate the collective modes found in our for-
malism into those identifiable as single-phonon excita-
tions and those corresponding to multiple-phonon
excitations. In particular, phonons of zero wave number
have zero frequency and represent uniform translations
of the lattice as a whole, whereas multiple-phonon
excitations of zero total wave number have finite fre-
quency and do not lead to any mean atom displacement.

To discuss the system response and low-lying excita-
tions, we introduce an additional term in the Hamil-
tonian, coupling an externally imposed time-dependent
perturbation to a one-particle operator. Thus,

=2 Kit+3 2 Vit e (xi—Re).  (14)
D) %,J 7

The perturbation of most interest in the present con-
text is a force acting on each atom, for which

JCie(Xi— Ri, t) =— Fz(l> . (Xr[— Rz) .

We again assume that the density matrix can be written
in product form

(15)

7XNI; t)

=H pi(xi-— Rq;, Xi’—Ri; )5) . (16)

. ’
Pu(Xy,- - X Xty -

The formal procedure now follows closely that of
Ehrenreich and Cohen,? who used the density matrix
and time-dependent self-consistent field approximation
in a study of the electron gas. We write the Liouville
equation for p;:

’iapi/alz [Jci+’()i(‘1>+3€¢8, pi] . (17)

It proves convenient to introduce a Fourier transform
with respect to the remaining lattice position dependence

pi(X,X'50)=N"1 3 e Ripy (x,x'51),  (18)
k

and

m<H>(x,t)=]\‘""IZ eik-Rika(x,j) , (19)
k
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where
Vi(x,)=2_ k" / @' pi (X', X' o (x— x'+7) ,
770
E/dsx’pk(x’,x’;t)vk(x— x'). (20)
The Liouville equation then becomes
i0px/dt=[K,px ]+N" 2 [Okr+3is o). (21)
k/

Since we are only interested in disturbances and re-
sponses which are infinitesimal, we set

px(X,X'; )= Now,00(%,X)+0pu(x,x';0),  (22)

where p(x,x) is the equilibrium density matrix given
by Egs. (10) and (11), and we linearize the Liouville
equation with respect to dp. Now that the equation is
linear, it is useful to Fourier transform the time de-
pendence, so that

wbpi=[3C 6px ]+ [0V i+3Cx"0 ] , (23)

where all the subscripted quantities now also depend
on w. Taking matrix elements of this equation in the
Hartree basis, we find

w(a|dpx]a’)= Qa—Qa){e|dpx )
+ (for—Ja) Zlerv ooy )y [opx )

+ (for— fo){a| 5[ a).

It is worth noting the explicit expression for {a|3Cx*|a’)
in the particular case of the displacement coupling: If

(24)

F:()=(2aN)1 Y / dwe?Ri—iwtFy () (25)
x
then from Eq. (15),
(a|%ext|a’y=—Fr(w) (@] x]d). (26)

We may simplify Eq. (24) if we assume that the wave
functions ¢, are real. This is guaranteed by the choice
of standing-wave boundary conditions. Then it proves
convenient to divide {a|dp|a’) into an “even” and
“odd” part:

<al 3p|a')= Eaa"""’aa'; <a, | 6p]0[>= Eaa’ TNaa (27>

where (£,7) depend on (k,w). With the further notation
Qaa'EQa*Qa’: faa’Efa—fa’;

we have the simultaneous equations

(w_ﬂaa') (Eaa’+"7aa’)+faa’ Z(CY‘Y [ Uk IO/’Y,>57~,'

vy’

= _faa’<algckela/> )
(w+9aa') (Eaa’_naa')—flﬂ!' ZKCK’Y I 'vkla/'y,)g’v‘/’

=+faa’<aigckela,>.

(28)
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Eliminating 74a,
(wz—ﬂaa’z)gaa' +Qaa’faa’ Z <(X'Y I Uk I a/'y/)gvv’

vy’
= _Qaa’faa’<a I :}Cke ia,> .
We may solve this formally for £qar:

Eaa’= —Z (m_l)ua’.‘y‘r'ﬂ“/v’f“ﬂ’('y]Jcke|'y,> ) (30)
7y’

(29)

where

Maar, 77 (ko) = (0?—~Qaar?)baar, vy’
+Qaa’faa’<a‘y|vk[a,’y’>‘ (31)

Thus, the displacement of atom ¢, due to a driving
force at atom j, is given by

8((xi— Ry))./6F; (1))
= (27!'17\7)-1 Zfdweik‘(Ri—Rj)—iw(t—t')
k

XR(k, 0+i0+), (32)
where
R(kw)=— ,Z ,<a| x| o) (M) aar, vyt
XQW'f'y'y'('YI X] 'Y/>- (33)

B. Normal Modes

Equation (29) determines the response £qos in terms
of the disturbance {«|3C¢|a’). In the absence of any
disturbance the homogeneous form of Eq. (29), (which
we may call 29h) yields the normal modes of free
oscillation of the system about its equilibrium con-
figuration. Thus, the response #(kw) will have poles
when w equals the frequency of a collective mode of
wave number k. Equation (29h) shows immediately
that if w is an eigenfrequency, then so is —w. It is also
straightforward to prove from Eq. (29h) that if w is
an eigenfrequency, then wx=w_x. These are properties
we would expect of phonon excitations.

It can also be shown that all eigenfrequencies of Eq.
(29h) have real squares, so that w is either real or pure
imaginary.* To demonstrate this, it is most convenient

4 It may be objected that similar mathematics could be used to
prove the reality of the plasmon frequency in the electron gas,
whereas it is well known that at finite temperature, or at zero
temperature for sufficiently short wavelengths, the plasmon fre-
quency is complex (Landau damping). An easy, if not particularly
enlightening, reply is that the stability theorem proved in the
Appendix shows that the roots of Eq. (29h) are real, without
appeal to the argument in the body of the paper. A more proper
answer is that a complex plasmon frequency appears only upon
passing to the limit of infinite volume. Only then does the di-
electric function acquire a branch cut and hence an analytic
continuation off the “physical sheet.” The plasmon pole appears
on an unphysical sheet, whereas the stability theorem refers only
to the physical sheet. In the present case, according to the remarks
following Eq. (9), there is a finite gap in the spectrum of the time-
independent Hartree Hamiltonian, even in the limit of infinite
volume. Therefore, for long wavelengths there is no opportunity
for the phonon pole to appear on an unphysical sheet, given that
it is at the origin of the pgysical sheet for k=0. A second objection
to the simple argument in the text is that it leans on the choice of
real one-particle orbitals, which may be impossible in the presence
of spin-orbit coupling; in such a case, we must appeal to the sta-
bility theorem.
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to divide Eq. (29h) by (—Qa faar)¥?, which is real, and
to define £uar=fae (—Que faar)V/% Then

(0 —Qqa?) éaa' - (—Qaa’faa’)m(a')’ I Vg [ a"y')
7Y’
X(=Qyyr fyy) 1 é*/v’ =0. (34)

It is now readily verified that the kernel of Eq. (34) is
Hermitian, so that the eigenfrequencies w? are real as
stated. Furthermore, the possibility of w?<0 is elimi-
nated by the argument of the Appendix. There it is
proved that the normal modes about a thermal equi-
librium configuration have real frequencies if the con-
figuration, corresponding to a free energy stationary
point, is actually a local minimum and not a maximum
or saddle point. We have tacitly assumed throughout
that the crystal symmetry and lattice constants, chosen
for a calculation of the Hartree basis functions, do in
fact lead to a minimum of the Hartree free energy.
Normal modes with imaginary frequencies signal an
instability in the system, such that there is an alter-
native configuration of lower free energy which can be
reached through an infinitesimal fluctuation.

C. Atomic Displacements and One-Phonon
Normal Modes

We note that Eq. (29h) is a multidimensional matrix
equation, and for any given k will have many eigen-
frequencies. In order to pick from this large set the three
representing one-phonon modes, we consider the mean
value of the atom displacements associated with each
mode. The mean displacement of the sth atom is
given by

({(xi—Ri))=Tr{(x;— R)p:(0)}
- s / dweiERi-iote, (), (35)

e (w) Ezl(a] x| Yaar (ko). (36)

Multiplying the eigenvalue equation (29h) through by
{e| x|’) and summing over q, ¢/, one obtains

w? £k+2{ - <al X l a,>9ua’zgaa’

aa’

+<al X{a,)ﬂaa'faa’ ZK“’YI”kIa,’Y,)EW’} =0. 37

But
(o] x|/ )Qaar=(a| [, x]|a')=—i(a| p|a’)/M , (38)

and
(a|pleWaw = (a| [ p]|')

=Z:, f'w’(a'YlvOIa"YIx’Yl pl7Y). (39)
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Inserting Eqgs. (38) and (39) into (37), we find
We—iM 3 (a|pla)

aa’yy’

deﬂf’(“'y ‘ ('Uk— %) I"‘"Y’)Ew’ =0. (40)

We thus learn that for the k=0 modes, either w=0 or
the mode does not lead to a mean atom displacement.
In addition, the eigenvectors of the k=0, w=0 modes
may be exhibited explicitly:

faar (ko) =1N0x 0278 (w) faar{a f pla)-d,

where d is an arbitrary vector. Substitution into Eq.
(29h), together with Eq. (39), confirms that expression
(41) is indeed an eigenvector, while Eqgs. (35) and (36)
show that it represents, as expected, a uniform dis-
placement of the entire crystal by a distance d:

{xi—Ry))=d. (42)

We further note that there are only three such modes
which are linearly independent, and we identify these
modes as the k=0 phonons. We may tentatively identify
as multiple-phonon excitations the large number of
other modes with k=0 but ws£0; they would have, for
example, {(x;—R;))=0 but {{(x;,—R;)?))=0. Extend-
ing this argument by continuity to k<0, we should
expect that only the three one-phonon excitations would
appear as poles in the displacement response,® whereas
all normal modes, both one- and multiple-phonon ex-
citations, would enter into other responses such as the
density response.

(41)

IV. FREE ENERGY INCLUDING NORMAL MODES

One useful application of the response functions is
to generate a better expression for the system free
energy than that given by the Hartree approximation,
Eq. (13). This is because correctly including the zero
point motion of the collective modes must give a lower
free energy than when the collective modes are ignored.

The derivation of the free energy, using the response
functions, is analogous to that given by Englert and
Brout® for the case of a gas, where the potential energy
is small compared to the kinetic energy. In the case of
a crystal lattice the opposite is true, so we differentiate
the free energy with respect to the inverse mass (instead
of the interparticle coupling constant, as they did):

OF/d(1/M)=((: X p?)). (43)

5 This can be proved by introducing the projection operator 4 :
Acar,yy =ifaadle|pla’) (v x]y),

which leaves the displacements (e| x|’) invariant. Since Tr4 =3,
only three poles contribute to the displacement-displacement re-
sponse function. These relationships can also be seen from Egs.
(33) and (53) together with (38), from which we learn that the
free energy depends on

trR=M"1 2 Ayy,00 M Daar,yyr =M1 TrAM
aalsyy’
¢ F. Englert and R. Brout, Phys. Rev. 120, 1085 (1960).
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Hence

1M
F(M)—F(w)=/ dA/MKG 2 piNwr,  (44)

with the thermal average taken in a system with mass
M’. The right-hand side of Eq. (44) gives the free
energy arising from the collective modes.

One’s initial reaction is to interpret F(e) as just the
free energy of the system in which each atom is held
rigidly fixed to its lattice site, and which is readily
calculated as a lattice sum of the potential energy.
Upon further thought, however, one is tempted to
regard F(«) as the free energy merely neglecting
kinetic energy, so that an ensemble of static positional
configurations must be considered. Thus the Hartree
equation, with M — in Eq. (9), becomes

VI (X) 9a(X) = Qapa(X). (45)

The eigenfunctions are
pa(X) =83 (x—@),

where the index e becomes a position vector lying within
the Wigner-Seitz cell. Furthermore, the eigenvalues
satisfy

Qe=0VH (e)=3
770

& forv(a— o'+ 1)

=2 | d*v(e—o'+1) exp(— Q) /

7#0
f da exp(—B2).  (46)

The nonlinear, self-consistent Eq. (46) for 2, is identical
to that proposed recently by Brout.”® The correspond-
ing result for F(«) is found from Eq. (13),

Fo=F ()~ 3 In(M /2r1f)
1
=—p3 ln/d“a exp(—ﬁQa)—E/d3ad3a'fafa,

X> v(le—a'+7).

77#0

(47)

The quantity F.i, the classical Hartree free energy ex-
cluding the uninteresting kinetic zero-point contribu-
tion, is just Eq. (5) of Ref. 8.

Shifting temporarily into the Heisenberg picture, we

7 R. Brout, Physica 29, 1041 (1963).
8 R. Brout, S. Nettel, and H. Thomas, Phys. Rev. Letters 13,
474 (1964).
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can write

F(M)—F(x)

?

1M 02
=/ A/MM? S —(xe0) x:) e
0 dtat t=t!

(48)

But if we Fourier-transform the displacement-displace-
ment correlation function,

((x:()—R) (x;()—R,)))

= Q2eN) Y / duettc iRyl 0-C (k) (49)
k
and similarly transform the response function,
—i{(L(x:()—Ra),(x; (1) —R)I)O (=)
= QNS / daeite ®iR)=10OR (ka),  (50)
k
it is well known that C and R are related by
C(hw)=—2(1—e#)1ImR(k, w+i0+). (51)
Hence
e © dow M"w?
ran-r=)=— [ a0 [ =
0 — 27[' 1—‘ —Bw
XIm Y trR(k, w+i04+) . (52)
k

Since we can show that ImR (k, w+40+) is odd in w,
and introducing definition (47), we arrive at?

F(M)—Fy=— / "o /0 (/20

M

Xo? cothifw Y- Im tr[ R (k, w430+ )
k

— /M) lim MRk, 0+i0+) 7. (53)

M >0

The response function R (kw) is exactly that of Eq. (33).
Equations (53) and (33) are the desired expressions for
the free energy. Further attention will be given to
them in the next section, in which the harmonic ap-
proximation is developed with our formalism.

It is worth pointing out one apparent ambiguity in
formula (53). The mass integration calls for the
evaluation of the phonon spectrum of a system with
atomic mass M’, in equilibrium. But a system of mass
M’ in true equilibrium will have a lattice constant
smaller than the same system of mass M, if M'>M.

9 It is amusing to note the coth factor in Eq. (53), showing that
the free energy automatically regards the phonon modes as bosons
and allows for their multiple occupation without having to postu-
late separately a boson field.
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(The larger zero-point motion of a lighter system tends
to expand the lattice.) Thus it would appear that the
mass integration must also integrate over implicit
changes in the lattice constant. However, all our
calculations are being carried out with the constraint
of constant volume. The phonon spectrum for mass M’
is to be computed assuming sufficient (negative) pres-
sure applied to keep the lattice constant fixed. If this
were actually done in the laboratory, of course, the
crystal might well shatter into two or more smaller
pieces, but mathematically it is unlikely that the
Hartree equations are subtle enough to signal this
possibility by developing instabilities. The worst diffi-
culty we should expect in using formula (53), if we were
particularly unlucky, would be the development of
imaginary collective mode frequencies, indicating a
shift to a new crystal structure which again filled the
entire volume. Nevertheless, it seems physically less
likely that the constrained fixed-volume crystal would
undergo symmetry changes than would the free un-
bounded crystal, if we were able to alter the mass.

V. REDUCTION TO THE HARMONIC
APPROXIMATION

The development presented so far has, of necessity,
been quite formal and nonspecific. This is because we
have constructed a framework within which it is
possible to discuss both one- and multiphonon proc-
esses for an arbitrary (but nonsingular) interparticle
potential. The analysis of the formalism becomes much
more transparent if we specialize to the harmonic
approximation, and use our equations to obtain the
standard results for this simple case.

The harmonic approximation consists of assuming
the interparticle potential to vary slowly over distances
comparable to the atom displacements, no matter how
close the atoms are to each other:

2(x—x'+2)=20(x)+ (x—x') - Vo(x)
+3(x—x) (x—x):VVo(s),

for all =5%0. With the further simplifying assumption
of cubic symmetry, we then have

V) (i) 1
_y v<e>+—[x2+z fa f a5 | ¢a<x'>t2x”]%>: V()

770 2 7#0

(54)

=wot3 @+ ((#*))w2. (55)

The Hartree functions ¢, are harmonic oscillator eigen-
functions, with eigenfrequencies

Qa= ‘ZU0+%‘ZU2<<9C2>>+ (a+%) (‘ZU2/M)1/2 )

where « is a non-negative integer. The Hartree free
energy expression (13) is readily evaluated, yielding

(Fu/N)  =%wet367 In[2 sinhd@(ws/M)12]. (57)

harmonic

(56)
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Proceeding to the response function, Eq. (29) re-
duces to

((-')2_90101’2) Eaa’ _Qaa’faa’<a] x!a’)

e TVVY(1) - e = —Qaar faer (| 3Cx®| ),
770

(58)

and the mean displacement ¢ is found by a reduction
similar to that leading to Eq. (40):

MoPex—3 (e "—1)VVo(x)- ex=1(([p,5Cx])). (59)

The eigenvectors ey, and eigenfrequencies win of the
homogeneous form of this equation

Mowean—2 (e —1)VVi(z)- ea=0,
A=1,2,3 (60)

are just the usual phonon polarizations and frequencies
as ordinarily computed in the harmonic approximation.
Thus

ek=% e’ (W —wn?) M ([p,5x])). (61)

If the perturbation couples to the atomic displacements,
Eq. (15), then the displacement-displacement response
function is just the usual phonon Green’s function,

R (ko)=—02/0Fx=M"1 3 enen*(@W—wn)™. (62)
)

Using expression (62) in the formula (53) for the free
energy, and noting from Eq. (60) that wi,«< M2, we
arrive at

F/N=%wy+N1Y B 1In[2sinhifwir]. (63)
kA

It is useful to compute the mean square of the phonon
spectrum. Multiplying the eigenfrequency Eq. (60) by
en*, and summing on k and A, we find

(3N)1 % wl=ws/M. (64)

Comparing with Egs. (57) and (63), we learn that the
Hartree free energy in the harmonic approximation is
equivalent to that calculated from an Einstein phonon
spectrum with frequency equal to the root-mean-square
of the true phonon spectrum. Furthermore, since

g(x)=p"" In(2 sinh}px)

is convex upwards for ¥>0, the free energy (63) is
always less than the free energy (57). It is plausible
that this property holds more generally, independent of
the harmonic approximation. In simple models of a
phonon spectrum, however, this lowering is quite small.
For instance, if the phonon spectrum is assumed to be
simply wir=sin(mk/2kmax), then at T=0 the phonon
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zero point energy is only 139 less than the Hartree
zero point energy.

VI. DISCUSSION

The introduction and development presented thus
far have been of quite a formal nature. The central
issue has been the explicit demonstration of the existence
of phonons, even in highly anharmonic crystals, as ex-
pected from general considerations of translational
symmetry. It is natural, however, to enquire to what
extent the present viewpoint and formalism can be
used for actual calculations of the lattice dynamics of
real anharmonic crystals. There are a number of
physical systems where the traditional theoretical
approach, that of expanding the potential in powers of
the atomic displacements through quartic terms, is
entirely inadequate. Conspicuous examples are the
solid heliums and solid molecular hydrogen isotopes,
where the atomic masses are very light and the zero-
point motions large, or the paraelectrics of the SrTiOs
family, where the polarizabilities are large due to the
incipient crystal structure instability. It could be hoped
that the present formulation would be applicable in
these otherwise difficult cases, but not until several
generalizations and extensions have been made.

The most significant generalization necessary is to
take account of the hard-core potentials between atoms.
As remarked earlier, the Hartree approximation in the
case of hard cores confines a given atom entirely to its
own Wigner-Seitz cell, with an unrealistically large
kinetic energy. It seems intuitively clear that by moving
its neighbors aside appropriately, an atom should be
able to penetrate into adjoining unit cells. However, to
achieve a complete description of these effects would
require dealing with several-body correlations, a diffi-
cult task for currently available many-body techniques.
A reasonable compromise program would be to con-
struct an analog of the Brueckner theory® of finite
nuclei, by including two-body correlations in the ladder
approximation. Such a treatment would allow a pair of
contiguous atoms to interact via a softened ¢ matrix,
rather than the hard-core interatomic potential, and
thus to enter each other’s cells and even to exchange
positions entirely. Furthermore, the two atoms in inter-
action would be confined not just to the volume formed
by the union of their cells, but rather to a larger self-
consistently softened potential well formed by averaging
the ¢ matrix over the position probabilities of the re-
maining neighbors.

In addition, the exchange probability computed
from the properly antisymmetrized ¢ matrix might be
a good first comparison (provided ring exchanges of
three or more atoms simultaneously are not important)
with the exchange integral obtained from nuclear reso-
nance experiments in solid He3. The effects of particle
indistinguishability are thus being built in only to the

K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958), and references contained therein.

A 1535

same extent as are particle correlations, in contrast to
the situation, e.g., in the theory of the high density
electron gas.

It is expected that the formulation and development
of such a nuclear-like theory will be the subject of the
next article in this series.
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APPENDIX

We shall prove that if the time-dependent Hartree
method yields a complex eigenfrequency, then the orig-
inal solution of the time-independent Hartree equa-
tions does not correspond to a local minimum of the free
energy. It should be noted that the converse of this
statement is not true, although it is possible to com-
pletely determine the local properties of the free energy
functional from a study of the solutions of the time-
dependent Hartree problem. A similar result has been
obtained for the Hartree-Fock-Bogoliubov approxima-
tion,""13 but the present conclusions cannot be deduced
from that theorem.

We again choose the Hamiltonian of the form

=3 Kit+3 2 Vije
3

]

(A1)

Although trying to conform to the notation used
throughout the body of this paper, we do not here
require each atom to have the same mass, and so do
not Fourier-transform the site index. The density matrix
is again assumed to be factored,

P=11s:, (A2)

and p;=p.+8p;, where p? is the solution of the time-
independent Hartree equations,
p=exp(—p3C;)/Tr exp(—pIC; ).
GCi(”’ = :Krl‘z Trj'oijpjo .

(A3)
(A4)

For each particle we introduce the orthonormal set
|a?) of eigenvectors of 3¢, so that

gci(H) Iai>=Qai|ai> ,
pd=2|a) fa¥ (et ,

(AS)
(A6)

Jo'=exp(—pQ%")/2 exp(—pL7). (A7)

1 D. J. Thouless, Nucl. Phys. 21, 225 (1960).
2 N. D. Mermin, Ann. Phys. (N.Y.) 21, 99 (1963).
13 C, Bloch (private communication).
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We also define

Qaa’iEQai_Qa'iy faa'iEfai—fa'i- (As)

The site index on the vector labels will be suppressed,
since it can always be inferred from the index on the
operator whose matrix elements are in question. As in
Sec. III, the linearized homogeneous time-dependent
Hartree equations, after Fourier analysis in time, are

(w—Qaa;i)<alapi]al>
= '—“faa’iz Z<a7,l©ifla,7><’y|6pjl’y,>'

=i vy’

(A9)

On the other hand, it is well known that for any
positive semidefinite Hermitian operator P, with trace
unity, the functional

F{P)=TrP(5c+5" InP) (A10)
gives an upper bound for the free energy at inverse
temperature 8. The Hartree method consists of adopt-
ing the ansatz (A2) and determining the p; so as to
minimize (A10). The usual Egs. (A5)-(A7) result from
requiring the first variation of F to be zero. To investi-
gate whether a given solution of Egs. (AS5)-(A7) gives
a local minimum of F, we must look at the second
variation, F®,
Using Eq. (A2), we find

Flpp =2 TriXipit3 2 Tri,/Vijpip;

i7j
+61 T (), (ALD)
where
a(p)=Trp Inp. (A12)
Thus the second variation of F is
F® =33 Tr;Vidpdoit+B7 2 0@ (ps). (A13)
Py i
To determine ¢® (p), we write
dz zlng
o(p)=Tr p ——, (A14)
2wt 2—p

where the contour of integration encloses the real axis
in the counterclockwise sense and passes infinitesimally
to the right of the origin. Using the expansion

1 1 1 1
= + 3p
z—p%—0p 2z—p° 2z—p° z—p°

1 1 1
6p—0p
z—p® z2—p° z—p

+ +-

0
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in Eq. (A14), we find

oc®(p)=Tr @ —zlInz op op . (A15)
i z—p° 5—p° z—p°
Introducing the |a) representation,
D=5 § sl y—— (e fople)
@ (p)= — aldp|a’ o |6p|a),
aatJ  2mi (z—fa)Q\ ' .,:\
1 o (A16)
=—38 Z](Qaa/faa’xalspla ><a lépla).
Therefore
FO=33% 2 (a7 |Vgla vy |8pila)(v]opi]7")
=5 aa’ vy’ (Al’]
—} 5 Z Qawr/ faar el | 0pil a)er| Bpi ).

Next, let {a|8p;|a’) be a solution of Eq. (A9) with
complex eigenvalue w. In general, {«|3p;|a’) is not a
Hermitian matrix, and is therefore ineligible for sub-
stitution into F®. But we can insert

(alopila’)=p(a|dpi|a’)+u*(a’ |65l a)*,

into Eq. (A17), with 4 an arbitrary complex number,
and we find

Fo == 3 ¥l o) (@l 88 )] foar'

i aa’

(A18)

(A19)

This already shows that if w is pure imaginary, then
there exists an infinitesimal change in the set of density
matrices p; that only changes F by terms of third or
higher order. Except in highly unusual circumstances
(which sometimes occur because of symmetry when
»=0, but not otherwise) the third-order change in F,
due to the change (A18), will not vanish. By choosing
u properly, F® can be made negative. Therefore our
theorem is proved for w pure imaginary.
More generally, Eq. (A9) can be used to show that

© 2 X[ (o) faat

1 aa

=2 2 Qaa/ faar®) , (a]&i)‘ila'>]2

1 aa

(A20)
=2 X (e |Vl v) el 88 o/ V(v | 6851 7).

%7 aal vy’

Since the right-hand side of Eq. (A20) is manifestly
real, either Imw=0 or

T X {al8pil o) */ faart=0.

i aa’

(A21)

Comparison with Eq. (A19) shows that F®=0 if
Imw>#0, and so the full theorem is proved.



