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The size-effect conductivity of thin metallic films in a longitudinal magnetic field is calculated following
Chambers’ kinetic formulation. We assume (i) that the electron Fermi surface is a single sphere in mo-
mentum space, (i) purely diffuse scattering at the boundary surfaces, and (iii) an isotropic relaxation time
in the bulk material. The calculation is based on a study of the trajectory of electrons scattered from the
surfaces. The computed size-effect magnetoresistance exhibits a maximum in low magnetic fields and a
monotonic decrease in higher magnetic fields. The resistivity maximum may be utilized to obtain informa-
tion on the bulk mean free path or the cyclotron radius of the conduction electrons. The gross feature of
the calculated size-effect variation of magnetoresistance (the galvanomagnetomorphic effect) is found in

agreement with some experimental results.

N the free-electron theory of metals, it is well known
that a longitudinal magnetic field has no effect on
the resistivity of an isotropic conductor.! However, in
proving this statement, it is tacitly assumed that all
the dimensions of the specimen are large compared
with the mean free path of the conduction electrons.
In the case of thin films or wires at low temperatures
where boundary scattering of electrons prevails, this
requirement breaks down and there may exist a sig-
nificant longitudinal magnetoresistance effect due to
the spiral motion of the electrons in the magnetic field.
Previous work on sodium wires??® has shown that the
resistivity actually decreases in a longitudinal magnetic
field. In this note, we report calculations of the mag-
netoresistance effect for the case of a thin metallic ilm
placed in a magnetic field which is parallel to the
current in the plane of the film. Theoretical study of this
problem does not seem to appear in the literature. In
the results, we shall see that the resistivity decreases
in a longitudinal magnetic field after an initial increase.
It is plausible that these features may be utilized to
derive the mean free path and momentum of the
conduction electrons in the metal.
Consider a thin metallic film of thickness d, with its
surface parallel to the -z plane (see Fig. 1). We assume
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Fic. 1. The geometry of the thin film and the applied fields.
Circular arc B4 is the projection of an electron trajectory on the

x-y plane.

1 See, for example, J. M. Ziman, Elecirons and Phonons (Oxford
University Press, London, 1960), p. 494.
2. K. C. MacDonald and K. Sarginson, Proc. Roy. Soc.

London) A203, 223 (1950).
( 3R. G.) Chambers, Proc. Roy. Soc. (London) A202, 378 (1950).

that at the boundary planes y=0 and y=d, the surface
scattering is purely diffuse, and that the electron Fermi
surface in the metal is a single sphere. The mean free
path 7 is defined by the product of the value of Fermi
velocity v and an isotropic relaxation time 7. The
dimensions of the specimen in the x-z plane are large
compared with / so that the electronic distribution
function is independent of x and z. The fields are
parallel to each other and in the z direction (H||E|J|[2).

The general approach to the conduction problem of
this type is based upon the Boltzmann equation.
However, using a kinetic formulation, Chambers’—5
has shown that the distribution function can be ob-
tained without solving the Boltzmann equation, and
the size-effect conductivity of a thin conductor in the
absence of magnetic field is given by

30.0 2T T
/ ds / d¢ / dd sind cos®d
4ws 8 0 0
X[1—exp(—[R—Ro|/D)], (1)

where oy is the bulk conductivity, s the cross-sectional
area of the specimen perpendicular to the current,
|R—Ro| the distance an electron has traversed from
a point Ro on the boundary to a point R in the metal.
It is clear that this result satisfies the requirement of
diffuse scattering at the boundaries.

In the presence of a longitudinal magnetic field,
which produces no drift current but does modify the
electron trajectories, Eq. (1) is still applicable provided
[R—Ro| is taken to be the distance which an electron
has traversed along its spiral trajectory in the magnetic
field. This equation is appropriate for calculating the
longitudinal magnetoconductivity in the present
problem.

An electron traveling at an angle ¢ to the z axis will
move in a helical path, while its projection on the x-y
plane will describe a circle of radius r= (m*uc sing) /eH,
where m* is the cyclotron effective mass of the electrons.
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4E. H. Sonheimer, Advan. Phys. 1, 1 (1952).
8 R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).
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CONDUCTIVITY OF THIN METALLIC FILMS

If, when an electron traverses from Ry to R, its pro-
jection on the x-y plane moves an angle ¢ around such
a circle, then, following Chambers’ formulation, the
size-effect magnetoconductivity in the present case can
be written as

o 3 d 2 T
—=1—— / dy / deé / dd sind cos*?
() 47rd 0 0 0

Xexp[—y¢(y,0,8)/n], (2)

where n=1/r0, ro=m*vc/eH.

We proceed to find ¢ in terms of y, ¢, ¢ and to
evaluate the integrals in (2). One may note that the
effect of H is independent of the direction of H, and
by symmetry consideration, electrons scattered from
either y=0 or y=d will contribute equally to the con-
ductivity. Thus, in evaluating the integrals, we shall
consider only the electrons scattered from the lower
boundary (y=0), and the result should be multiplied
by 2 to give the total value of the integral.

In Fig. 1, the arc BA is the projection on the x-y
plane of the trajectory of an electron that has been
scattered from the lower boundary; we have cosy
= (CB)-(CA)/#. For every point 4 (0,y) in the metal,
the point B(X,0) is given by the algebraically larger
root of the equation:

(X7 sing)?+ (y+7 cosg)?—r*=0, ©))

o 3 T 14 (p 8ind—1)0 (1—u sind)
—=1-2X— / dd sind cos%?/
dr Jo

() 0
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where ¢ is the azimuth angle at 4 as shown in Fig. 1.
From (3), it can be shown that ¢/(y,¢,8) is given by

242y cos¢)1/2]

cosy =14 sin“’d:[:— 1+4sgn (sin¢)< 1—
7% sin’p
Yy Coso
+ )

¥

where
sgn(x)=-+1 x>0
=—1 2<0.
Equation (3) also places limitations on the allowed
ranges of ¢ for a given point 4 in Fig. 1 as follows:
0SySr: ¢1<9< 2r—¢s
rSyS2: 2SS 2r—¢y

<y no real solution in (3),

where ¢i1=arc cos(1—y/7), $2=m—arc cos(y/r—1).
Moreover, to take account of electrons scattered from
the lower boundary only, the condition

r(1+cosg)+y<d

must be satisfied for every X >0 and d< 27, sing<0.

Letting a=d/l, u=ro/d, §=y/d, and taking all the
restrictive conditions into account, the size-effect
conductivity can be written as

dEI: /¢ ” d¢p exp(— o))

1

271 3 ™
—|—/ de exp(—pa)0(1—t—pu sin0(1+cos¢))]—2><4— / d? sind cos*90 (1—p sind)
T T Jo

2T—p2

1+ (2p 8ind—1)0 (1—2u sind) ™ (5)
x [ o [ s exp(-napr+ [T dg exp(-napoli—t-u sni (1+cose) |
» 4 T

sind 2

where

Y=arc cos { 1—I—sin2¢[— 1+4sgn (sinqS)(l —

E4-2u sind cosqs)l/?:,J_E cos¢]

u? sin$ sinp u sind

0(x)=1 x>0
=0 x<0.

The factor 2 appearing in front of 3/4r in (5) takes
account of electrons scattered from both boundaries.

The integration in (5) is very complicated ; in general
we must resort to numerical methods. The triple
integral has been evaluated by using an IBM 7040
computer at the Stony Brook Computing Center. Some
calculated curves of p/po(=00/a) versus 1/u are shown
in Fig. 2.

It should be noted that 1/u=deH/m*vc is propor-
tional to H for a given specimen; therefore, theoretical

curves such as those shown in Fig. 2 can be directly
compared with experimental magnetoresistance data.
With the approximations assumed in the present work,
these curves may be applicable to some alkali metals.
It is believed that the general aspect of these curves,
if not swamped by the inherent bulk magnetoresistance,
should also be found in other metals.

In Fig. 2, we observe that the resistivity decreases
with increasing H beyond an initial maximum. This
decrease in resistivity is due to the fact that for suffi-



Fi6. 2. Calculated
curves of p/po versus
1/u  (=d/ro=deH/
m*vc) for various a
(=d/i).
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ciently large H, the electrons may have their trajectories
so curved as to reduce collisions with the boundaries.
Thus, increasing the magnetic field will result in
lengthening the effective free path of the conduction
electrons. For very high H, the resistivity approaches
the bulk value. This behavior of decreasing magneto-
resistance has been observed in thin wires and films of
some metals??® and semimetals®~® in longitudinal or
transverse magnetic fields. As Chambers® has pointed
out, comparison of these curves with the experimental
results will yield information on mean free path and
momentum of the conduction electrons in the metal.
In contrast to the monotonic decrease of the longi-
tudinal magnetoresistance found in thin wires,?? we
find in the present case that there is a resistivity
maximum in the low-field region. This feature, similar
to that discovered in transverse magnetoresistance of
thin films,2? has been observed in Sb® and Bi.”-® Detailed
6 M. C. Steele, Phys. Rev. 97, 1720 (1955).

7 J. Babiskin, Phys. Rev. 107, 981 (1957).
8 A. N. Friedman and S. H. Koenig, IBM J. Res. Develop. 4,

158 (1960). . .
9D. K. C. MacDonald, in Handbuch der Physik, edited by S.

Fliigge (Springer-Verlag, Berlin, 1956), Vol. XIV, p. 137.
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analysis of this particular effect is not available at the
present time. Using elementary considerations, it seems
that the initial increase of magnetoresistance in thin
films is due to the fact that some electrons moving
nearly parallel to the surface in zero magnetic field
have been curved to collide with the boundaries after
a magnetic field is turned on. If these electrons con-
tribute most effectively to the conduction, then
applying a magnetic field will cause shortening of the
effective free path, thereby increasing the resistivity.
Since the resistivity due to all the electrons decreases
in higher fields, a maximum must exist.

As shown in Fig. 2, the value of 1/ at the resistivity
maximum depends upon a. For higher «, that is, for
lower / in a given specimen, the maximum shifts to a
higher field. This behavior agrees with some experi-
mental results.® Detailed calculation of the & dependence
of this resistivity maximum is quite laborious. However,
an approximate formula may be obtained from our
calculated results. Within the range of our numerical
computation, (@=0.01 to a=1), the 1/u value at the
resistivity maximum can be fitted by

1
(—) =1.260°5" (error<109%,).

H Pmax

This formula may be conveniently used to estimate /
provided m*v is known, or vice versa.

For measurements of the size-effect resistivity at a
given temperature, the advantage of using a magnetic
field, compared with the case of zero field, is that the
information on / and m* may be obtained from one
specimen only. If one measures the conductivity in
zero magnetic field, it then becomes necessary to take
measurements for a number of specimens of different
sizes. However, it is difficult to have the same mean
free path in all the specimens. For the purpose of
comparison, it may be pointed out that our calculated
values of p/po in Fig. 2, when extrapolated to zero
magnetic field, agree with those calculated by Fuchs!®
for thin films in the absence of a magnetic field.

It is a pleasure to thank Professor N. Balazs for

discussions.
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