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Short-Range Order and Long-Range Order Parameters
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The equations for the short-range order parameters relating to ordering in binary solid solutions, as pre-
viously derived by the author, have been rederived in a more satisfactory manner. Applying the equations
to situations with long-range order, a more complete analysis of predictions regarding multiple long-range
order parameters has been made. It is shown that long-range order parameters may be rede6ned in such a
way that they provide a reasonable description of the state of order in situations involving 6nite crystal size,
6nite out-of-phase domain size, and Quctuations in composition.

1. INTRODUCTION
' 'N previous papers' ' the author has calculated short-
- ~ range order coefficients using sets of equations de-
rived from elementary thermodynamic arguments.
Comments on the derivation of these equations by Hall
and others'4 have suggested that they cannot reasona-
bly be derived from considerations of pair correlations
only. This is probably true. It therefore seems useful to
rederive the equations in such a way as to emphasize
that they are generated by consideration not of pair
correlations but of extended correlation functions.

While the application of the short-range order (s.r.o.)
equations to situations involving long-range order
(l.r.o.) may be considered as scarcely justifiable, it has
been shown to give values for the l.r.o. parameters in
reasonable agreement with experiment, ' and also has
served to introduce the concept of multiple l.r.o. parame-
ters. Reconsideration of the preliminary results on this
latter subject' has shown that some modifications of the
concept are necessary, and at the same time has led to
a proposal for the redefinition of l.r.o. parameters,
whether single or multiple, which can take into account
the presence of antiphase domains, finite crystal size
or fluctuations in composition. These subjects are
treated in the later sections of this paper.

2. DERIVATION OF SHORT-RANGE
ORDER EQUATIONS

For an alloy with fractions mz and nz& of A and 8
atoms the short-range order parameters 0.;, as intro-
duced by Warren (see footnote of above Ref. 2), have
been shown to represent the contributions due to order-
ing to the peaks of the Patterson, or autocorrelation,
function of the array of atoms. ' The indices i refer here
to particular interatomic vectors rather than to shells
of atoms. A standard interpretation of the Patterson
function for 1V equal atoms, readily proved, is that it
represents Ã times the average environment of an atom.
Similarly, given that Em& and Ens& are the numbers
of A and 8 atoms present, the Patterson function, or
the set of n; parameters, defines the average environ-
ment of an A or a 8 atom.

In calculating the free-energy contribution due to
ordering, F= U—TS, the energy term U is assumed to

gJ. M. Cowley, Phys. Rev. 77, 669 (1950).' J.M. Cowley, Phys. Rev. 120, 1648 (1960).
3 D. O. Christy and G. L. Hall, Phys. Rev. 132, 1958 (1963).' G. L. Hall and J. Philhouis (to be published).

be equal to Smz times the energy of the average con-
figuration of atoms about an A atom plus Xns~ times
the energy of the average configuration about a 8 atom.

If, for example, an A atom is chosen as origin the
probabilities for occupation of all other sites are es-
tablished by the full set of parameters o.;. Because the
occupancy of the i site is nonrandom there will be an
energy term corresponding to interaction of atoms at
this site with the origin atom. Similarly for the j site.
It is these energy terms which Christy and Hall, ' include
as the only energy terms involved in their energy ex-
pression. However, because the choice of the A atom as
origin establishes nonrandom occupancies for both the
i and j sites simultaneously, additional energy terms
corresponding to i-j interactions must be included.
Christy and Hall derive an "exact" energy expression,
but this is not relevant to these order-parameter calcu-
lations since it refers to specified configurations of atoms
and not to a system with correlgtiorIs between atomic
positions specified by order parameters.

In the average configuration about an A atom, the
site defined by the i vector contains a fraction mA+mBa;
of A atoms and a fraction mB(1—a;) of 8 atoms and the
site defined by the j vector has similar fractional occu-
pancy with n; replacing 0.;. If the interaction energies
of pairs of atoms on the i and j sites are given by
Vzz„;.,Vz& ... etc., the contribution to the energy due
to the occupancy of these sites in the average configu-
ration will be made up of terms such as

~ +mB(1 a,)(mA+mBa;)V—AB„,+ .

If we then sum all such terms arising from gm~ average
configurations about A atoms and Em~ average con-
figurations about 8 atoms we obtain:

U= —,'XmA Q; pj t mB'(1 — )(1a—a,)VBB„;
+ (mA+mBa ) (mA+mBaj) VAA, j
+(mB (1—a;) (mA+mBa;)
+mB(1 a;)(mA+mBa;)—}VAB,;;5
+ ',S mQB; p j-[mA'(1 —a,) (1—a;)VAA, i;
+ (mB+mAa )(mB+mAaj) VB'B,

+(mA(1 a;) (mB+m—Aaj)
+mA(1 a,) (mB+—mAa;) j VAB„;5 (1)

= sÃ Q ' gj f (mA VAA, ij+2mAmBVAB,
+mB'VBB,;;)+mAmBa;a;

X (VAA, cj+VBBij 2VAB, ij) j,—= Up+SmAmB Q; Qja,a;Vis
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The factor ~» is introduced on the right-hand. side so that
each interaction energy mill not be counted twice.

In calculating the entropy, we consider the number
of ways of dividing the Ensg vectors from 3 atoms
chosen as origin to atoms on the i site in such a way as
to give an order parameter 0.;, i.e., so that there are
Em~(m~+miin;) vectors AA and Pm~ms(1 —n;)
vectors AB, and similarly for the Sm~ vectors from 8
atoms. The total entropy term obtained by using
Stllllng s approximation ls then

S—Sp= —&Vk g; {mg(my+man~) ln(mz+miia, )
+ms(ma+mgn;) ln(ms+m'en;)

+mgmii(1 —n ) lnmgmii(i —n )'} .
If we take the equilibrium condition to be 1'/bn;=0
for all 0.;with j&j and T constant, we obtain the equa-
tions previously found. ',

2 Q, n;V;;+kTf(0.;)=0,

(mg/ms+a;) (ms/my+a~)
(n~) =ln

(I—e~)'

limiting values of the s.r.o. parameters for large dis-
tances from the Patterson origin. In the case of the
CupAu-type lattice it is necessary to distinguish between
the limiting values s» corresponding to unit cell corners
and s2 corresponding to face-centers in the unit cell of
the Patterson function. The assumption that thc com-
position of the alloy is everywhere the same leads to the
relation s»———3s2.

Before we can derive an equation equivalent to (2)
fol 1.1.0. parameters lt ls ncccssaly to decide whcthcl
the free energy is to be minimized with respect to one
parameter, or independently with respect to two
parameters. For the Cu+u-type lattice, for example,
the energy term (1) becomes

&= Up+ iVmxma

&&g; t {i~12sisp+-,'sp(4si+ Ssp) }Vi
+{~6sP+~6sP}Vp+ ].

Then if we assume that s»= —3s2, differentiating the
free-energy term with respect to s» gives

The factor 2 reappears-before'the summation in the
course of the diGerentiation.

In both the energy and the entropy terms we have
considered S average con6gurations, each of g inter-
atomic vector peaks. Since treatment of the interactions
of these confj.gurations presents considerable diSculties,
we have assumed the E con6tgurations to be ind. e-

pendent, and relating to vector sets for separate sets of
E atoms. Above the critical temperature, when the
s.r.o. parameters are different from zero for only a small
number of interatomic vectors, we gct the order-
dependent parts of the energy and entropy terms given
by E times the contribution from the localized modi6ca-
tion of the average configuration. However, the part of
the con6guration of g vectors which does not depend
on order is the same for each of the F con6gurations.
Hence the ord.er-independent terms Uo and So are both
of the order of Ã'. The over determination of these
terms does not, of course, aGect the derivation of
Eq. (2).

%hen we apply the s.r.o. equations to the case where
l.r.o. exists, in each condguration there are Ã vectors
for which the order parameter has the limiting value s;.
Then both the energy and entropy terms contain factors
lP for the order-dependent part as well as for the order-
independent part. Thus the free-energy contribution is
X times overestimated. However, on putting the de-
rivative of the free energy equal to zero the factors E'
cancel out, and. equations analagous to (2) are obtained.

3. Ega'IONS FOR LONG-RANGE
ORDER PARAMETERS

It was previously suggested. ' that long-range order
may not be uniquely de6ned. by a single l.r.o. parameter.
The l.r.o. parameter or parameters arc d.edned. as the

and taking the limit s» —+ 0 gives the critical tempera-
ture as

T.= 2(Vi—Vn)/&, (4)

where we have assumed that the only nonzero energy
terms are V» and V2, relating to nearest and next-
nearest neighbor pairs, respectively.

If instead. we do not assume s»= —3s~, but consider
s» and s2 as independent parameters, differentiation
with respect to s& and s2 gives the pair of equations;

BspVi+ Ppsi Vp —— isa Tf(s,—),
(si+2sp) Vi+PspVp= —xikT f(sp) .

Rearranging these equations we obtain

Ssi(Vi——,
'

Vp) —kTf(si) =Ssp(Vi ——,
'

Vp) —AT f(sp)
(5)=S(si+Bs2)Vi.

From the form of the function f(x), as defined by (2),
it follows that there is no solution of (5) for which
si+Bsp ——0 except for the limiting cases s&=sp ——0 or
T=o.

From the limiting case s»= s~=o, we find. the critical
temperature as

T.=-', (Vi—-', Vp)/k, (6)

which differs slightly from (4). Disregarding this dif-
ference, the values of the l.r.o. parameters calculated.
from Eqs. (3) and (5) are plotted in Fig. 1, as functions
of T/T, . The values of si and. —Bsp calculated, from (5)
are seen to differ by a maximum of about 5%, and
bracket the value of si calculated from (3).

The previous result' that si+Bsp/0 for T=O was
obtained because the iteration method. then used.
became unreliable in that region. However by solving
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FIG. 1. Values of l.r.o. parameters calculated for a Cu3Au-type
alloy. Dashed line: values of s& calculated on the assumption that
sI.+Bs2——0. Pull lines: values of s~ and —Bs~ calculated without
this assumption.

(5) graphically it is evident that s&+3$2 goes to zero for
T=O. Further, this can be proved by putting sl= 1—e&

and s2 ——(—s~/3)+ e~ in (5) and considering the limiting
cases for the equations in s& and s2 successively.

It was pointed out previously that the assumption
sq+3sg ——0 corresponds to the assumption of a uniform
composition whereas any departure from this relation
must involve a separation of the alloy into regions of
diferent composition, the minimum size for such
regions being dependent on the basis for the definition
of long-range order, as discussed below. For the Cu3Au-

type alloy, there are only small differences in the values
of experimentally observable quantities predicted for
the two cases of either one only or two l.r.o. parameters.
Any resolution of a difference seems unlikely at the
moment. Also calculations of the free energy for the two
cases indicates no difference sufhcient to allow one or
the other to be clearly preferred on the basis of this
simple theory.

For the CuAu composition there is no ambiguity
since only one solution, that with a single l.r.o. parame-
ter, can exist.

However, at other than these simple stoichiometric
compositions large differences appear between the pos-
sible solutions. In each case free-energy calculations
favor the solution with multiple l.r.o. parameters.

For the composition A48, for example, if only one
independent parameter, sJ is assumed, the limiting value
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FIG. 2. Values of l.r.o. parameters for composition A&. Dashed
line: values of sI calculated on the assumption that sl.+3s2 ——0.
Full lines: values of sI, —3s2 and —4s2 calculated without this
assumption.

for low temperatures is si ——0.75, corresponding to a
random distribution of the excess A atoms and all the
8 atoms on one sublattice of the unit ceQ. For two in-
dependent parameters, the limiting values are s~= 1..0
and —3s2=0.75 and the variation with temperatures
is as shown in Fig. 2. Thus for low temperatures,
sq+4$2=0, and the equilibrium state corresponds to a
separation of the alloy into pure A and an A38 alloy.

Similarly, for an 228 alloy the assumption s&+3$2——0
leads to s&=1 at T=O, with an equilibrium state in
which the 8 atoms in excess compared to the ASB alloy
are distributed at random over the sites of A atoms. The
assumption of two independent order parameters leads
to the relationship sq+2$2=0 at low temperatures.
However, for such alloys it seems reasonable to suppose
that the arrangement of the excess 8 atoms will not be
random. The number of nearest-neighbor B-Bpairs will

be reduced if the excess 8 atoms are arranged prefer-
entially on one of the A sublattices, as suggested in
Fig. 3(b). There is, in fact, a tendency for a CuAu-type
ordering into planes of A and 8 atoms. Then the three
face-center lattice sites in the Patterson function are no
longer equivalent, and a minimum of three l.r.o. pa-
rameters is necessary. In place of Eq. (5) we then have

Ss&(V&—~V2) —kTf(s&) = Ssl(V1 $V2) —kTf(s2)
=S$8(Vi—$V2) —kTf(s3) (7)

S($1+2$2+$3) ' Ui ~

The graphical solution of this equation gives the
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values for the l.r.o. parameters shown in Fig. 4. Above
T/T, =0.60, the only solutions possible are with s~= s~,
so that the ordering is similar to that of an 338 alloy,
with sq+3ss smalL For lower temperatures, such solu-
tions are no longer possible. Then ss is small and nega-
tive while —s2 increases suddenly so that s~+2sg is
small. In this region, then, the ordering tends to that
for the AB alloy.

Prom the form of the curves it is clear that only three
roots of the equations c&x f(x—)= c2 are possible. There-
fore, no more than three different l.r.o. parameters can
be derived from sets of equations such as (7) for binary
alloys based on a face-central cubic disordered structure.

For other compositions in the range between the
A& and the AB alloys it is to be expected that the
temperature of the change-over from the A j3-type
ordering to the AB type will increase as the AB com-
position is approached.

The simplicity of the assumptions on which the above
calculations are based appears to ensure that no direct
comparison with any real alloy system is possible a.nd
more complete calculations of the variation of l.r.o.
parameters with composition on this basis, although
readily performed, seem to have limited value. For
example, it may be pointed out that the equations such
as (5) and (7) lead to a critical temperature which varies
with composition according to the simple hyperbolic law

05
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Fxo. 4. Values of l.r.o. parameters for composition 328. Dashed
line: values of gj calculated on the assumption that s~+3s2=0.
Full lines: values of s~, —2s2, —Bg2 and —s3 calculated without
this assumption.

Previously' it was shown that the variation of T, for
the Cu-Au alloys could be reasonably reproduced by
modifying the function f(x) in such a way as to give
special signi6cance to the stoichiometric compositions,
but a logical development for this modihed form is difIIi-

cult to And. It seems evident that in order to account for
the details of the Au-Cu phase diagram it will be neces-
sary to take into account additional factors, such as the
difference in size of the atoms and, probably, the elec-
tronic energy states. '

@
4E

%r ~ ar 9-x A

$A+yB + 9+XB

(b)

Pro. 3. Average unit cell for a fully ordered 228 alloy, . (a) with
random arrangement of excess 8 atoms, and (b) with excess 8
atoms arranged preferentially on one A sublattice.

~ H. Sato and R. S. Toth, Phys. Rev. I27, 469 (1962).

4. DEFINITIONS OF LONG-RANGE ORDER
PARAMETERS

There a,re obvious inconsistencies between the dehni-
tions of l.r.o. parameters in terms of periodic, and there-
fore infinite, structures and the practical realities of
antiphase domains and finite crystal size. The defini-
tions of the parameters in terms of infinite lattices may
be used for many purposes without leading to serious
error or misunderstanding because "reasonable" inter-
pretations of inhnity are taken in both theoretical and
experimental work. However, when cases are considered
involving relatively small out-of-phase domains or pos-
sible regions of varying composition, it is necessary to
consider the basis for such interpretations in detail.

For simplicity we will consider limitations of perio-
dicity in one dimension only for a simple AB alloy
perfectly ordered except for the limitation imposed.

Firstly, if the crystal is of finite size, limited to S
unit cells of dimension a, the value of the IIlragg and
Williams order parameter S is unaffected because of its
definition in terms of the proportion of sites "correctly"
occupied. However, the values of the order parameters
defined in the same way as the s.r.o. parameters above
decrease linearly from {E 1 )/E for nq to beco—me zero
for interatomic vectors of length Na as in Fig. 5(a).

For the ca,se discussed by Guttman, ' where there is a

6 L. Guttman, Solid State Phys. 8, 174 (1956).
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FIG. 5. Diagrams suggesting
the limitations of the lattice,
the variation of order parame-
ter with vector length and the
form of the reciprocal lattice
peak for (a) a finite crystal,
(b) a finite crystal with one
domain boundary, (c) a crystal
with regularly spaced domain
boundaries, (d) a crystal with
irregularly spaced domain
boundaries.

(c)

single out-of-phase boundary in the middle of the
crystal, as in Fig. 5(b), we find S=O. The s.r.o.-type
parameters, starting from a value (1V 2)/E —decrease
to a value of approximately —-,'for vector lengths Na/2
and then increase to zero for vectors of length Na.

If there are regular out-of-phase boundaries sepa-
rated by M unit cells, then S=O again, and the s.r.o.
parameters now start from a value of (M—1)/M and
oscillate from positive to negative values gradually de-
creasing to zero for vector length Na, as in Fig. 5(c).
However because we now have a periodic superlattice
we should redefine the l.r.o. and s.r.o. parameters in
terms of the greater unit cell. Redefining the "correct"
positions for atoms, S=1, and the s.r.o. parameters
corresponding to multiples of unit-cell edge vectors,
decrease uniformly to zero as in Fig. 5(a).

If the out-of-phase domain structure is not completely
regular, of course, we cannot make this redefinition of
order parameters in terms of a new unit cell. Then,
again S=O; the variation of the s.r.o. parameters with
vector length then shows damped oscillations as in
Fig. 5(d).

For these four ca,ses, represented by Figs. 5(a)—(d),
we can consider the experimental data from which a
value for a l.r.o. parameter may most conveniently be
derived, namely the form and magnitude of the super-
lattice reflections found in x-ray diffraction patterns,
such as the (100) reflection for the example of Fig. 5.
In order to avoid complications of the description due to
experimental details we deal with the form of the dis-
tribution of scattering power in reciprocal space rather
than with measured intensities.

The distribution of scattering power is normally said
to contain a sharp peak due to l.r.o. superimposed on
the diffuse scattering-power maximum due to s.r.o. The
integrated strength of this sharp peak is then taken as
a measure of the l.r.o. parameter, the assumption being
made that the sharp peak may be clearly separated
from the diffuse s.r.o. maximum. The form of the sharp

peak is given by the Fourier transform of the order-
dependent pa, rts of the Patterson function, i.e., the
Fourier transform of the functions giving the variation
of s.r.o. parameters with vector length, as plotted in the
Figs. 5. For the finite-crystal case of Fig. 5(a), the peak
has the familiar sin'x/x' form. The integrated intensity
appropriately sca,led is given by the intercept of the
~n,

~
curve on the r=0 axis. Thus the l.r.o. parameter

measured in this way has the value 1.
For the other cases illustrated, the value of the scat-

tering power exactly at the superlattice reciprocal
lattice point is zero. The Bragg and Williams order
parameter S corresponds to this value and is likewise
zero. However, unless the distance between domain
boundaries is only a few unit cells the details of the
profile of the peak are not resolved under normal ex-
perimental conditions. Only the integrated strength of
the peak is recorded and the measure of l.r.o. is taken
a,s this integrated value. In each case the integrated
value is given by the intercept of the ~n, ~

curve on the
r=0 axis.

It is therefore consistent with the experimental pro-
cedures of x-ray diffra, ction and with reasonable theo-
retical approximations to take this intercept as a meas-
ure of l.r.o. This is also consistent with the result of
Chipman and Warrenv that the integrated intensity
measures the long-range order within the domains.

The examples we have discussed above have referred
to situations in which the order within the domains is
"perfect. " Relative to the concept of an infinite lattice
it is known that for partial l.r.o. the values of the s.r.o.
parameters for short interatomic vectors may differ
apprecia. bly from the limiting values for large inter-
a, tomic vectors, so that in the plot of ~n,

~
a,gainst r the

value of ~n, ~
oscillates about the limiting value as in

Fig. 6(a). The definition of l.r.o. parameters s;, which we

7 D. Chipman and B.E. Warren, J. Appl. Phys. 21, 696 (1950).
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FIG. 6. The variation of order parameters edith vector length for
(a) an inffnite crystal, and |',b) a limited crystal.

have used. in the previous sections of this paper, is in
terms of this limiting value.

When the effects of finite crystallite or domain size
are superimposed on the curve of 6(a) we get a curve as
in Fig. 6(b), where instead of oscillating about a limiting
value, the (n, ( values oscillate about the beginnings of
a curve such as shown in one of the sections of Fig. 5.

Hence the values of the l.r.o. parameters s; must be
redefined as the values given by the intercept on the
r=O axis of the curve of n; against r established at
moderately large values of r and. extrapolated through
the oscillations of the curve for small r values.

It is evident that such a definition cannot give unique
values for l.r.o. parameters when the crystallite or
domain size is so small that no clear distinction can be
made between the oscillations of the curve at small r
due to s.r.o. variations and. the further complications of
the curve introduced by limitations of the size of regions
with long-range order. This is consistent with the experi-
mental difliculty in such cases of distinguishing the
greatly broadened "sharp" superlattice rejections from
the s.r.o. diffuse scattering in de'raction experiments.
Under such circumstances it is necessary both experi-
mentally and theoretically to make special assumptions
in order to define what is meant by long-range order for
thc particular systcIQ undcl discussion.

It seems clear that while special reference has been
made here to x-ray or other diffraction methods of
measuring long-I ange oIdcI, similar considerations Inust
apply in reference to other experimental techniques, and
the rede6nition of l.r.o. parameters suggested will be
equally valid and useful for other approaches to the
proble.

S. LONG-RANGE ORDER AND FLUCTUATIONS
IN COMPOSITION

While the concept of the segregation of an alloy into
regions of diGering composition, as implied by the
Iesults of the simple theory given above, is not subject
to direct experimental verification, it is of interest to
show that the definitions of l.r.o. parameters given in
the previous section are suflj. cient for the description of
such effects, should they exist.

Previously, it was shown that, for the case of an in-
hnite crystal, uniform composition is consistent with
g; s;=0 where the sum is taken over all peaks of the

Fio. 'l. (a) Variation of composition with distance and (h) its in
Quence on the variation of order parameter arith vector length.

unit cell of the periodic part of the Patterson function.
This hoM. S likewise for 6nite crystals when the new
dehnitions of the s; are used.

As a simple example of a case of nonuniform composi-
tion, we consider the case of Fig. '/(a) where there are
periodic Quctuations in the ratio sN~/siss. If we now
consider the interactomic vectors corresponding to unit
cell corners of the Patterson function, the peak heights
will be modulated with the same periodicity. Instead. of
the full-line curve of 7(b) which extrapolates to the
value s1 at r=0, we now get the dashed line which
extrapolates to a higher value s1' at r=O.

If, instead of the regular Quctuations of Fig. 7(a),
there are irregular Quctuations, there will be no oscilla-
tions of the order parameter curve in 7 (b). We will get
a curve such as the dotted one extrapolating to s1', and
this is indistinguishable from that for a sample with
UnlfoHIl composition) Rn 1 r.o. pRI'RIQctci' sy ~ Rnd R

somewhat smaller crystaBite size.
Similar considerations hold for the l.r.o. parameter

corresponding to other peaks of the Patterson unit cell.
The modification of the full-line curve for 7(b) will be
difterent, giving curves extrapolating to other values of
s&' at r=0 so that we obtain on this basis values of the
l.r.o. parameters for which P;s;&0 as in the case of
l.r.o. parameters previously de6ned in terms of an in-
6nite lattice.

It thus appears that the new definition of l.r.o.
parameters allows us to describe ordering in situations
of varying composition in a consistent and experi-
mentally useful manner.

Zoic added ie proof Arecent pa.per by P. Clapp
)Phys. Letters 13, 305 (1964)j, gives a more exact:
statexnent of the approximations involved. in deriving
the equations of Cowley and those of Christy and Hall.
I thank D. T. Keating for bringing this paper to my
attention.
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