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The general problem of the imprisonment of resonant quanta due to reabsorption has been studied for
phonons in a lattice of paramagnetic centers. Expressions for the apparent spin-lattice relaxation time
T~' and the width of lattice excitation b,vt, have been derived from several points of view as functions of the
spin-resonance linewidth Av„the line shape, and the intrinsic spin-lat tice relaxation time Tj, In the presence
of a phonon bottleneck T&'& T& and b vL, &d v&. Detailed agreement is found with Holstein's theory of photon
trapping in atomic gases, and inconsistencies in other treatments of phonon trapping are illuminated. The
present study gives a detailed physical picture of the imprisonment process. Special attention is given to the
nature of the bottleneck when the phonon interruption rate becomes comparable with the spin-resonance
linewidth.

I. INTRODUCTION
'

PARAMAGNETIC relaxation (pmr) may occur by
means of the direct process, in which energy is

transferred to a narrow band of lattice modes close to
the spin-resonance frequency v. Phonons then deliver
this energy to the bath by traveling to the surface of
the crystal.

If the first process transfers energy rapidly, the
phonons may not be able to deliver their energy to the
bath suKciently fast to prevent the lattice from
warming up, at least as judged by the average energy
of the lattice vibrations at the frequency v. B delivery
of energy by phonons to the bath is very slow the
relaxation process will be delayed and an apparent
relaxation time T1 which is significantly longer than
the intrinsic relaxation time will be observed. The
temperature of the lattice modes interacting with the
spins will rise to a value approaching the spin tempera-
ture. This process has become known as the phonos
boNleeeck. ' "

*This work was initiated while the authors were at Columbia
University, New York.' J. H. Van Vleck, Phys. Rev. 59, 724 (1941).' C. J. Gorter, L. C. Van der Marel, and B.Bolger, Physica 21,
103 (1955). Experimental results by Gorter and his colleagues
using the audiofrequency susceptibility technique which suggest
phonon bottleneck effects are given by L. C. Van der Marel, J.
Van den Broek, and C. J. Gorter, Physica 23, 261 (1957); M. A.
Lasheen, J. Van den Broek, and C. J. Gorter, ibid. 24, 1061 and
1076 (1958). Possible bottleneck effects as well as alternative
interpretations are discussed by B. Bolger, J. M. Noothoven
Van Goor, and C. J. Gorter, ibid. 27, 277 (196k).' J. A. Giordmaine, L. E.Alsop, F. R. Nash, and C. H. Townes,
Phys. Rev. 109, 302 (1958).

4 P. W. Anderson, Phys. Rev. 114, 1002 (1959).
«C. H. Townes, Bull. Am. Phys. Soc. 3, 105 (1958), and

QNuntem Electronics, edited by C. H. Townes {Columbia Uni-
versity Press, New York, 1960), p. 405.

J. A. Giordmaine, doctoral thesis, Columbia University, 1960
(unpublished); Columbia Radiation Laboratory, Special Tech-
nical Report, June 1961,Appendix (unpublished).' P. L. Scott and C. D. Jerries, Phys. Rev. 1,27, 32 (1962);R. H.
Ruby, H. Benoit, and C. D. Jeffries, ibid. 1/7, 51 (1962).
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Recent experiments' " "provide strong evidence for
the existence of the phonon bottleneck at helium tem-
peratures in microwave pulse and saturation pmr meas-
urements. " The earlier pmr measurements' of Gorter
and his colleagues using the audiofrequency suscepti-
bility technique also provide a variety of examples of
relaxation times limited by lattice bath conduction.
Initial evidence suggests that 29 cm ' acoustic phonons
produced by 2A —+E transitions in optically pumped
ruby at low temperatures may also show the bottleneck
effect. There has been considerable discussion' ~' ' of
the interpretation of the phonon bottleneck; however,
the various approaches have resulted in apparent in-
consistencies and some misunderstanding. The purpose
of this paper is to indicate the physical processes which
are responsible for phonon energy transport and the
phonon bottleneck and to point out the inadequate
assumptions and conclusions which are present in some
treatments.

In Sec. II a simple estimate illustrates the inade-

quacy, in some cases, of the lattice modes near the spin
resonance to act as a reservoir for the spin system. A
previous estimate, "which purported to show that even
in extreme cases the bottleneck was negligible, is shown
to be numerically in error.

Section III examines the transport of phonons for
the case of an inhomogeneously broadened spin reso-
nance and it is shown that not only can diffusion not
be neglected but that in fact diRusion alone may

S. Geschwind, G. E. Devlin, P. L. Cohen, and S. R. Chinn,
Phys. Rev. 137, A1087 (1965).

B. W. Faughnan and M. W. P. Strandberg, J. Phys. Chem.
Solids, 19, 155 (1961)."R.Orbach, Proc. Roy. Soc. (London) A264, 481 (1961)."F. R. Nash, Phys. Rev. Letters 7, 59 (1961).

~ F. R. Nash, Phys. Rev. 138, A1500 (1965) (preceding paper).
~' K. J. Standley and J. K. Wright, Phys. Letters 3, 101 (1962),

Proc. Phys. Soc. (London) 83, 361 (1964); R. J.R. Hayward and
D. E. Dugdale, Phys. Letters 12, 88 (1964)~

'~ See Note added in proof.
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control the escape of the resonant quanta from the
absorbing medium.

The theories of Holstein"" and Veklenko" which

apply to optical resonance radiation and homogeneously
broadened lines are modified for low-temperature pmr.
The results of their rigorous analyses, which have
corroboration at optical frequencies and which should
be valid for our situation, are presented in Sec. IV for
comparison with our calculations.

An analysis in Sec. V which is predicated upon the
coupled diGerential equations which describe the
temporal population changes in the spin and lattice
systems shows that the energy distribution in the lattice
can have a spectral width which is appreciably larger
than the spin-resonance width. The same result is
derived by another approach as well.

In Sec. VI an approach which considers the modes
more explicitly enables one to compute the spectral
width of a given mode, the spectral range of lattice
excitation and the spin-bath relaxation time constant
for the cases of uniformly distributed loss and of loss
localized at the crystal boundaries. It is shown that
Holstein's treatment is equivalent to a description of
the phonon bottleneck in terms of broadened lattice
modes, and that furthermore the nature of the phonon
decay makes a detailed consideration of spatial trans-
port (diffusion) unnecessary for homogeneously broad-
ened lines.

Section VII is concerned with "uncertainty" or
interruption broadening and the phenomena which
arise when the lattice mode interruption rate ap-
proaches the spin-resonance linewidth.

In the conclusion, Sec. VIII, we summarize our
results and brieQy the assumptions and results of other
workers in light of our findings.

It should be emphasized that the discussion which
follows should apply quite generally to the trapping of
resonant quanta, be they phonons or photons.

(Tp TB)—/(Ts Tp) = (r—lAsshsX)/(487rhshvTtTBTp).

To emphasize the inadequacy of the lattice modes as a
thermal reservoir for the spins we shall assume perfect
matching (rl = 1). This assumption appears to be
reasonable for hydrated crystals. ' '3 For the fully
concentrated copper ammonium Tutton salts" we will
take A.=L, L= a crystal dimension =10 ' cm, v=2.5
&10' cm/sec, X=3)&10"spins/cm', and hv=10' cps.
We assume for our estimate that hv=Av„ the spin-
resonance width. Since it is a common practice~" to
record recovery times in the region T~=TI =T~, so as
to discriminate against cross-relaxation effects which
might be present in the initial portion of the decay, we
will take T&=1.4'K and appropriately" then Tj~&7
msec. We find that (Tp Tn)/(Ts Tp) &~ 21—, su—g-
gesting a substantial bottleneck that should be readily
detected. Orbach's" estimate is found to be numerically
in error. Apart from a concentration dependence of Tj,
one might expect the same value of (Tp T~)/—
(Ts Tp) in a cry—stal with a spin concentration of 1'Po

and a linewidth of 10' cps.
Although the above equations are valid in predicting

the occurrence of a bottleneck, it will be seen from Secs.
IV and V that they are not useful in calculating
accurately the extent of the bottleneck. This important

II. SIGNIFICANCE OF THE BOTTLENECK EFFECT

We shall imagine that the spins associated with a
single resonance line (S=-,') are maintained at an
average temperature T8. If we equate the power de-
livered to the lattice modes within hv by the spins to
the power which the same modes surrender to the bath
we find, '~ for hv&&kT,

point which is a major concern of this paper, can be seen
as follows: For an inhomogeneously broadened line the
acoustic modes "on speaking terms" with the spin
system are those within the spin-resonance linewidth
Av, and hv=hv, . In the absence of signi6cant lattice
imperfections or impurities, phonons can escape to the
crystal surface only by diffusion; the rate of transfer
of energy by this mechanism under bottleneck condi-
tions is much slower than rrs 'p(v)hvh(T p Tp), where—

hv ddt (hv)sX
(Tp ' Ts 'j—

2 dt 4kTg

= rrn 'p(v)avh(Tp Trr). —

' T. Holstein, Phys. Rev. 72, 1212 (1947).
~~ T. Holstein, Phys. Rev. 83, 1159 (1951).
'~ V. A. Veklenko, Zh. Eksperim. i Teor. Fiz. 36, 204 (1959)

LEnglish transl. : Soviet Phys. —JETP 9, 138 i1939lj.
'VThe factor ~ is present because a change of unity in the

number of phonons represents a change of two in 5X.

"J.H. Van Vleck, Phys. Rev. 59, 730 (1941).' R. Orbach, doctoral dissertation, University of California,
1960 (unpublished).

'0 D. L. Mills, Phys. Rev. 133, A876 (1964); 134, A306 (1964).

In this equation, S is the total number of spins per
unit volume, Tj the spin-lattice relaxation time, T~ is
the average temperature of the modes within the band-
width hv, p(v)=127rv's ' is the density of lattice
oscillators per unit bandwidth, vL,~ the lifetime of a
phonon against absorption by the bath, and T& is the
helium bath temperature. We assume that the "direct"
spin-lattice decay process is dominant and that phonon-
phonon collisions are negligible"" for v 10" cps and
T~ 1—O'K. The phonon lifetime 71,~ is qAv ', where g
is a transmission factor which can be )&1 if the acoustic
mismatch at the crystal-helium interface is appreciable,
A is a measure of the phonon mean free path (the order
of magnitude of a crystal dimension) and s is an average
acoustic propagation velocity. We shall ignore phonon
diffusion, this being correct as we shall note for spins
which are well coupled to one another. Rearrangement
of the above expression yields
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rz, & L/a As a result the above equations will under-
estimate the magnitude of the bottleneck. On the other
hand for a homogeneously broadened line it will be seen
that modes in the far wings of the line play a decisive
role in the relaxation under bottleneck conditions, and
the effective value of Av may be much larger than hv, .
As a result the above equations will overestimate the
magnitude of the bottleneck.

III. DIFFUSION OF IMPRISONED PHONONS

The physical problem which is presented is that of
the escape of resonant phonons from an absorbing
medium of paramagnetic centers. For inhomogeneously
broadened resonance lines, the career of any particular
phonon is a series of rapid transits from spin to spin
alternating with longer periods of imprisonment of
average length T~. The environment of a typical phonon
is opaque and spatial diffusion would appear to govern
the kinetics of lattice energy transport. In subsequent
sections of this paper we will consider this same problem
for homogeneously broadened lines where a given spin
has an emission frequency which is independent of the
frequency at which it absorbed.

For spatial diffusion without spectral redistribution,
a simple random walk equation can provide us with a
rough estimate of the spin bath or diffusion time Tj .
If our geometry is an infinite slab of thickness L, then
the net distance L' which an average phonon must
diffuse in order to reach the bath" is approximately
equal to 2L/3 and is related to Tr' through the equation
L"= (2A'/3) (Tr'/Tr), where A is the phonon mean free

path, Tr is the spin-lattice relaxation time (in this case
the "step" time) and Tr'/Tr is the number of steps.
Since the lattice modes are more strongly coupled to the
spins than to the bath, equilibration of the spins and
modes requires that (AN/Tr) = (2(e)p(v)&v/res). The
modes within d, v are approximately at the same tem-

perature as the spins; the other modes which are not
"on good speaking terms" with the spins remain at
the bath temperature. In this equation hS is the net
number of spins per unit volume in the lower spin state,
(n)=kT/hv is the phonon occupation number, Av is
the range of participating lattice modes and in this case
equals Av, which is the full width of the spin resonance.
The time r1.8, which is defined by the above equation,
is the reabsorption time of a phonon. It is assumed
that rL, g '&(62xv.

Combining the equations we find for A.=vrz, z,
hv(&kT, and for a temperature T common to the spins
and the modes, that T&' is given by

Tl'= Tl
hv 4 1 NL

(1)
kT 2+6 p(v)hv, T,o

"After a small time interval the temperature distribution of
an initially uniformly excited sample should be ~ sin(mx/L).
One-half the spins are within a distance L/3 from the slab face.
Since the transport to the bath is typically not along a path which
is perpendicular to the slab face the average net-distance traveled
is = (2L/3).

If one chooses to solve the equation BAN/Bt =DO'AN/
cj'x directly, ' one 6nds" from Tr' ——(Lo//7roD) a result
identical to (1) except that the factor [1/2(/6)j is
replaced by (K3/4n. ).

It may be argued however that the appeal to analogy
with diffusion is faulty. Anderson' has pointed out the
great similarity between the trapping of resonant
photons in gases and that of resonant phonons in
paramagnetic crystals. Ke shall have more to say below

about this similarity, but for the present we note that
the former problem has been considered by Milne" who

examined the emission and absorption processes asso-
ciated with. the escape of resonant quanta for a situation
in which the motions of the atoms and any radiation
frequency changes were ignored. Such a treatment
would apply completely to a paramagnetic lattice at
zero degrees absolute. In our notation his equation for
one-dimensional Row is

8 1 8 1 (
( Ns+Tro

Bx AN Bx AN( )
BN2 — BN2

, (2)
Bt 8t

where P= (2/vp(v)Av, Tro), No is the upper state spin
density and Tio is the spin-lattice relaxation time at
O'K. This differs from the standard dift'usion equation

only in the second term. It is a consequence of the new

term that Ti' must exceed Tio, i.e., that no harmonic
can die away at a rate faster than T&o '. Milne solved

this equation for the photon-gas case by the appropriate
assunlptloli that AN= Ni —N2 Ni N. However our
interest is in the case where Nr=No. If we make the
substitution N, = ', (N AN) and-per—form the indicated
operations in (2), we 6nd after dropping terms which

fall off faster than N ', that

N 8'~N Tio
+ =O'Tio

ANo Bx' (hN)' cjx'Bt Bt
(3)

Apart from a factor of 1.6, (4) and (1) are in agreement.

"A. Bronwell, Advanced Mathematics in Physics and Engineer-
ing (McGraw-Hill Book Company, Inc. , New York, 1953),p. 261.

23 E. A. Milne, J.London Math. Soc. 1, 40 (1926).
~4 For this purpose it is necessary to use the relation

Tro = (2(Nl+1)Ti which is derived in Appendix A.

The diffusion constant'4 D of this equation is o (A'/Tr)
instead of the usual s~ (A'/T~). Since our concern

throughout this paper will be with the region where

AN =ANo, we may linearize (3) and solve the resulting

equation for hu&&kT in the same way that Milne solved

(2) for hv))kT. For large opacity (severe trapping) we

can neglect the second term in (3).Using~ the equation
Tro=2(kT/hv)Tr, we obtain for a slab of thickness L
the result

hv )' NL
T,'= T,

kTi 2orp(v)Av, T,o
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For marginal imprisonment we find"

(hv ' EI,
Ti'=Ti 1+I

kkr) 4p( )A,2',v
(5)

(1.1) and (6.5), Ref. 15] into our notation, and make
the necessary modification appropriate to the condition
he&(kT, then for approximate equilibration of the spins,
modes and bath at a temperature T~ we find that for a
Gaussian-shaped spin resonance

As expected the size dependence changes from L' to L
when the probability of reabsorption becomes small
compared to the probability of capture by the walls.
Equation (5) is applicaMe when [hv/kT1'[XI/4p(v)
X&v.Tii)$=n—1 Th. e condition n((1 is a criterion for
judging when diffusion can be neglected for an inhomo-
geneously broadened spin resonance, and is of course
equivalent to the condition that T8—TI)&TI—T~ as
discussed in Sec. II. One factor common to our treat-
ments has been the assumption that absorption is
uniform over a breadth hv. , i.e., the spin resonance is
rectangular in shape. This is a good description of a
resonance whose "core" is denied access to its "wings. "

For the sake of completeness we will give Milne's
result for hv&)kT. For severe and marginal trapping,
respectively we have

-(v —vp)
-'

k (v) =kg exp — ln2
(Av, /2)

and an infinite slab of thickness L,,

( hv i' EI.

kkTIii p(v)Av, v

(1n2)'"( hv ' EI.
X ln

4g kkr ) p( )t,nr,

For a Lorentzian shape

-)l, /2

(6)

and

2 EL
T1 Tlo

-& p~&s&T10-
(4') X L-~/2

Tg' =0.61Tg
kTii p(v)hv, T, i)

EL
Ti Tip 1+

p(v)hv. v Tip
(5')

IV. HOLSTEIN'S APPROACH

In addition to calling attention to the similarity
between the phonon bottleneck and the trapping of
resonant photons in gases, Anderson4 has pointed to
the theoretical'4 "and experimentaP5 work of Holstein
et u/. in association with the photon-gas bottleneck.
As Anderson4 has emphasized, Holstein's success in
obtaining experimental verification for his calculations
depends upon the rapid spectral redistribution of energy
within the line. The relatively transparent "wings"
play a crucial role in the release of resonance radiation,
and indeed for an arbitrary line shape without cutoff
in the wings, Holstein has shown" that it is impossible
to define a mean free path for resonant quanta (photons
or phonons) in an infinite medium.

The inadequacy of the standard diffusion equation
led Holstein to formulate the radiative transport of
resonance excitation in terms of a Boltzmann-type
integrodifferential equation for the density of excited
atoms. In addition to calculating the imprisonment
time Holstein has found the emergent radiation spec-
trum to suffer self-reversal" which is expected for a
nonuniform density of excited. atoms.

If we cast Holstein's result for severe trapping [Eqs.

~5 D. Alpert, A. O. McCoubrey, and T. Holstein, Phys. Rev.
76, 1257 (1949);85, 985 (1952); S. Heron, R. W. P. McWhirter,
and E. H. Rhoderick, Proc. Roy. Soc. (London) 234, 565 (1956).

'6T. Holstein, Scienti6c Paper 1501, Westinghouse Research
Laboratories, Pittsburgh, Pennsylvania, 1950 (unpublished).

(See Appendix 8 for derivation of kg and ki, .) Holstein
has also solved the problem for the geometry of an
infinite cylinder, and has indicated that for a rectangular
line shape his transport equation reduces to the standard
diffusion equation. Veklenko, "using a more analytical
approach, has considered an infinite medium, and his
results differ from Holstein's by factors less than 2.
Veklenko has explicitly demonstrated that the dif-
fusion of monochromatic radiation (inhomogeneously
broadened resonance) is analogous to the diffusion of
particles. In all cases the enclosure walls were assumed
nonreQecting.

Before proceeding to the next section we shall
consider in the context of Holstein's calculations our
assumption that the inverse of the radiation quantum
lifetime (rr,s) is less than the spectral width of the
resonance.

The equation for r1.8 was used in Sec. III (see also
Appendix 3) and is rrs 4(kT/hv)'p(v)hv——TiN ' For
T=1'K, v=10" cps, p(v)=12nv'i) —', @=2.5X10' cm/
se(, $=3X10"spins/cm', and hv= 10' cps, (2r) rr, s) '
=5&(10'T~ '. Even if T~ were =10—' sec, the above
assumption would be valid.

However, for photons and atoms, i.e., for the case
in which Holstein's agreement with experiments" is
good, r= (g7rv'hvr„t/1Vd') and for v=10" cps, Av=10P
cps, %=10"atoms/cm', and r,~=10 sec, we find that
(2prr) '=2X10"))hv=10' cps, and thus that the
above assumption is grossly violated.

Holstein's analysis is based upon equations which
are dependent upon the Einstein A and 8 coefFicients,
and which in tn, rn are related by among other factors,
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the density of radiation modes 8m v'/c'. A tacit assump-
tion then in Holstein s computations is that the radi-
ation modes are not essentially modified by interaction
with the atoms; i.e., dispersion, which should be present
for strong resonant coupling is neglected. In cases of
severe trapping on the other hand, the phenomenon of
specular reQection of resonance radiation" suggests that
propagating modes may in fact not even exist near the
resonance frequency. The resolution of the contra-
diction is related to the fact that the modes which are
significant in transporting photons to the gas absorption
cell walls are modes which lie in the wings of the
resonance; these modes are much less strongly perturbed
since there the atomic system is relatively transparent.

If we once again consider the fully concentrated
Tutton salts" (Sec. II) where a roughly Gaussian shape
is dominant we find that the observed proportionality
of T~'~ JT~ ' decides strongly in favor of a Holstein-

type equation.
Again for completeness we shall give Holstein's

results for hv&)kT. For the Gaussian and Lorentzian
shapes, respectively we have

If, furthermore, k(vo)L))1, we find that

k(vp+Avt, /2) = ln2/I, . (12)

We may also note that the frequency v, which deter-
mines the absorption edge, i.e., the frequency at which
a phonon can traverse a distance I.before absorption
by the spin system is given by the equation I=ID/e
=Io expL —k(v.)Lj. Thus the condition k(v,)L=1
indicates that Av&/2= I vo—v, I.

Using (6) and (8) and the values for kg and ki,
which can be obtained from the expression in Appendix
8, we find that for a Gaussian line the spectral width of
phonon excitation ls

independent of frequency until one is suKciently far
from the resonance "core" that k(v)L=1. Self-reversal
in the phonon spectrum has been precluded because of
the assumption of a spatially uniform spin temperature.
If k(v) is syinmetric about some frequency vo, then the
spectral width of phonon excitation, he~, is given by

2&(vo+ ave/2) =I'(vo) (11)

XL — in2) i&2 iVL
Ti' ——0.88 ln

p(v)Av, e s 3 p(v)Av, i TM

- I/2 AvL=
(7')

dv,
ln

(In2)'"

1 hv )'
2( lr2)"(kTJ

gr - I/2

T] —1 22Tgp
p(v)AvavT&o

and for a Lorentzian line

p(v)Av Ti'v

V. BROADENING OF THE ENERGY IHSTRIBUTION
IN THE LATTICE

Thus far we have emphasized that the phonon
bottleneck can lead to observed relaxation times
TJ ~T~ the intrinsic spin-lattice relaxation. In this
section we wiH examine two approaches which enable
us to calculate the spectral distribution of lattice energy
in the presence of phonon trapping.

Let us first imagine that the paramagnetic sites in a
crystalline rod of length I. have been uniformly satu-
rated. We then inquire as to the nature of the phonon
spectrum which reaches one end. The radiation emitted

by a layer of thickness Ch is equal to Ak(v)dx, where

k(v) is the absorption coeKcient characterizing the
spin system and A is a constant. It is assumed that
k(v) is identical with the emission spectrum from a
small volume (see Appendix C). The lattice modes
suer some attenuation as the phonons travel to the
end of the rod so that the amount emerging is equal to
Ak(v)dh exp! —k(v) (L—x)j. The frequency distribu-
tion of phonons from the entire length is then

g(v) —g! 1 & k(v)Ej-(10)

If k(v)L&&1, E(v) ~k(v). When k(v)L))1, P(v) is

'7 A. C. G. Mitchell and M. %.Zemansky, Eesonume Ead~af~mg
end Excited Afonss C'Cambridge University Press, Cambridge,
England, ' 196I), pp. 31—34.

hv ' $1.
Avg=Av,

-2x ln2 kTa p v ~v8Tp-

For dilute samples the spin resonance bne shape is
Xorentzia, n if dipolar coupling is dominant. "However
in the extreme wings a cutoff wiH. occur since the spin-
spin interaction will have some upper limit" given
roughly by that for two spins in neighboring sites.

Another instructive approach towards examination
of the phonon spectral distribution follows from exami-
nation of the individual emission and absorption proc-
esses. The net rate of change of the lower state spin
density Ey is

dpi/Ch=A2iSg+(V~)p(v)kvLB2iX2 —Bi2$ij. (15)

The Einstein coefficients are related by A»=T&0—'
=p(v)kvBi2= p(v)hvBpi, and hence

chal/ch

= 2A2it (n+1)Xg—(e)Xi(. (16)

The net rate of change of the phonon density per unit
frequency interval, (e)p(v), for a rectangular resonance
of width APE) is

d 1 dAcV p(v)L(n) —(e)sj—(n)p(v) =- ---— (17)
d$ 26v, Ch 7'L B

"C. Kittel and E. Abrahams, Phys. Rev. 90, 238 (I953).
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The emission and absorption spectra are assumed
identical (Appendix C), and j'f(v)dv= i. One more
assumption will be made which greatly simplifies the
job of obtaining the distribution of phonon energy,
This assumption is that all phonons have the same rate
of absorption by the "bath, "independent of frequency.
If the "bath" is outside the crystal, 7» will depend
upon the resonant scattering of phonons by the spins.
We shall discuss this point further below; for our
present purposes we vill regard r~~ as the lifetime of a
phonon against decay to "sinks" which are distributed
uniformly throughout the crystal.

If we solve (18) we find

1V7 r,sf(v) TB
(n (v) )—(n)s —— 1—

2T1p — TS-

hv Nrrsf(v)
+/ (v) (19)

kTJp 2T]p

We may determine AvL, from the equation

For

(e(vp)) —(n)s 2e——
! vp+ !

—(m)ii

fkTii)
(ii)ii =!

Ehvi

and Tg= T~ we find for Gaussian and Lorentzian lines,
respectively, that

and

Av, 1 ln2 '
/' hv P 1Vrr, ii
!

ln—
2 ~ kkTii p(v) Av, Ti~(ln2)'"

—1 hv )' cVrrii
Dvi, ——Av, .

2p kTiii p(v)hv, T,

1/2

(2o)

(21)

Equations (20) and (21) are seen to be in good agree-
ment with Eqs. (13) and (14). It follows that under
bottleneck conditions, when the expressions within the
square brackets are large compared to one, not only is
T~'& Ti, but also d, vt. &hv, .

For an arbitrary line shape f(v) the frequency depend-
ence can be incorporated into either Api or N; of (16).
H we assume that the spins and the modes to which the
spins relax come into equilibrium rather rapidly, and
that the net rate at which these modes change their
populations is much smaller' than either the rate at
which spin energy is converted into lattice quanta or
the rate at which phonons are damped by a frequency-
independent loss mechanism, we may write

/ (v) [(~)—(N)s]
f(v)A p&[(x+1)/V p (rt—)/7 i]= . (18)

Before going on to the next section we would like
to emphasize that the approach just examined actually
precludes the diGusion of phonons. It was pointed out
in Sec. III that the spin-bath diffusion time Tj' could
be obtained from a solution of BAN/Bt, =DB'hN/8'x.
This equation can be derived from

8 1 86Ã—[(e)p (v)6v,]—— =D'P[(e)p(v) 6v,],
Bf 2

which is a diffusion equation for the radiation density
with a source term. If one multiplies (1/) by hv, and
compares it with the above equation one finds that we
have in effect assumed that either (n)p(v) hv. or
V[(e)p(v)hv, ] is spatially uniform.

VI. ENERGY TRANSFER VIA LATTICE MODES

In this section the relaxation process is treated
classically and phenomenologically in terms of the
individual lattice modes. We obtain the "interruption
width" of the modes, the spectral distribution of energy
in the lattice, and the apparent relaxation time Tj' for
the case of homogeneously broadened Lorentzian and
Gaussian lines. The special case for which the inter-
ruption width becomes comparable to the linewidth is
considered in the following section.

We discuss two extreme cases. In the first, the bath
damping arises from a frequency-independent uni-
formly distributed absorption at the bath tempera-
ture T~. In this case, for which the spin temperature
Tg will also be uniform, the modes are the well-known
solutions of the wave equation with totally rejecting
boundaries, and all the modes extend uniformly
throughout the crystal. An example would be the case
in which the hot band of modes near vp is damped
primarily by phonon-phonon scattering near uniformly
distributed anharmonicities (cracks or imperfections),
in this way making contact with the continuum of
modes at the bath temperature.

In the second and more usual case, the bath damping
is localized at the crystal boundary. Following satu-
ration by a uniform rf field the spin temperature is
initially spatially uniform. As a result of spatial dif-
fusion during the course of the relaxation, the local
spin temperature will become a maximum at the crystal
center and approach the bath temperature near the
surface. We shall be concerned with the decay of this
new distribution. Since the bath damping is localized
at the crystal surface, heavily damped modes near vo
can no longer be treated as independent and as ex-
tending over the whole crystal volume. We make the
approximation of considering only modes suKciently
far from vp that the absorption length A(v))L' where
J. is a characteristic crystal dimension. This approxi-
mation is appropriate since at frequencies for which
A(v)«L' the self-reversal will cause the lattice tem-
perature, as seen from the bath, to be very close to T~.
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The neglect of energy transfer at frequencies of strong
self-reversal is equivalent to the neglect of spatial
diffusion. The use of this approximation allovrs us to
conine our attention to modes which extend over the
whole crystal and which see the spatial average spin
temperature. It vrill be found that the results for the
second case are in close agreement with those of Holstein
(Sec. IV).

Ke make the following assumptions, The spin reso-
nance spectrum consists of a single (5=-,') homo-

geneously broadened line vrhich can be described by a
local spin temperature Ts, and whose spin-lattice
relaxation occurs by the "direct" process only. The
bath temperature TIr is high compared to k 1/0k but
suSciently low that the mean free path for both normal
and umklapp'7 " phonon-phonon scattering processes
A.s~l.'. It follows that. the modes are independent and
that their response to damping by the bath and spin
system can be treated according to the well-knovrn

theory29 of the classical Brownian motion of a harmonic
oscillator. It will also be assumed that the spin-density
E is such that EX'&&1 where X is the acoustic wave-

length at 10. In a typical experiment Ãll'=(10-")
X(SX1.0 ')'=10". The spin system appears to the
lattice modes as a resonance in the macroscopic acoustic
dispersion and absorption of the crystal; incoherent
scattering by individual spins is unimportant.

Consider modes vrhich are solutions of the wave

equation for a homogeneous medium. The damping
coIlstaIlt r(cdrrl) of a mode at, fl'equellcy rrlr=cdII/27r ls

given by
1 1 f(o)rrI)

V(~Is) = +
7'LB &LS &Q

wheIe TLg is the decay time due to the bath damping,
v.Ls is the decay time of a mode at the spin resonance

frequency coo= 2rrr 0, a,nd f(co) is the spin resonance line

shape normalized such that J'f (c0)d&o= 1. The damping
constant y(arrr) rePresents the "interruPtion width" of
a lattice oscillator at co~. The equation of motion of an
oscillator having an undamped frequency so~ is given

by Eq. (23) in the presence of the spin system and the
bath:

i+y(a Iran)i+cvII'rc= FIr (t)+F8 (t) .

The statistical properties of the noise source F(t)
are discussed in Ref. 29. For modes which extend over
the whole crystal, the Fourier amplitudes

I
FII (au) I

will

have no important frequency dependence in the vicinity
of &oo. Since IFs(~) I' is proportional to the rate of

energy transfer at co betvreen the spin system and lattice
the spectrum of

I
Fa(~) I' will be proportional to f(&r)

The phases of FII(c0) and Fs(c0) are random functions
of frequency. Ke set

The response of an ~~ mode at the driving frequency
or is given by Eq. (26):

FII(c0)+Fs(co)
x(cr) =

VII —GP —ROQ (MIr)
(26)

The energy stored in an corrf mode between ce and a&+de
ls W(cd~, cd)dccr, wllere

w(cdII, 01) =-', Irk(I*'(ca) I'+a&II2I x(co) I')

rrc IFII(co) I'+ IFs(co) I'

2 4(&rrI —~) +7 (krrrc')

(27)

and that the energy stored in the ~~ mode is

where rN is an inertial parameter. Ke evaluate III
I
FII I'

and m IFsI' from the requirements of equipartition of

energy. The total energy stored in the M~ mode,

W(&orrI)= J'd&u W( c0II&u), must approach the limiting

values kTII and kTs as 1/71,s~0 and 1/rl, II~0,
respectively. It follows from Eqs. (22), (24), (25), and

(27) that
mFII'

4kTIr/Irony

Ir,——
mF s'= 4k Ts/7crzs,

The oscillator coordinate is x, and FIr(t) and Fs(t)
represent the random, incoherent, and rapidly Quc-

tuating noise sources associated with the bath and the

spin system. Since only modes which uniformly sample
the whole crystal will be of interest here, the tempera-
ture of the source Fs(t) will be the spatial average spin
temperature Ts. In Eq. (23) we neglect the puling of
the oscillator frequency by the spin system. It vrill be
shovrn in the following section that this pulling is

negligible as long as the interruption width y(&vII) is
small compared to the spin-resonance linewidth d~s.

"S.Chandrasekhar, Rev. Mod. Phys. j.p, 1 (1943).

f(&m)

-&LB 7'L S +Q
(29)

(kTs kTII)—
W((u)=p kTII+

&~1,sf(~0)/~ra f(~)j+1-

and the total stored energy in excess of the equilibrium

Let p be the density of lattice modes in the vicinity of
coo. From Eq. (29) the energy stored in the lattice
between cu and a&+dc' is W(&o) and is given by
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value is

{W((o) pk—TB)d(a

I.ores/viue:
icos/2%'

(~)=
( — )'+(~ /2)'

p(kTs kT—B)

L~Ls-f(~o)/r»f(~) j+1
The spectrum of the lattice excitation energy W'(~)
—pkTg is considerably broader than the linewidth h(ca
of the spin resonance when Tl,~h Tgs. The frequencies
at which the spectrum has dropped to half-maximum
intensity are the roots of the equation

f(ol) 1

f(ohio) 2+rz,s/rz. s

Tl Tl(1+rLB/rLS)

h~l' N
=Tl 1+

k TB& 2'rpkol sT1

aoIL h(os—(—1+rzs/r Ls)",
&zolLI= 1/rzs+1/rzB,

rLs=vl kpTIkoos/2Cs.

Gcsssscs:

(37)

(38)

The spectral widths of lattice excitation from Eq. (32)
for various line shapes are summarized belovr.

Since all the modes under consideration transfer
energy to the bath with a damping constant rg~, we
obtain

2 (ln2)'"
exp

AMs( ol' &

2 (In2) I'I
(oo—o)o)

(39)

Cs(Ts TB)—
(33)

Tl

where CB is the heat capacity of the spin system and
T~' is the apparent relaxation time. It has been assumed
that Ts TB((TB and—that the heat capacity of the
participating lattice modes is small compared to C8.
For an P= g bneq

Cs ——(Nk/4) (hco/k TB)'.

From Eqs. (31) and (33), Tl' is given by

1 kp f(oo)doo
. (34)

Csrzsf(~o) 1+Lf(~)/f(~o) j(rLB/rzs)

Ill tile llllllt as rLB/rzs ~ 0, Tl ~ Tl. I't follows 'tlla't

TI=Csrzsf (ooo)/kp

rLB rLB 1 rLB
T, In i, ))1' r.s

(In2)Uo( k(o )' Nrzs

4 I kTB& h(esp

-It ln2)'"( ko& )' Nrzs
(40)

2& ~ & kkTB& h~spTI

In(2+rzs/rz, s) "
Aolzz= 1/rzs+1/rLB,

kpTIko)s
rz, s=

ln2& 2Cs

f(co)der

I+Pf(~)lf(~o) j(rLB/rzs)
(36)

Equation (36) is a general expression for the apparent
relaxation time T~' in terms of the true relaxation time
and an integral over the lattice-mode frequencies par-
ticipating in the relaxation.

Case I: Uniformly distributed losses at temperature
TB damp all the lattice modes at rate 1/rLB The.
integral in Eq. (36) extends over all the lattice modes
near ~0. For Lorentzian, Gaussian, and a hypothetical
rectangular line shape the results are sumlnarized
below. We denote by 6~1. the frequency width at balf-
maximum intensity of the excess lattice excitation as
determined from Eq. (32). The interruption width of a
lattlcc mode at &oo ls denoted Doojz='r((do). Thc spill
resonance linewidth at half-maximum intensity is hara.

EecfcsgQlfJf:

Acta Acta
f(~)=, zoo— &oo &zoo+

MB

Tl' TI(I+rLB/rLs)——

( Aol ' NrLB
=T, I+I

kkTB 4pA(a)sTI

AMI, = AGog
&

A&ozz
——1/rz, s+ 1/r LB,

rz.s =kpTIaols/Cs

(42)
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Case Z: Damping by the bath occurs at the crystal
surface only. In the approximation described earlier,
we consider only modes having an absorption length
ApI. ' where I.' is a characteristic crystal dimension.
As a crystal geometry we take an in6nite plane parallel
slab of thickness L,. The rate at which energy leaks to
the bath for a wave traveling at an angle 0 to the
surface normal is (dW/dt) = fW/(o/L cos0), where f is
the fractional energy loss per transit and (v/L cos8) is
the transit time between surfaces. The average damping
constant averaged over solid angle is therefore 1/ri, s
= fo/2L. We shall consider the case" in which the
acoustic mismatch at the surface is small and f 1

The apparent relaxation time Tl' is calculated from

Eq. (36) by integrating only over frequencies for which
the lattice modes are effective in transmitting energy
to the surface. An approximate cutoff frequency cot.- is
that for which the damping length err, s(&oc) =L/1.5.
At cog the penetration depth normal to the surface
averaged over modes in all directions is L/3. One-half
of the spins are within this distance of the surface. "
Notice that although Ts—TB is spatially nonuniform,
the absorption length which is proportional to Ts is
essentially uniform when Ts—TB&&TB. The results
are as follows for the case of a large bottleneck,
7 r,s))sr.s In these equations rr, & = 2L/o and the cutoff
frequency coo is defined by rrsf(Mo)/f(&uc)=L/1. 5o
= rz,s/3.

Loreetsiue:

ooc——ooo+ (Dios/2) (eric/37. 1,s)'",
Ti'=1.5Ti(7rii/rr, s)i 2

The approximations made in the evaluation of the
Gaussian integrals of Eqs. (39) and (45) are shown in
Appendix D. Comparison of Tl' for the Lorentzian and
Gaussian lines LEqs. (44) and (46)j with the same
expressions derived from Holstein's theory, Eqs. (9)
and (7), respectively, shows the same functional de-
pendence and numerical agreement to within small
factors, 1.4 and 3.6, respectively. "

In the complete absence of wings, the present method
indicates an in6nite relaxation time for the nonphysical
rectangular line. The method of Holstein, on the other
hand, would lead to the diffusion equation and a
solution for Tl' proportional to I.' for this case. The
satisfactory agreement of the present results with
Holstein's theory for the Gaussian line, where wings are
present but not extensive, suggests that the present
method is generally useful for physically important line
shapes and gives results equivalent to those of the latter
theory. It is interesting to note the agreement between
Tl' predicted by the mode theory for the rectangular
line shape LEq. (42), case Ij and that predicted by the
diffusion theory of Milne for the case of marginal
imprisonment [Eq. (5)].The comparison is made with
ois=2L/o in Eq. (42). The good agreement is expected
since for the case of marginal imprisonment all the
modes of the crystal become effective in carrying energy
to the surface.

We conclude that a good approximation to T~' can
be obtained in the case of an extreme bottleneck by
neglect of the diRusion energy transport near the line

center, and consideration of energy transport by ex-
tended lattice modes in the wings.

Gaussian:

Boos-In(rl. ii/3rl. s)-'"

(45)

(Aoo)' X L
=o.gi

tkT~i pa~s i

&LB &LB= 1.6T1 ln
7 LS — TLS-

EecturIgllar:

1i koo )' X L-
(«)

-2 Eke) pAMsTi 'o

ooc= coo~ cosA/2,

1/Ti' ——0.

Tl Tl
~2

Pl ll & LBt3~os) i ++LB/'TLS

VII. CASE OF THE LATTICE MODE INTERRUPTION
RATE GREATER THAN THE SPIN-

RESONANCE LINEWIDTH

Various authors have discussed the possibility of the
phonon interruption width Do~~ ——1/ri, s becoming
comparable to or greater than the spin-resonance line-

width Aoos= 2/rs. It was conjectured in an early paper
of Van Vleck' and more recently by Townes, Alsop, and
the present authors, ' that when her~&A~s the modes
available for transfer of energy to the bath are those
within the frequency range Ace~ rather than within the
smaller band D~s. This broadening of individual modes
(Aoo~) is not to be confused with the broadening of the
lattice mode spectrum (Ao&r) described in the previous
section.

%hen a substantial phonon bottleneck occurs, say
o.rii/o. z,s-10', the mode width A&o~ will often begin to
approach hens. For a typical lattice-bath time of

3' One is not free to choose a damping length &L/1.5 in order
to make both equations agree exactly since one would then have
to contend with the fact that on the average, some modes would
have energy removed by resonant interactions with spins and that
the energy would very likely be directed back into the interior of
the crystal. Our present estimate of ~rl, g(cog) assures that on the
average a phonon can reach the surface uninterrupted if the
average spin is at a distance of L/3 from the bath.



GP ( 2/Terr, sk=4 1+
,'—'—2« / «)

(48)

In Eq. (48) the coupling constant and other parameters
of Eq. (8) of Ref. 31 have been expressed as rs and the
parameter ~L,s, the latter denoting as usual the energy
damping time of a lattice wave at coo. The velocity e
is thc Rcoustlc vcloc1ty, vs ls equal to T2, and zoo ls the
perturbed spin-resonance frequency. For frequencies
close to ~0, and in the presence of the small lattice bath
damping 1/rr, s, Eq. (48) becomes

i (1/2rr, s) (1/(oor„)-
k= —1+ +

2oorr. s s)o—a&—i/rs
(49)

The imaginary part of Eq. (49) corresponds to a
reciprocal energy damping time of

- rr„s rr, s (&—&vo)ores+1

o rs= 10 s sec, and mrs/rrs= 10s, Aors 5 gauss, al-

ready comparable with the width of a narrow spin
resonance. Since even shorter times 7.1.s may be found
in certain materials, the question of extrcme mode
widths is important.

According to Rn RlgUIncnt s1InllRI' to Anderson s) a
mode cannot have an interruption width h~~&hens,
since energy conservation would be violated in the
reabsorption by the spin system of phonons having
energy less well-de6ncd than h~s. The course of events
as 1/rr. s approaches and exceeds D~s involves an
apparent paradox.

It is pointed out in this section that the "paradox"
is resolved by taking into account the reactive coupling
between the spin system and the lattice modes. It will
be shown that when 1/rr. s approaches has separate
spin and acoustic lcsonanccs Qo longcl occul QcRI 6}0.

We consder specifically the case of a spin system
obeying the Bloch equations, where the bath damping
is uniformly distributed over the lattice (case I of the
previous section), and for which the lattice excitation
can be decomposed into modes extending over the
whole crystal. It will again be assumed that phonon-
phonon scattering can be ignored and that kTQ)hw.

For a spin system obeying the Sloch equations,
Jacobsen and Stevens" have shown that the coupling
between ultrasonic waves and the spin system leads to
a dispersion relation of the form

a/zs

t/Ts

08 0
3

-2/Ts
a/zs

Fn. i. Real part Of co aS a funCtiOn Of co~ fOr co~ near ~0. Weak-
coupling case, ~J.8&2rg. The acoustic branch I'slope ~1}and the
spin-wave branch (slope ~0) are distinct.

1-( i~—
~

—(~—
j -2 2

2&LB — &LS~S
(50)

In the extreme weak eogplieg case the condition for the
binomial expansion of (50) is

(( L(ooo—~M)' s'+r1j,
~I S 2~S

assuming that 2rr.s))rs. The roots of (50) then have
the limiting values

zc= CO~-
2rrrr 2rr, s (~o ~sr)'rs'+1

(51)
2&r.s (roo rosr) &s +1—

since we are interested in the time decay of a mode
which extends uniformly over the whole crystal, i.e.,
real k. Were we interested in the spatial decay of energy,
k would be complex. The general solution is

1 i ~ 1( i
M =— (d~— —

COD
——

2 2rr, rri 2 k vs

as described for a Lorentzian line in the previous section.
Consider a lattice mode having a frequency cg~=ck

in the absence of the spin system. The perturbed fre-
quency in the presence of the spin system is obtained
from the solution of Eq. (49) with k set equal to rose/e

TS O)0—M~

2&rs (ooo—oosr) &s +1
(52)

81 K. H„Jacobsen and K. W. H. Stevens, Phys. Rev. 129, 2036
f963}.

The first solution (51), having a frequency close to
tll,c Unpcl tUlbcd mode f1cqUcncy N~~ IcprcscQts RIl
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2/&s I/2

M2= ~ GOp GO~

27 s7'Ls

/Ts
(2TsTr.s)"

GOp
—M~

27S-

a
0

8

i 1 i(2Tl, si,"———+-~
~

(~o—~~). (54)
2Ts 4& Ts &

-2/Ts
-2/Tg

FIG. 2. Strong coupling case rl, g&2rg. Near w=+p the
branches represent composite spin-acoustic waves.

and the roots of Eq. (50) have the limiting values

1
+i=2 P

&2TsTr, s&

(2TsTrs)"
+

1.

uo —+M
~8—2

i 1 it 2T&sy'"
o —&u

4& T, &

(53)

acoustic branch with a small admixture of spin energy
and is illustrated qualitatively by the diagonal branch
in Fig. 1.These are the modes considered in the previous
section. The contribution to the real part of or„repre-
sents a maximum pulling of 1/4Trs at M~=No&1/ sT

and was previously neglected (Sec. VI) in the approxi-
mation that 1/4Ti, ~(1/Ts This is a. fortiori justified
since the weak-coupling condition, used to derive (51)
and (52), was 1/Tr, &&1/2Ts The ima.ginary part indi-

cates a mode width of (1/Ti, ~+ 1/Tl, s) at Mpr=(dp.

The second solution has a frequency close to cop and

represents a transverse spin wave branch having a
small. admixture of acoustic energy. In the weak-

coupling case
aM„/akl ((Ts/2Tzs)p;

these waves will propagate negligible energy in com-

parison with the acoustic branch. This solution is
illustrated qualitatively by the horizontal branch in

Fig. 1.
In the extreme stroTtg coupliTtg case

1 1—)) —$1+TB'(~o—~~)'j
7LS 2jS

i 1 t'1
Qlgg= GAP

2 Ts krs' TgsTs&
(55)

i 1(1 -2
~sp=opo — —+/

2 Ts &Ts' Ti,$TB&

As 1/Tz, s approaches 1/2Ts the frequencies of the
acoustic and spin branches remain degenerate and the
damping rates increase and decrease, respectively,
toward 1/2Ts=Apos/4 For the str. oTlg couPtiTtg-region,
defined by 1/Tr s& 1/2Ts

1 2
0)I 2=GOP~—

2 7 LSgS

1 ~/2 i

&S—2 2&s

A»/Tz, s increa, ses beyond 1/2Ts the two solutions are
split by (2/Tz, sTs 1/Ts')' ' and —each component
retains the fixed damping time of 2m s. Figures 1 and 2

illustrate quantitatively the intermediate coupling
region (Tls=2Ts) for the cases Tls=2.25 Ts and
7 Ls= rs, respectively.

The apparent paradox of a pure acoustic mode
having an interruption rate 1/Tl, s greater than 1/Ts
arises only when the reactive coupling between spins
and lattice is neglected. Physically, when a lattice mode
can deliver energy to the spin system at a rate I/Tl, s
))1/Ts the energy can be interchanged many times
before the spin wave decays via dipole-dipole inter-
actions, the interchange giving rise to the splitting
(2/Tr, sTs 1/ )T"s'. The intera—ction of acoustic waves
with a spin system is closely analogous to the inter-

In Eqs. (53) and (54) the relatively small lattice bath
damping has been ignored. Near resonance co~= up the
two solutions are split by (A&o8/2)(2Ts/Tr, a)" and
represent neither pure acoustic, nor pure spin waves
but composite waves in which acoustic and spin energy
are interchanged at a rate (As&s/2) (2Ts/Tl, s)"' Each.

component has a damping time of 27-s at resonance.
The appearance of the splitting at the transition

between weak and strong coupling can be seen exactly
from the general solution LEq. (50)j at the resonance
frequency &o~=opp. For the weak-coup/&tg region, de-
6ned by 1/TI.s& 1/2Ts
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action of electromagnetic waves with the optical modes
of crystals. "

Since a continuous distribution of modes will be
excited near cop during the relaxation process, it will be
dificult to detect the splitting experimentally during
relaxation.

VIII. CONCLUSION

In the preceding sections we have demonstrated that
a phonon bottleneck will occur in pmr when the rate
of lattice-bath energy transfer ~ia lattice modes within
the spin resonance linewidth dw, is less than the rate
of spin-lattice energy transfer. This condition is given
by the inequality A1V/2Tz& (n)p(v)Av, /(L/p).

If the paramagnetic resonance line is inhomogene-
ously broadened (Sec. III), the wings of the line will

cool quickly leaving the bulk of the energy in a hot
central region in which phonons diguse to the surface.
In the approximation that the central region has a
rectangular shape and width Av„ the apparent re-
laxation time T~' was found to be proportional to
A' L T 'Ap Tg . We note that Tl'rx. L and that the
escape of energy is governed completely by diffusion.
In many cases Tl' will be much longer than Tl, however
the spectral width of lattice excitation will not differ
significantly from Av, .

If the line is homogeneously broadened (Secs. IV
and V) the energy transfer under bottleneck conditions
occurs primarily in the wings of the line. For Gaussian
and Lorentzian lines the apparent relaxation times are
proportional to

gLhv 'T
and

g 1/2L1/2 T11/2~ y
—1/2 T& 1

respectively. These proportionalities are valid as the
spin temperature approaches the bath temperature T~
and do not include slowly varying (ln)"' dependences
discussed in detail above. In many cases Tl' will be
much longer than Tl, for homogeneously broadened
lines the bandwidth of lattice excitation AvL will then
be significantly broader than the spin-resonance line-
width hv„reQecting the important role in energy
transfer played by the lattice modes in the wings.

We conclude from Sec. V that energy transfer to the
surface in the case of a bottlenecked homogeneously
broadened line is accurately described in terms of
acoustic modes extending throughout the crystal and
having frequencies in the wings of the spin resonance.
The neglect of the strongly perturbed modes near the
line center where energy transfer occurs by diffusion is
justified by the self-reversal effect accompanying a
strong bottleneck. Although the width of lattice
excitation may greatly exceed the spin-resonance line-

3' M. Born and K. Huang, Dynumkul Theory oi Crystu/ Luttices
(Oxford University Press, Oxford, England, 1956), pp. 82-100.

0Il 21+ &LB ~

L2(~)o+1j ( )&

Scott and Jeffries" linearized the same equations in
the limit AX =AXp, also obtaining (56) and an equation
for the phonon damping time constant rLs

7LS=
$2(n)p+1jp(v)hv

AÃp
(59)

Both groups assumed the effective width of lattice
excitation Av to be given by Av„and they neglected
diffusion. We have demonstrated that in general these
assumptions are not simultaneously valid. However,
for a homogeneously broadened Gaussian resonance
whose wings are not extensive, hv may not be very
different from hv, and hence Eq. (58) with hv=hv,
can be expected to give a reasonable estimate' of Tl'
for this case. Although Scott and Jeffries~ give no
discussion of their second derived time constant, it is
clear from (59) that it is the phonon reabsorption time,
which has been amply discussed from several points of
view in this paper.

The good agreement that we have found between
our results and those of Holstein'4" and Veklenko"
suggests that our simpler approach can give some
physical insight into the phonon bottleneck. Since we
have assumed that phonons are transported to the bath

width, no violation of energy conservation of the type
described by Anderson occurs, since energy absorbed
by the spins undergoes spectral diffusion in a time short
compared to Tl.

When the acoustic mode interruption rate is suS.-
ciently high to approach the spin resonance linewidth,
the (s&,k) dispersion curves describing the spin resonance
and the acoustic waves no longer cross at resonance but
split into two unconnected branches, separated in
frequency at resonance by ha&= (6&osh&ojr —6~8'/4)»'.
Near resonance the two branches represent composite
transverse spin wave —acoustic modes. The "paradox"
of an acoustic mode broader than the spin resonance
does not arise since acoustic modes and a spin resonance
can no longer be separately defined under the conditions
assumed for the "paradox. "Although the acoustic mode
width Ace~ in this sense can never exceed the spin-
resonance linewidth hers, it' will be apparent that even
when Aar~(A&os the spectral width of lattice mode
excitation h~L may be very large, i.e., hcoL))hens, and
represents an important feature of the relaxation
process.

Faughnan and Strandberg' have solved the coupled
differential equations (16) and (17). Their numerical
solution and a quasisteady-state approximation (i.e.,
(ri)=0) were in agreement and in our notation they
obtained



J. A. GIORDMAINE AND F. R. NASH

in a time l./v over some range of modes which we

designate as 5, it is clear from our agreement with
Holstein that the bottleneck does not have its origin
in the relatively slow diffusion of energy to the surface,
and that solution of the spatial transport problem can
be avoided. Nor does the bottleneck lie in the spectral
redistribution of energy since we have assumed that
the homogenization processes which act within the
resonance to transfer energy to the "wings, " are
operative ln a time which ls much less than any time
constant in our treatment. For a bottleneck associated
with a homogeneously broadened resonance, T»') T»

and can be written in the form

previously (Ref. 5) unpublished calculations (Sec. V),
and for the many clarifying discussions throughout the
period in which this paper was prepared. One of us
(FRN) would also like to thank Dr. I. R. Senitzky for
several stimulating conversations.

APPENDIX A

The net time rate of change of AS follows from the
use of the Einstein coeKcients LEq. (16) in textj.
However it is also a common practice to define ddt/dt
through

d~/dt = 2/W2IX2 —
WI2IVI j.

5g I
2(N)p(v)8 o

The bracketed portion is the number of quanta to be
delivered to the bath divided by the number of available
carriers. The paucity of the latter indicates that T»'

may be thought of as the number of traversals of the

crystal which a phonon must make multiplied by the

travel sal time.
Note added in proof. Direct and striking evidence of a

phonon bottleneck is found in recent observations of
the relaxation of an ieMrted spin system t W. ].Brya
and P. E. Wagner, Phys. Rev. Letters 14, 431 (1965)j.
In this experiment a population inversion is suddenly

established by a microwave pulse in a spin system sus-

pected of phonon bottleneck relaxation. Following a
short delay a "phonon avalanche" occurs in which the

spin temperature returns to near its equilibrium value

in a time short compared to T». Brya and Kagner
interpret this behavior as (1) an initial slow relaxation

with a relaxation time T» characteristic of the bath
temperature Ts, prior to warm up of the lattice; (2) a
rapid increase in the temperature T~ of the lattice
modes near resonance, accompanied by a decrease in T».

The magnitude of the CGeet can be inferred from

Sec. II above. In the example discussed there, a spin

system having T»= 7 msee for TJ =T~=1.4'K showed

a bottleneck ratio (Tv To)/(Ts Tv) —=21. Assumin—g
a TI ' temperature dependence for T» substitution in

the expression for (Tv Ts)j(Ts Tv) —in Sec. I—I
shows that the steady state value of TI together with

1/Ti approach ~ at a spin temperature of Ta =—29'K,
a relatively small inversion. It follows that any spin

system showing a substantial phonon bottleneck
should. exhibit the avalanche behavior on inversion.

It should be noted that the nonlinear behavior occur-

ring as a result of the variation of T» with TI is avoided

throughout this paper since it is assumed that the re-

laxation measurements are made with T8= Tp= Tg.
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At equilibrium WI,/W~I ——X~o/Xlo and if we let
Wgl+ W» ——W then

d&F/dt = WII &&0 &&j=—(a&0 &&)/T—I (A2)

Comparison of (A1) and (16) yields

2(N)+1
W12+ W21=—W=——=A 21(2m+ 1)=

T» T»0

APPENDIX 3
If a white spectrum is 1ncldent upon an absorb1ng

medium, the intensity transmitted af ter passage
through a distance z is given by I(v) =I; expL —k(v) xj
where this equation defines the frequency-dependent
absorption coefficient, k(v). It can be shown" that

00 hv
k(v)dv= B,2'DiV, —

4m.

where tllc BI2 coefficient (dcfllicd according 'to radi-

ation intensity) is related to the B» (defined according
to radiation dcllslty) of Scc. V by B12= (8/4m')B»,
e= radiation propagation velocity.

Equation (B1) may be used to derive a relationship
for res. Since 221 '= Tio——Ti(2(N)+1) = LB12p(v)hvj-'
and since ik(v) is the rate of absorption of a phonon at
frequency v, then if our absorption is uniform over hv

and J'k(v)dv=&v, we find that vk=(1/res)=hÃj
(2(ri)p(v)hvTI). This is just the expression that one

would get if equihbrium was established between the
spins and the modes. Orbach" has derived an expression
for ~1,8 which is identical to that above except for a
small numerical. factor which depends upon the par-
ticular line shape.

APPENDIX C

Let us consider the validity of the assumption that
the probability for emission of a phonon by an excited

spin has the spin resonance shape and is independent of

&' Reference 2tI', pp. 92—95.
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the manner in which the spin was excited. As is known'4

from resonant scattering, an atom which has absorbed
radiation of frequency v, and which is stationary and
undisturbed, emits radiation only at the same fre-
quency. This is a consequence of the conservation of
energy. If in our case a spin is excited monochromati-
cally and it emits its full line shape, then there must be
some source of interaction which allows the spin to
change its energy.

A given spin has a number of neighbors which
interact with it through their magnetic fields, or spin-
spin interaction. This interaction is frequently the
primary source of broadening of the spin resonance and
therefore is normally of the order of magnitude of the
line breadth. Each spin is radiating or absorbing
phonons. Thus during the time of radiation for a single
spin, which we shall designate as spin A, one or more
of its neighbors would have spin-lattice transitions,
varying the local magnetic Geld and the spectrum of
frequencies emitted by spin A. This mechanism for
varying the energy of spin A is that pointed out by
Anderson4 as a mechanism for diffusion of energy
throughout a spin resonance. A rough approximation
would be to consider neighboring spins to have a
distribution of configurations during the radiating time
of spin A which corresponds to their spectrum of dis-
tributions over a long period of time. Then the emission
spectrum of the spin is just the line shape due to spin-
spin interactions. Actually such a spectrum of emission
does not occur during a single emission process, since
the transition time for each neighboring spin is the same
as the emission time of spin A. However, it represents a
coarse approximation, and one which is very nearly
correct after two or three emission times. The situation
in more concentrated crystals is more favorable for the
assumption of homogeneity within a time of T~.
Multiple spin Qips whose importance has been empha-
sized by Sloembergen et at. ,

35 in connection with
"cross-relaxation, " represent a more rapid source of
disturbance for spin A.

APPENDIX D

The integrals of Eq. (39) and Eq. (45) are approxi-
mated as follows, with the aid of expansion derived in

~ W. Heitler, Qgentlm Theory of Radiation (Oxford University
Press, Oxford, England, 1944), 2nd ed. , pp. 138—144.

"N. Bloembergen, S. Shapiro, P. S.Pershan, and J.O. Artman,
Phys. Rev. 114, 445 (1959).

Ref. 36. Let A = mrs/rl, s

e*'+A 2A 0 Qy e" '""+1
1nA jy

2A 0 Qy 12 (lnA)~/2

7x4
~ ~ ~

192 (lnA)'/'

(lnA)'/'- vr' 7s4

A 24(lnA)' 384(ln4)'

For A =50, the error involved in retaining only the first
term is less than 4%.

o~g/3&~«e*'+A

2A 0 (e+ln(A/3) j'/'(e' —'"4+1)

ln3

Le+in(A/3) j'/' 12 (lnA)@'

7x' 1

192 (lnA)~/'

(lnA )&/2 — ( ln3 &/2 ~2 1

A k lnA 24 (lnA)'

7m4

384 (lnA) 4

ln3 ( m ln3 1 (In3)'

2A (lnA)'/' '412 ln4 4 lnA 8(lnA)'

7~4 5——(ln3)' + . .
(192 ln3 64 (lnA)'

For A =50, the error involved in retaining only the erst
term is less than 10%.

3' J. E. Mayer and M. G. Mayer, Statistical ~echurIics {John
Wiley k Sons, Inc. , New York, 1940), p. 383.


