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when their total electronic energy is lowered following
an increase in the density of states above the curve
for the free electrons. However, the termination of solid
solubility is governed by the balance between the free
energies of the o. phase and of the intermediate phase
that follows it and is determined by the common tangent
principle.
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A lattice-dynamical 3-constant model for metals is presented. The treatment takes complete account of
the symmetry requirements of the lattice. The influence of conduction electrons is considered through the
screening of the long-range Coulomb interaction between ions. The theory is used to calculate dispersion
curves, frequency spectra, and lattice speci6c heats of Li, Na, and K. For sodium, good agreement is found
with the dispersion curves obtained from measurements of the inelastic scattering of slow neutrons.

INTRODUCTION

HE new method of deducing lattice-dynamical
properties from the inelastic scattering of cold

neutrons is able to give precise information on fre-
quency spectra and frequency-versus-wave-vector dis-
persion relations in metals. It is thus of interest to re-
consider the theoretical side of this problem. 2 So far,
6tting of experimental curves to theoretical models
has met with only moderate success. With simple
Born—von Karman models one needs, in general, more
parameters than there are elastic constants. The fact
that force constants even between more distant neigh-
bors are not negligible points to the existence of long-
range forces or to an inadequacy of the models used.

There is clear experimental evidence that the Cauchy
relations are not fulfilled for metals. Fuchs has shown'
that this might be explained by the presence of conduc-
tion electrons. Their inQuence on the lattice vibrations
was taken into account by De Launay, 4 who con-
structed a phenomenological model which includes ex-
plicitly the effect of a compressible but shear-free elec-
tron gas. His model had some success, ' but it violates
symmetry requirements, as pointed out, for instance,

' Proceedings of the Symposium on inelastic Scattering of Xeu
troes ~n Solids and Liquids, Vielna 1960, Chalk River 196Z (Inter-
national Atomic Energy Agency, Vienna, 1961, 1963).' A preliminary account of this work has been given in Phys.
Letters 10, 12 (1964). Equation (1) of that note contains a typo-
graphical error in the term M „.For the correct expression see this
paper, Eq. (4).' K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1935);A157,
A 3A (1936)' J. de Launay, J. Chem. Phys. 21, 1975 (1953).' B.Dayal and B. Sharan, Proc. Roy. Soc. (London) A259, 361
(1960); A262, 136 (1961).

bv Lax. ' In this respect also the new model of Sharma
and Ioshi' is unsatisfactory.

The same is true for Bhatia's theory, which essen-

tially considers the electronic effect via the screening of
the Coulomb interaction between lattice ions. A theory
which includes electronic terms and also takes proper
account of the symmetry properties has been developed

by Toya. ' His model is based on Bardeen's quantum-

mechanical calculation of the electron-phonon inter-

action. " Toya's theory is the most fundamental one,
but contains a number of electronic parameters which

are rather dificult to obtain with good precision. In the
case of sodium, agreement between theoretical and ex-

perimentalu, u dispersion curves is nevertheless quite
satisfactory. However, larger discrepancies do appear
in the $110j direction. "In the following we propose a

theory which is simpler than Toya's and moreover

shows good agreement with the experimental dispersion

curves of sodium for all observed directions.

6 M. Lax, Proceedings of the International Conference onLattice
Dynamics, Copenhagen 1963, paper A24 (unpublished).' P. K. Sharma and S. K. Joshi, J.Chem. Phys. 39, 2633 (1963).

8 A. B.Bhatia, Phys. Rev. 97, 363 (1955).
T. Toya, J. Res. Inst. Catalysis, Hokkaido Univ. 6, 161, 183

(1958)."J.Bardeen, Phys. Rev. 52, 689 (1937).
"A. D. B. Woods, B. N. Brockhouse, R. H. March, and

R. Bowers, Proc. Phys. Soc. (London) 79, 440 (1962).
"A. D. B. Woods, B. N. Brockhouse, R. H. March, and A. T.

Stewart, Phys. Rev. 128, 1112 (1962)."The original calculations contain a numerical error, but even
correcting for this PR. S. Srivastava and 3.Dayal, Progr. Theoret.
Phys. (Kyoto) 31, 167 (1964)g, there remains still s, discrepancy
of about 33Fo.
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The matrix equation which determines the dispersion
relations of the lattice becomes then

~ P W.„(n)e'-P "-m~P~.„~ =0 (2)

MODEL

As in Bhatia's theory we use a model which is based
on screened Coulomb interaction between ions, and as
in Toya's model' and in agreement with Lax, ' the sym-
metry requirements are taken into account by including
umklapp processes. The inAuence of the electrons is con-
sidered through the screening parameter of the Coulomb
interaction. The interaction between closed ion shells
is included by central interaction between first and
second neighbors.

The potential energy of the crystal for small displace-
ments u of the atoms may be written as'4

lf = lf p+ p P +'nn'nnnn'.
n, n'

presence of conduction electrons, an effect which gives
rise to screening.

The atomic coefficients I,„are defined as second
derivatives of the potential g between iona at n and n':

I,„(/p) = c/py/p/x p/x„. . (7)

e()-Z—
~ h'+hP

(S)

where the summation should extend over all allowed
wave-vector values k of the electron sea which sur-
rounds the ions.

With h= (2m/a)h' and r= (a/2)n, and replacing the
summation by an integration, we find

For a screened charge the potential is of the form
r ' exp( —h,r). Since we are interested in q space it is
convenient to work with the Fourier transform of this
potential"

Ln= (2/a)r„, r.„=position vector of atom m;

q= (a/27r)y, y=phonon wave vector;

a = lattice constant].

P I,p(n) expLArqnj

h, 'h„' expPi (q —k')n7«
(9)

h"+ (a/2~)'hP

We split the coeKcients 8',„ into two parts: a short-
range closed-shell part 5 „and an ioaic part I „.

Shell Part 8.„
Restricting our calculation for the moment to bcc

lattices we find for the xx element (for central inter-
action between first and second neighbors)

We now use the known relation

(2m-)'

Q expLix(q —k')n]= P 6(q—k'+h), (10)

where v, is the volume of the unit cell and h is related
to the reciprocal lattice vector K by K= (2~/a)h. This
leads to

P S„(n)e'.p "

= Sui(1 cos7fg~ cos7I"gp cos7t'g;)+4np s111 '/rq~.

o,~ and 0,2 are the atomic-force constants for first-
and second-neighbor interaction, as for instance de-
6ned by Curien. "The xy elements are of the form A is a constant which depends on the effective rather

than on the valence charge of the ions. The negative
second term follows from the condition for translational
invariance of the lattice. p In the h summation,
h +h„+h, has to be even for bcc lattices, and h„h„, h,
have to be all odd or all even for a fcc crystal. k. is the
screening parameter, which in the Thomas-Fermi model
is related to the wave vector k& at the Fermi surface by'

g S,„(n)e' p'=Sui sinmq, sin~q„cos~q, . (4)

For fcc lattices the corresponding expressions are"

Q S„(n)e' p'"=4uig2 —cosmq (cos7rq„+cosmq, ))
+4np sill pl'g2; (5) -1/2 -4( 4 I/p- &/& / &/&'"= —' =--) (-)'

w ap ~&9~ ap
(6)Q S,„(n)e' &'"=4ni sim. q, sin~g„.

(g +h ) (qp+h„) h,h„
(3) I„,(n) =A Q

h
~
q+h

~

'y (g/2~)ph ' hp+ (g/2~)'h '
(11)

Ionic Part I~ =0 814(rp/ap). '/Ph/, (12)

'4 R. A. Smith, lVave 3Iechunics of Crystalline Solids (Chapman
k Hall Ltd. , London, 1961).

"H. Curien, Bull. Soc. Franq. Mineral. Crist. 75, 197 (1952)."C.B. Walker, Phys. Rev. 103, 547 (1956).
"D.Pines, L&leznentary L&'xcitations in Solids (W. A. Benjamin,

Inc. , Publishers, New York, 1963).

This part arises from the Coulomb interaction Here rp= (3/4~n, )'/'= interelectronic spacing; e,= elec-
between metal ions. The interaction is modified by the tron density; and ap ——h'/wee'=0. 529 A=Bohr radius.

Applying many-body perturbation theory, Langer
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(q.+h.) (q„+h„)
a'(~lq+hl)

l q+ h
l
'+ (a/2vr)'k '

(13)k '(LV)=k '(TF)f(t),

and Vosko ' were able to show that the screening pa- the ionic part of the dynamic coe%cients
rameter in a high-density electron gas is not inde-
pendent of the electron wave number k:

where
1 Is —1+I

f(t) =-,'+ ln

where B= (2s/a)ro

h hy
g'(&h), (18)

h'+ (a/27r)'k '

with =1k/2k&. The function f(t) goes to unity for
t —& 0 and has a logarithmic singularity at t,= 1, which
gives rise to the so-called Kohn anomalies in the dis-
persion curveyo or frequency distributiozPo, 2s of metals

One known shortcoming of the Thomas-Fermi theory
is the fact that their model does not adequately take
into account the repulsion of the electrons and so over-
estimates the screening effect. Also, and especially for
long wavelengths, this has not yet been improved by
the inclusion of the f function. Pines" has shown that a
better parameter should be obtained if one uses,
instead of k, (TF), a value which is about a factor 2

smaller:

PARAMETERS AND ELASTIC CONSTANTS

In this section we relate 0.~, o.~, and A to the three
elastic constants of the cubic lattices C~~, C~2, and C44.
This is done by comparing corresponding elements of
the dynamical matrix, Eqs. (3) and (4) and also (11),
with the equations of elasticity. We obtain the follow-
ing result for the bcc lattice:

Crt ——(2/a) Lnt+ns+A/a'k, '],
C to

——(2/a) [nt+ A/a'k. s],
C44 ——(2/a)nt,

k, (P) =0.353 (ro/ao) '"k p.

Combining this with the function f(I) leads then to

k,s=k,s(P)f(I) . (16)

and inversely,

nt (a/2) C44-—,
n, = (a/2) (Crt —Cts),
A = (a/2) (Cts —C44)a'k s.

(2o)

a'(x) =
3 (sinx —x cosx)

The effective potential for large K values, which cor-
responds to the core region of the ion, should become
very small, since the negative potential energy of an
electron near the atomic nucleus is nearly compensated
by the high kinetic energy associated with the rapid
oscillations of the wave function within the core
region. " We take this cancellation effect into account
by introducing in Eq. (11) a function which is familiar
from Wigner-Seitz calculations:

The corresponding result for fcc lattices is

Ctt= (4/a) [nt+ns+A/a'k. '],
Cre ——(4/a) Lnt/2+ A/a'k, s],
C44 ——(2/a) nt,

and inversely,

nt ——(a/2) C44,

n2= (a/4) (C11—C12—C44),

A = (a/2) (Cts C44) a'k, '.
CALCULATIONS

(21)

(22)

where x= (2x/a)roj q+hl.
The choice of this function is arbitrary, but it serves

the purpose of reducing the influence of larger E values
rather well. 4 Moreover, Woll and Kohn' have shown
that the appearance of g' is the essential modification
of the free-electron result which occurs if one assumes
that the electron wave functions are of the Bloch type. "
Including the decay function we thus obtain finally for

'8 J. S. Langer and S. H. Vosko, Phys. Chem. Solids 12, 196
(1959)."E.J. Woll and W. Kohn, Phys. Rev. 126, 1693 (1962).' J. Peretti, I. Pelah, and W. Kley, Phys. Letters 2, 105 (1962)."P.L. Taylor) Phys. Rev. 13'1) 1995 (1963).

22 D. Pines, Solid State Phys. 1, 367 (1955).
"M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
'4 L. J. Sham and J.M. Ziman, Solid State Phys. 15, 221 (1963)."The same function is also used in the theories of Toya (Ref. 9)

and of Sharma and Joshi (Ref. 7). See also the recent paper by
W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).

As an application of the present theory we have cal-
culated the dispersion curves for the bcc lattices" of Li,
Na and K, using Eqs. (2), (3), (4), (1g), (16), and
(20). The results are shown in Fig. 1. The elastic con-
stants for Li were taken from Nash and Smith, "for K
and' Na from Bender. "Since in the latter case a large
discrepancy exists between experimental values ob-
tained by different authors, ""we have used a C&4

value (0.554&&10" dyn-cm ') which gives good agree-
rnent between the experimental (neutron) results" and

"Calculations for the fcc lattice of Cu also shoxv very good
agreement with experiment PM. M. Shulrla (private communica-
tion); Phys. Stat. Solidi 7, K11 (1964)g.

2'H. C. Nash and C. S. Smith, Phys. Chem. Solids 9, 113
{1959).

"O.Bender, Ann. Physik 34, 359 (1939)."S.L. Quimby and S. Siegel„Phys. Rev. 54, 293 (1938).
"W. B. Daniels, Phys. Rev. 119, 1246 (1960).
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FIG. 3. Lattice fre-
quency spectra of
lithium, sodium, and
potassium.
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FIG. 4. Comparison of
lattice specific heats for Li,
Na, and K with experi-
mental calorimetric values.
The model parameters for
Na and K were calculated
from the elastic constants
at 90, resp. 77'K. For
lithium three sets of pa-
rameters were used corre-
sponding to the elastic
constants at 78, 155, and
195'K.
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which is known to cause an unusual deviation between
elastic and calorimetric Debye temperatures. "

CONCLUSION

From the comparison between experimental and theo-
retical values, especially for sodium, we conclude that a
dynamical model which is based on a "spring" inter-
action between closed shells together with a Coulomb
interaction between shielded effective charges seems to

'3 G. A. Alers and J. R. Neighbours, Rev. Mod. Phys. 31, 675
(1959).

be quite promising in explaining the lattice-dynamical
properties of metals. Two points are obviously essential:
the correct choice of the screening length k. ' (Pines's
expression seems to be well suited) and the inclusion of
at least the nearest umklapp processes. Moreover, the
present model is simple enough, so that a generalization
to more complicated metals should be feasible.
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