
VARIATIONAL CALCULA'I ION FOR THE ISING MODEL

APPENDIX C: I ONG-RANGE INTERACTIONS

In Sec. II.2 it was observed that the term 0((1+/)'")
m g (/) ls directly responsible for the dlscontlnuity ln
the derivative of the speci6c heat. For an exchange
potential of range lj. (2.23) we have

Since the dominant contribution of the integral (C2) is
from the region of small k, we are justihed in replacing
the integration over the basic cell by integration over a
sphere in it space, which gives

g'(f) =
2(2')s

d'k
1+i+X'k'

t

The coefficient of the term in (1+3)'f' will be

lim (1+1)—'"Lg'(f) —g'( —1)],g~l

(c1) (1+1)'"

where k, is the radius of the sphere. Proceeding to the
]imit one gets

which from (C1) reduces to

P(1+1)'"—lim'--' 2Xs(2~)'
d'h-

as (1+/+X'ks)

The term 0((P—P,)') in the free energy is proportional

(C2) to n ', and so in. the present case this proportionality
factor will be 2"3 st(X/l) s.
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The high-temperature susceptibility series is derived for the nearest-neighbor Heisenberg ferromagnet
when nearest-neighbor biquadratic exchange is included. The general diagrammatic technique developed
by Rushbrooke and Wood for the bilinear interaction is extended to include the biquadratic interaction.
The complete coefficients of terms through 1/T' are computed, and since it is expected that the value of the
ratio of the biquadratic (j) to bilinear exchange (J) constants is quite small, only terms linear in the bj-
quadratic exchange in the coefFicients of the terms 1/T' and 1/T' are determined. The coefFicients are
computed for arbitrary spin and general lattice structure. The series expansion has been applied to the
susceptibility of KMnF3 to determine the quality of information which can be obtained from the experi-
mental data. KMnF3 was selected since the biquadratic exchange between Mn++ ions has been extensively
studied and the second-neighbor bjlinear interaction is expected to be negligible. The experimental data,
corrected for the temperature-independent diamagnetism, was root-mean-square-analyzed to determine the
values of 1; j, and C, the Curie constant, which give the best fft to the data. A value of

~
j/J (

=0.015 was
thus found, in good agreement with the results of previous studies.

I. INTRODUCTION

HERE now seems to bc considerable cvldencc for
thc cxlstcncc of lntllnslc blquadratlc cxchangc ln

ordered magnetic systems, ' ' Except for its direct ob-
servation by means of a microwave resonance technique
by Harris and Owen, ' the effect of biquadratic exchange
on magnetic properties has thus far only been taken into
account by using molecular Geld theories. 2 Since it is
known that such theories do not even treat the bilinear
exchange adequately, their ability to treat biquadratic
exchange is suspect. It therefore seems appropriate at
this stage to make a more exact theory of the CGcct of
biquadratic exchange on a magnetic property, combine

' E. A. Harris and J. Owen, Phys. Rev. Letters ll, 9 (1963).' D. S. Rodbell, L S. Jacobs, J. Owen, and E. A. Harris, Phys.
Rev. Letters 11, 10 (1963}.

this with highly accurate experimental data, determine
the exchange constants, and then compare this result
with the results of the molecular field theories and with
other theoretical estimates of the magnitude of the
biquadratic exchange constant. '4 In the present paper
the exact high temperature susceptibility series is
derived for the Heisenberg fcrromagnet when both
nearest neighbor bilinear and biquadratic exchange
interactions are included.

Section IIA contains the results of a formal statistical
mechanical derivation of the susceptibility expa, nsion
based on a Heisenberg Hamiltonian containing both

3P. Vf. Anderson, Phys. Rev. 115, 2 (1959); in SOD@ State
Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1963), Vol. 14, p. 99.

4 N. Huang and R. Orbach, Phys. Rev. Letters, 12, 275 (1964).
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nearest-neighbor bilinear and biquadratic exchange
interactions. The Hamiltonian to be used is fornzagy
identical to one treated by Wojtowicz and Joseph, ' for
a diferent problem. The formal results of that paper
may be taken over directly. Section IIB brieQy discusses
the calculation of the new coeKcients required to
describe the CBcct of the biquadratic exchange inter-
action on the susceptibility series. This is accomplished
by an extension of a diagram technique described by
Rushbrooke and Rood. ' In Sec. III, wc consider the
application of the enlarged susceptibility series to the
determination of the bihnear and biquadratic exchange
constants between the Mn++ ions in KMnF3 and com-
pare the results with previous studies.

II. THEORY

A. Formal Statistical Mechanics

%'e consider a system consisting of a lattice of Ã sites
containing atoms of spin 5 and gyromagnetic ratio g,
each atom having s nearest neighbors. The Hamiltonian
for the system in the presence of an external magnetic
Geld 8, is taken to be

K= —2JP—2jR—AH, Q,

P=P (S,'S;),

R=Z (S' S~)',
gkZ)

Q=+S .,

where J and j are the magnitudes of the nearest-
neighbor bilinear and biquadratic exchange interactions,
respectively, and where p is the Bohr magneton. P and
R'are the sum of bilinear and biquadratic Heisenberg
exchange operators for all.~'Grst-neighbor pairs, re-
spectively, while AH, Q is the Zeem—an energy opera-
tor for the entire lattice. The operator Q commutes

with both P and R, but P does not commute with R.
The Hamiltonian as written in the Erst line of Eq. (1)
is identical in form to that considered by WJ Lin fact,
the only difference in the details of the Hamiltonian are
in the second term). The formal derivation of the
susceptibility series is then the same as given there, so
that the low-Geld susceptibility is given as the following
double series:

P (PnRn~Q2) (2)
(ts+tn)!iVS(S+ 1) v«~

C= LVg'p'S(S+1)/3k,

P=1/kT,

where C is the Curie constant, k the Boltzmann con-
stant, and 2' the thermodynamic temperature. (0)
stands for the normalized trace of the (2S+1)~-dimen-
sional direct product matrix representation of the
operator 0 and the symbol l'~f means "that part of f
which is proportional to N." P~„denotes the sum
over all permutations in the order of appearance of the
operators P and R and arises from the noncommutability
of P and R. The prime on the summations excludes the
term v= m= 0. The first term of the top line of Eq. (2)
is Curie s law for noninteracting spins, while succeeding
terms represent increasing orders of the statistical
mechanical perturbation of the nearest-neighbor bi-
linear and biquadratic exchange on the free ion para-
IDagnetlsIQ. Thc rcclplocal susccptlblllty nlay also bc
written as a double series:

(3)

The coefficients b„. may be computed directly from the
codFicients g„by use of the formula,

IVVVVVMV
X X~~

&nm= Z E +rq&n r, m q~——
r=0 @=0

Fn. I. Several typical 'diagrams encountered
in evaluating the coeSeient g31.

5 P. J. %ojtowicz and R. I. Joseph, Phys. Rev. 135, A1314
(1964); henceforth referred to as VVJ in the text.

6 G. S. Rushbrooke and P. j.%ood, Mol. Phys, I, 257 (1958);
henceforth referred to as R% in the text.

3. Evaluation of the Coefficients

The general diagrammatic technique developed by
R'|A" for the bilinear interaction may be extended to
include the biquadratic interaction. In RW, the classi-
Gcation, enumeration and evaluation of the many
different contributions contained in a given (P"Q')
were facilitated by the representation of these contri-
butions in terms of diagrams (localized graphs) on the
lattice. The pertinent diagrams consisted of e lines and
two crosses. A line connecting nearest-neighbor sites i
an.d j represents the pair exchange operator (S,'S;),
while a closs oIl sltc ~ rcPrcscnts thc SPlll OPcrator ~Icz.

The diagrammatic analysis of the traces (P"R Q')
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boi= Xs/3,

b i i——4Xs(—4X'+X—6)/45,

boo= —Xs(—2X'+5X—3)/9.

(6)

Here, X stands for S(5+1).The coefFicient boi and boi
)Eqs. (8) and (9)j are given in tabular form in Fig. 2.
The meaning of the tables is straightforward: The
numerical coefficients within the table are multiplied by
the power of I above and by the lattice parameters on
the left. The sum of all these is then multiplied by the
common factor preceding the dot.

The first two terms of the power series given by the
right-hand side of Eq. (3) correspond to the results of a

requires the introduction of another device with which
to construct the necessary diagrams. A double wiggly
line connecting nearest-neighbor sites i and j will be
taken to represent the nearest-neighbor biquadratic
pair-exchange operator (S,' S;)'.The introduction of the
double wiggly line rather than simply a double straight
line (i.e., simply a pair of bilinear operators between the
same neighboring sites, to which it is formally equiva-
lent) is necessitated by the need to keep track of the
origin of the pairs of operators. Thus, the relevant
diagrams consist of e straight lines, rg double wiggly
lines and two crosses. In Fig. 1 several of the diagrams
derived from P~„(poRQ') are shown. The correspond-
ing pairs 1 a—b, 2 a—b, and 3 a—b differ only in the
interchange of double straight lines and double wiggly
hnes. The contribution of each member of the pair to
the coe%cient u ~ is rot the same.

The calculation of the coefFicients according to the
diagrammatic method involves three separate phases:
(1) The finding and cataloging of all the diagrams or
graphs which can be constructed from e straight lines, m
double wiggly lines, and. two crosses; (2) counting the
number of times that a diagram can occur on a lattice of
E sites; (3) evaluation of the traces of the products of
spin variables which correspond to the diagrams. The
details of tliesc steps al e fully discussed lI1 RW and WJ.

The coeflicients a„o )corresponding to bilinear ex-
change only) have already been derived by RW. Be-
cause of extensive cancellation Lby use of Eq. (4)7 the
coefficients b„appear considerably simpler than the
corresponding g„.In the following only the results for
the b will be presented. The hrst six b„o are tabulated
in RW as functions of 5, s and other lattice parameters
such as the p„and, are not repeated here. The p„are
defined sllcll tllat Esp„/2(to+2) gives tile 11111Iibel of
n+2 sided polygons, which can be placed on the lattice
so that the sides connect only nearest-neighbor sites.
The P are tabulated for various lattices by RW. We
have calculated the coefIicients bo~, bii, b02, b2~, and bay.
Since it is expected that

~ j/J ~((1, these coefFIcients are
adequate to describe the effect of the biquadratic ex-
change on the coefficients of terms through 1/T4. The
results are presented below:

b "--~XX X~ X~ X I
Rl i~5 I 32- l2 27 45

p) IS 6 24
(8)

X4 X~ X2 Xb)l= -- —Xg-
-8m 56o -I260

I 720 2480 -5I5 -l740 2880
PI -'5248 l68 -Q -8&%

p 560 560 IOI5

Fio. 2. Tabular representation of the coeAicients,
b21and bye )Kqs. (8) and (9)j.

molecular field treatment of the susceptibility. Corn-
bining Eqs. (3) and (5) with the coef5cient bio as
obtained from RW, we find that in this approximation

with

Thus, when
l j/J t((1, the molecular field result implies

that the biquadratic interaction has a negligible effect
on the susceptibility. That the situation is more com-
plex than this indicates, is seen from examining the
higher order terms in the power series. Doing this, we
find that the lead term due to the biquadratic inter-
action in each of the temperature codBcients is multi-
plied by an additional factor of X, which can be quite
sizable, so that the biquadratic interaction can make a
sizable correction to these coefFicients.

7 K. Hirakavm, K. Hirakawa, and T. Hashimoto, J. Phys, Soc.
Japan 15, 2063 (1960).

III. APPLICATION TO KMnF3

The series expansion has been applied to the sus-
ceptibility of KMnF3 to determine the quality of
information which can be obtained from the experi-
mental data. We wish to know if it is possible to extract
unambiguous values of the exchange parameters from
susceptibility measurements. KMnF3 was selected for
study for several reasons: (1) the biquadratic exchange
between Mn++ ions has been extensively studied, (2) the
second-neighbor, bilinear interaction is expected to be
negligible for the perovskites, and (3) extensive, high-
accuracy, high-temperature susceptibility measure-
ments were readily available.

The high-temperature susceptibility data used in the
present study were kindly supplied to us by Professor
Kinshiro Hirakawa and his colleagues at Kyushu Uni-
versity. These data are qualitatively similar to those
previously published by Hirakawa, Hirakawa, and
Hashimota. ~ The new measurements have been made on
a more pure sample and the results are more precise. In
the present experimental study MnCl2. 4H20 was used
as a standard to determine an absolute value for the
susceptibility whereas in the previously reported work'
Mno wa, s used (an error in the value of the standard
susceptibility previously used was discovered, so that
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the previous measurements are about 4% higher than
those used in the present study). The temperature range
examined fell between 300 and 872'K (32 data points);
the Keel point is 88'K. The lowest temperature used
was 300 K so as to insure the rapid convergence of the
series.

The first step in the analysis was a correction for the
temperature-independent susceptibility which arises
from the atomic core diamagnetism. The sum of the
individual ionic contributions obtained from Selwood'
was used. This gave a temperature-independent con-
tribution of —0.4&&10 ' cm'/g. This amounts to 0.6%
and 1.4% of the spin susceptibility at 300 and 872'K,
respectively.

The remaining spin susceptibility was analyzed with
the aid of Eq. (3). For the simple cubic lattice Lz=6,
Pr=O, Ps ——4) with s=s the numerical values of the
coefBcients used are'

bop= —35,
bop= 221.67,
hap= —608.22,

b4p= 26 049.56,
b5p= —210 986.52,
b6p= 8 014 980.04,

boy= 17.5,
bye= —1 416.33,

17 239.44

bag= —260 544.75,

bp2= 655.52.

(12)

The procedure adopted for the determination of the
exchange constants is as follows: Values of Jand C were
assumed and substituted into Eq. (3). The theory and
data were fitted by adjusting j so as to give the least
root mean square deviation (rmsd). The resulting rmsd
for each set of the quantities J, C were plotted as a
function of J and C. The set of quantities J, C which
gives the best fit to the data is then determined by
seeking the position of the minimum in the surface,
rmsd of J and C.

The anticipated sharp and well defined minimum was
irrdeed found. The values of the exchange constants
corresponding to this minimum are

J/k = —4.03'K,

j/fe = 0.062'K. (13)

' P. W. Selwood, JfJ/Iugeetochemistry (Interscience Publishing
Company, Inc. , New York, 1956) 2nd ed. , p. 78.' Note that the values of the coefficients b50 and b60 are included
here even though the corresponding coe%cients b41 and b51 re-
quired for consistancy are not known. The reason for including
these terms was to investigate what effect truncation of the series
would have. The data were analyzed both with and without these
two terms; the results of the analysis were essentially the same for
both cases.

On a molar basis, the Curie constant so obtained has the
value

C= 4.568.

The rmsd corresponding to these values is about 35

TAnLE I. Comparison of the values of
~ j/J ~

found in previous
studies with the result of the present work.

Source —Material

Reference 3—Mn++
Reference 4—MnO
Reference 2—MnO
Reference 4—Mn~ in MgO
Reference 1—Mn++ in MgO

Present —KMnF~

~0.02
0.016
0.01—0.02
0.022
0.05+0.03
0.015

g/cm' (this gives deviations of about 0.2%). The value
of g corresponding to this C is 2.043. This value of g is

higher than one might expect for an 5-state ion and may
be compared to the value of 2.004 determined by
electron paramagnetic resonance" on 0.1% atomic
Mn++ in KMgF3. There are two ways of considering
this result. The first is that it is real, that is, the g value
is this high; the second is that we are again running into
the problem of determining an absolute value for the
susceptibility, referred to previously. If the latter is the
case, the values of the exchange constants will not be
affected by a uniform scaling of the susceptibility data
(the diamagnetic correction is, of course, not scaled, but
the small change in this already small correction does
not have any significant effect). The value of J de-
termined may be compared to the less precise estimates
of Smart" based on a Bethe-Peierls-Weiss analysis of
the Weel point and the susceptibility at the Neel point
which gave J/ k = —(3.1—3.6) 'K. Finally, from the
values of J and j given in Eq. (13), we obtain
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'0 J. S. Van Wieringen, Discussions Faraday Soc. 19, 118 and
173 (1955)."J.S. Smart, in 3IIugmetism, edited by H. Suhl and G. Rado
(Academic Press Inc. , New York, 1963) Vol. 3, p. 63.

In Table I we compare the present result with those of
previous studies. We thus see that the present result is
in good agreement with the results of previous studies. '
Although the results of the present analysis by no means
"prove" the existence of a biquadratic exchange inter-

action, since the biquadratic interaction does not
drastically alter our ability to 6t the high-temperature
susceptibility data, it at least shows that the previous
studies' ' are not making any drastic overestimates of
the magnitude of the biquadratic exchange interaction.
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