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The zero-pressure incompressibilities and volumes per atom for metals and solid nonmetals are found
to fit the relation

(X@—10/3) (Zoe) 7/e —(n10/e62////g5) aeee2

to good accuracy. The relation is derived by an empirical attempt to interpolate between the finite-strain
equation of state and the Thomas-Fermi equation of state. The strain energy is quadratic in the finite
strain for the heavier alkali metals but higher order terms are important for the silicates, at least to twofold
compression.

'HE finite-strain function e is defined' in terms of Prom (2)
the density p as

e= 2((p/po)'" —1}

dE 25(1+2e)'"—16

dP 15(1+2e)'"—12
(6)

=3Eo(PIPo)'"2 (—1)""
n=1

&&(1&&3y5" (2n 1)/n—!)e- (2).

The leading item of the series expansion is the Birch4
isothermal equation of state

P= aEoL(PIP~) (PIPo)"j (3)

The proof of (2) comes by deriving the pressure from a,

strain-energy function

E= uL» —(1+2e)'"j, (4)

~here u is a constant proportional to the zero-pressure
incompressibility Eo and

K=P(~P/~P) I & (5)

In a generalization, it can be shown that isothermal
equations of state of the form P=f(PIP//) can be written
a,s a power series in e with (3) as the leading term, by
substituting for PIP// from (1).

In the earth &&0.3, and at the upper value of e, the
pressure computed by (3) is 43% greater than, that
computed by (2). At the bottom of the mantle e 0.13;
the pressure from (3) is about 19% greater than that
from (2). More pertinent is the value of dK/dP.
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If PIP//= 1+/5, then in the limit as P approaches the zero-
pressure density Po, the function e approaches /5/3, the
linea. r elastic strain. It has been shown2 that the
Bardeen' isothermal equation of state can be written as
a power series in &.

P= 3EoL(PIPo)'" (PIP~) —j

while from (3)
dE 1 12+49e

=—X—
dP 3 1+7e

At zero pressure, these quantities are 3 and 4, re-
spectively. At the maximum pressure in the mantle,
these two values are 2.50 and 3.21, respectively; at the
center of the earth, they are 2.24 and 2.88. Recent
evidence' shows that the value of dE/dP differs some-
what from that derived from the Bullen' model of
density. Thus the higher order terms in an expansion of
the energy in a power series may be important for the
determination of the state and constitution of the
mantle and core. Birch has shown that these terms are
vanishingly small for the alkali metals for e up to 0.3
and has made the assumption that this holds for the
silicates for e up to 0.13.

In this paper, an independent determination of the
isothermal pressure-density equa, tion of state is sought
in which an interpolation is made between low-pressure
finite-strain theory, as described by (3) as a leading
term, and the Thomas-Fermi model as a high-pressure
limit. This procedure was suggested by Klsasser' al-
though he suggested that experimental data rather than
(3) be used as starting values for the interpolation.

If the strain-energy function E is constrained to be a
quadratic function of the finite strain, then the interpo-
lation can proceed by a generalization of the definition
of the finite strain. ' Since the finite-stra, in. function (1)
is defined in terms of a series of geometrical operations,
the generalization can be used to parametrize the system
as long as the generalization is reducible to (1) in the
small-finite-strain limit. An alternative approach is to
retain (1) as the definition of finite strain and to allow
the strain-energy function to be appropriately chosen so
that the interpolation can take place and so that it is
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FIG. 1. Graphs of relations (24}
(upper curve) and (15) (lower curve).
Also shown are the tabulated values
of scaled bulk modulus and density
at zero pressure for metallic elements
(open circles) and ionic compounds
(closed circles). The identification
numbers are listed in Table I.
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g'()= f1—(1+2/ ) '"),
P= 3&~f1 (1+20/—~) '") ( //0)'" ~

quadratic for small e. The latter procedure is simpler selected is
and is adopted here. Both procedures are equivalent.

Let the strain-energy function be (12)

P= 3K0(g'(0)/g" (0)) (P/P0) '"; g'(0) =0, (9)

after an application of (5) to determine E0. Since
g"(0)40 and g'(0)=0, then g(0) is quadratic for
small e.

The a,symptotic solution to the Thorns. s-Fermi (TF)
equation is'

(37r2)2/3

PZ—10/3 g e2 (Z0)
—5/3

(4Zv)'/'—+, (1o)
271 Cp

where v is the volume per atom and ap and e are the
usual Bohr radius and electronic charge. Z is the atomic
number; for compounds Z is computed in this limit by
the expression'

Z'"= P n;Z, 3/3/P n;Z, ,

where n; is the number of times the element with atomic
number Z, appears in the chemical formula.

Comparing (9) and. (10), we see that

g'(")=~,

where o. is a constant determined by the parameters
above. This condition, plus g'(0) =0 are the only con-
ditions upon g'(0). Clearly a unique choice of g'(0) is
impossible. If we require that g'(0) be governed by the
hrst two terms of (10), then one function that can be

'N. H. March, Proc. Phys. Soc. (London) A68, 726 (1955).
J. J. Gilvarry, Phys. Rev. 96, 934 (1954);J. Chem. Phys. 27, 150
(i957).

'L. KnopoA and G. J. F. MacDonald, Geophys. J. 1, 284
(1958).

Then the pressure-density equation of state at constant
temperature

p= —(~&/») I r
becomes

30~yg ~/
5]3

X 1—1+
(3772)2/3g e2Z'/3

(13)

with the auxiliary condition

(It Z—10/3) (Z0 ) 7/3 —(~10/362/3/15)g 3e2

=3.417' 10 4' cgs units
= 34.17 megabars A7. (14)

If the interpolation formula (12) is accurate, then
(14) is a universal relation between. the zero-pressure
compressibility and volume. McMillan' has pointed out
that

d (P Z—10/3)
—5(E Z "")(Z7 ) '=

) V=Vp

(15)

may also be a reasonable relation of this type. In Fig. 1

(Table I), formulas (14) and (15) are compared. The
laboratory data for EpZ

—'" ' for metals and compounds
are also shown. Z for compounds is computed from (11).
The relation (14) is considerably simpler to apply than
(15) and fits the observations with comparable fidelity.

An interpolation formula of the type

g'(0) =p, f1—(1+(2& 0/t/, )+P f/ 07).
j=2

could also have been used. The parametrization would
then allow the fit to the asymptotic TF formula (10) to
be made to any degree of exactness desired; relation
(14) could not then have been obtained. Thus (14)

9 W. G. McMillan, Phys, Rev. 111,479 {l958).

The term-by-term comparison of (10) and (12), to two
orders at high pressures, gives

(3~2)2/3g 02Z3/3

(///0)'"
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TmLE I. Identification of entries in Fig. i.

Number

1
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Name

Salt
Periclase
Corundum
Magnetite
Hematite
Rutile
Quartz
Albite
Orthoclase
J.adeite
Spodumene
Anorthite
Diopside
Enstatite
Forsterite
Fayalite
Andradite
Grossularite
Pyrope
Almandite
Beryl
Marcasite
Pyrite
Oldhamite
Sphalerite
Galena
Diamond
Boron
Beryllium
Lithium
Aluminum
Silicon
Magnesium
Chromium
Vanadium
Titanium
Iron
Nickel

Formula

NaCl
MgO
AlgOg
FeOFe203
Fe203
TiO~
Si02
NamOA12036 (SION)
KgOAlgOg6 (SION)
Na20A1~0~4 (Si02)
Li2OA12O34(SiO2)
CaOA12032 (Si02)
CaOMg02 (Si02)
MgOSiO~
2 (MgO) Si02
2 (FeO) Si02
3 (CaO) Fe~033 (SiOq)
3 (CaO) A1~0g3 (Si02)
3 (MgO) A12033 (SiO2)
3 (FeO) A1~0~3 (Si02)
3 (BeO)A1 O 6(SiO )
FeS2
FeS2
CaS
Zns
PbS
C
B
Be
Ll
Al
Si
Mg
Cr
V
Tl
Fe
Ni

14.4
10.3
10.4
20.1
19.6
15.5
10.7
10.6
11.6
10.5
10.2
11.7
12.0
10.5
10.5
17.7
15.1
12.6
11.7
14.8
10.0
20.3
20.3
18.2
24.8
69.0
6
5

3
13
14
12
24
23
22
26
28

Number

39

41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Name

Cobalt
Manganese
Sodium
Copper
Molybdenum
Ruthenium
Zinc
Rhodium
Gallium
Columbium
Calcium
Germanium
Palladium
Zirconium
Tungsten
Iridhum
Silver
Platinum
Cadmium
Indium
Gold
Praseodymium
Uranium
Cerium
Thallium
Rubidium
Cesium
Barium
Lead
Neodymium
Lanthanum
Strontium
Hafnium
gothite Tin
Tantalum
Gray Tin
Potassium

Formula

Co
Mn
Na
Cu
Mo
Ru
Zn
Rh
Ga
Cb
Ca
Ge
Pd
Zl
W
Ir
Ag
Pt,
Cd
In
Au
Pr
U
Ce
Tl
Rb
Cs
Ba
Pb
Nd
La
Sr
Hf
Sn
Ta
Sn
K

27
25
11
29
42
44
30
45
31
41
20
32
46
40
74
77
47
78
48
49
79
59
92
58
81
37
55
56
82
60
57
38
72
50
73
50
19

appears to be a reasonable interpolation using a small
number of parameters.

It is now possible to determine the importance of
higher order terms at low pressures. From (12)

The quantity n is

~7/2

15(32m"J u 4KeZ '~la

=0.1932(KeZ ' ~') ' megabars ' (16)

if (14) holds exactly. From Fig. 1 it is seen that the
silicates, the likely constituents of the earth's mantle,
have values of n derived from (16) of the order of 5-,'
while for the alkali metals, it is of the order of 27 for Na
and 80 for Rb. Evidently the Birch equation (3) will
hold for the elements with the greater scaled com-
pressibility (KaZ "") ' but the higher -order corrections
become important for lower scaled compressibilities. To
values of e= 0.13, the error in neglecting terms of order
higher than the first in (15) is negligible, even taking
into account the lower value of e for silicates.

As indicated above, dK/dP is a more crucial diag-
nostic term than the relation for pressure itself. Birch4
inferred that, because (3) fitted the experimental data
to e=0.3 for the alkali metals, (3) also was applicable
to the silicates. But the success of the inference for the
alkali metals depends crucially upon the data for Rb,
K, and Cs and less so for Na. To 100 kbar, the data are
not discriminatory for Li. However, dK/dP may be
more intimately dependent upon this precise vanishing
of higher order terms than is P itself. From (12) we
obtain the formula

dK 258(LI+2e/n]'" —1)+12—3R ' n+2e
R=

dP 3+15R(LI+2e/n) ~ 1) 1+2e

In the range of e and o, of interest, a useful approxima-
tion is

dK/dP = (dK/dP) ~ 1/n, '—
where (dK/dP)& is the value derived I Eq. (7)j by
Birch. Thus, for the silicates, the corrections in the
mantle are of the order of 0.2 while for the alkali
metals, they are negligible. Thus the interpolation (12)
tends very closely to the one-term equation (3) for
pressure and is intermediate to Eqs. (6) and (7)
for dK/dP.


