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The effects of data termination and systematic errors on the radial distribution functions of liquids ob-
tained from x-ray diffraction data are investigated with the aid of a computer. A general procedure for the
elimination of spurious detail is presented, and new data for liquid mercury and lead are analyzed. Com-
parisons of radial distributions for the solid and the corresponding liquid near the melting temperature
show that the radial density functions for the liquid and the corresponding crystalline solid are strikingly
similar, whereas liquid lead is different from liquid mercury. The liquid structure may be described by
starting with the structure of the polycrystalline solid and specifying the following parameters: The mean
nearest-neighbor distance 71; the average density of the liquid po; the critical correlation distance d; and
the mean-square relative displacements between atom pairs, ¢2. The o2 vary with pair separation and include
both thermal vibrations and diffusive motions. The mean nearest-neighbor distance in the liquid is shown

to be smaller than in the solid.

I. INTRODUCTION

HE radial distribution function may be derived
from a transform of the diffracted x-ray intensity.
Although the procedure is straightforward, the final re-
sult is subject to a number of errors arising from such
factors as misalignment, uncertainty in the shape of the
form factor, beam divergence, absorption effects and
from the termination of the experimental data at finite
scattering vectors. The presence of such errors probably
accounts for the differences between various sets of
published data. The variations in the available results
and the lack of error analyses make detailed interpre-
tations of the existing radial density functions ques-
tionable.

It is difficult to obtain raw distribution functions free
from error, and it is thus necessary to develop data-
reduction techniques which include methods of error
analysis. We have devised a method for treating errors
in the experiment by means of a digital computer, and
the procedure is applied to new measurements on liquid
mercury and liquid lead. We show that the liquid
structures are related in a systematic way to the struc-
tures of the corresponding solids. Furthermore, liquid
lead is definitely different from liquid mercury. We
finally attempt to relate the liquid quantitatively to the
corresponding solid structures by specifying the atomic
displacements, a characteristic correlation distance, a
lattice parameter, and the density of the liquid.

II. EXPERIMENTAL PROCEDURE

Diffraction data were obtained with a spectrometer in
which the specimen is horizontal and the source and
detector move in such a way as to maintain focusing
conditions.! The mercury was contained in a 24 in. diam
boat inside a chamber filled with helium. The large
specimen diameter minimized the curvature at the
central portion of the pool. The crucible used for the
lead provided a surface 2X15 in. Specimen heights were

* Supported by the U. S. Office of Naval Research.
1R, Kaplow and B. L. Averbach, Rev. Sci. Instr. 34, 579 (1963).

checked by means of particles of MgO floating on the
surface, and other features of the alignment were
verified by using polycrystalline and single-crystal
samples. Most of the data were obtained with MoK«
radiation, using a silicon crystal monochromator in the
diffracted beam. CoKa and CrKa were also used to
check the low-angle region for mercury. Adjustable slits
and 3° lateral Soller slits were used to limit the diver-
gence and to remove extraneous scattering from the
windows; the resultant width at half maximum for a
powder peak at sinf=0.3 was 0.001. A scintillation-
counter and pulse-height-analyzer combination was used
as the detector.

The post-specimen monochromator removes the fluo-
rescent radiation and the Compton modified scattering
at high scattering angles. The wavelength acceptance of
the monochromator was measured by observing the
(111) reflection from a silicon single crystal irradiated
with white radiation, and also by measuring the Comp-
ton scattering in silicon. Both methods yielded the same
cut-off angle for Compton radiation, which occurred at
6=21°. At lower angles the Compton scattering is less
than 19 of | f|2 for both lead and mercury, and can be
neglected entirely.

Data were obtained a number of times for each liquid
with the diffractometer running first in one direction
and then in the other to compensate for slow variations
in the x-ray intensity and in the detector system.

III. ANALYSIS OF THE DATA

The intensity of x rays scattered by a monatomic
liquid at angles not very close to the origin is related to
the radial distribution function as follows:

F(k)=k{}[;—1} =/:G(r)sinkrdr, 1)

where I is the x-ray intensity, electron units per atom,
f the atomic scattering factor, » the radial distance from
an atom at an arbitrary origin; G(r) equals 4mr(p— po)
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F16. 1. Distribution function and resultant intensity
function used in the error analysis.

and is the radial distribution function; % equals 4=
sinf/\; p is the atomic density, atoms per unit volume,
at a radial distance 7, and po is the average atomic den-
sity. The radial density, J(r)=4mrr%dr, describes the
number of atoms in a spherical shell between 7 and
r+dr. A Fourier inversion of Eq. (1) yields,

2 00
G(r)=- f F(k)sinkrdk. 2)

™

In practice, we observe the scattered intensity 7., in

arbitrary units
In=IP@9)/4, ©)

where P(9) is the polarization factor, and 4 is a normal-
ization constant. The value of I approaches f at large
values of %k, and a plot of I,./P(6)f* should thus ap-
proach a limiting value 1/4. This is a convenient
method of obtaining the normalization constant when
only coherent radiation is significant. However, the
normalization is subject to systematic errors, and the
values of f are sometimes uncertain at large angles. In
addition, we do not have experimental data for F(k)
from zero to infinity, and the effects of the termination
on the transform must also be considered.

We illustrate the effects of errors by starting with a
known function G(r) shown in Fig. 1. This is actually
the final result obtained for liquid mercury at 25°C, but
we consider it as the starting point of the error analysis.
The corresponding function F(k) was obtained by
cartying out the integration of Eq. (1) by means of a
computer, and this is also shown in Fig. 1. This is the
true intensity function. Errors in the intensity function
are now introduced and the resultant effects on the
function G(r) are investigated.

A 1337

A. Normalization Error

Many authors have discussed normalization pro-
cedures and the errors introduced by improper normal-
ization.?? If the Compton modified contribution is
negligible, the effect of choosing the wrong normaliza-
tion constant for the experimental intensity is easily
seen. :

Let us assume that the normalization constant is one
percent greater than the correct value. The correspond-
ing error in F (k) becomes

AF= (A4/A)R(I/ f—1)+(A4/ Ak, )

where (A4/A) is the fractional error in 4. This error
function is shown in Fig. 2(a). The resultant G(r) is
then the true function modified by a change in scale
plus the transform of a ramp of slope A4/4 ; the error
in G(r) is shown in Fig. 3(a). The transform of the ramp
has the form,

AArsink,r  ky cosknr
26— =7 - J BC
Y| 72 7

where %,, is the maximum value of 4. The error function
AG exhibits sharp oscillations at values of 7 close to
zero, and the absence of these sharp oscillations is thus
a useful criterion for determining the correct value of 4.

B. Errors in Scattering Factors:

There is no certainty as to the form of the error
caused by errors in the scattering factors, but it is
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F16. 2. Variation in F (k) arising from errors
in normalization and scattering factors.

2 J. Krogh-Moe, Acta Cryst. 9, 951 (1956).
3 J. Bienenstock, J. Chem. Phys. 31, 570 (1959).



A 1338

T I i T I
..J N
1 A. AG from | percent normalization error, _|
0.5 i -]
o JnVAVAVAVA \[AVAVAVA Av'\v’\f‘v"v“v A
05 8. AG from €=0.03 exp-(0.005 k%),  —
- ]

o
& -
Lo / I\VAVAVAVAVV SPYAY. NSNS

* L .
< . R
Tosk C. AG from termination at k= I0A. |
Py SN2\ A\ /\ AN
[~V V V v \VAAYAR
0.5~ —
= .
- D. Residual AG after using correction :
L procedure. .

B ! ! ! l |

] ! 2 5

3 °
Radial distance (A)

FiG. 3. Variation in G () arising from normalization,
scattering factor and termination errors.

probable that it has the form, A(Z/f?)= (I/f*)¢, where
e is a slowly varying function of k. Alignment and
absorption errors would probably have a similar form.
The resultant error in F may be written as

AF=ek(I/f2—1)+ k. ©6)

If the normalization criterion, which is described above,
is used when a slowly varying error is present, a par-
tially compensating normalizing constant will be chosen.
The net effect on F is then

AF= (e+AA4/A)k(I/ f?—1)+ (e+A4/A)k. (7

The error in G(r) due to the first term in Eq. (7)
will consist of a convolution of the cosine transform
of (e+AA/A) with the true G(r). Since (e+AA/4)
is slowly varying, the effect of the convolution will
again be primarily a scale change. The second term
(e+AA/A)k, will cause a more obvious error, since its
transform will be most significant below the first peak
in G(r). For purposes of illustration we assume an error,
€=0.15 exp(—0.005k2). The error in F(k), after re-
normalization, is shown in Fig. 2(b) and the corre-
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sponding error in G(r) is shown in Fig. 3(b). It may be
noted that the principle error in G(r) occurs at small
values of 7.

In a real distribution function we expect the first peak
in G(r) to occur at a well-defined distance, as shown in
Fig. 1. In the region before the first peak, G(r) = —4xrpo,
and the errors will appear as modulations of a straight
line. If we consider only the small r region of G(r), we
may define a function AG which is the difference be-
tween the experimental value and a straight line,
G(r)=—Dr. If we choose the proper value of the
slope D the transform of AG will approximately equal
k(e+AA/A) and AF can be obtained by multiplying by
I/f% The criterion for choosing D is that the resultant
error transform should not contain rapid oscillations
near k=0. It will be noted that po is not a required
parameter of the error analysis; thus, the final value of
the initial slope, which should be 4mrp, is an experimental
measure of the average density.

C. Termination Error

The transform in Eq. (2) requires data from k=0 to
k= o0. Alack of exact data at small values of % is not too
serious, however, since F (%) is very small in this region.
The termination of data at £max< o introduces spurious
detail in the resultant G(r).

Although the effects of data termination in transform
analyses have been discussed by many authors? no
feasible procedure has been proposed previously to cor-
rect for those errors. In arriving at a true function G(r)
from experimental data, we make use of two criteria:
(1) a transform of G(r) must reproduce the measured
intensity function ; (2) in the absence of other errors, the
function G(7) in the region below the first peak must be
linear.

We illustrate the termination error by limiting the
function F (k) in Fig. 1 to <10 A~ The resultant error
in G(r) is shown in Fig. 3(c), and it is interesting to note
that the greatest error occurs in the vicinity of the first
peak, where it can cause considerable confusion. The
effects of terminating F (k) at 6, 10 and 14 A- are shown
in Fig. 4. From the trend indicated by the three termi-
nations, it is possible to see the direction of the necessary
corrections.

We make the termination correction as follows. A
first approximation G® is obtained by transforming
the normalized data F® for three or more termination
points. The function G® is corrected by following the
trend of the successive termination effects and removing
the obvious irregularities and the oscillations below the
first peak. The corrected function G(© is then trans-
formed to produce the function F(); which may be
compared with the experimental function F®. F(© and
F® will differ in two ways: (1) they may be different in

4 For a partial review, see K. Furukawa, Rept. Progr. Phys. 25,
395 (1962).



RADIAL DENSITY FUNCTIONS FOR LIQUID Hg AND Pb

5 T T T T
4} ~
3l A. Effects of termination of -
Flk) ot
2| —ks6 A
----- -k 210
= ~--k=l4 -
0 Wf\ NG
-l a -
-~ =2 ~
(4
[l
S er .
-
kgl . .
< 3 B. Resultant G (r) after correction
2l of termination errors in A, N
(B nd .
0 /\ . 27N
—
-1 [_ -
-2 -
- H 1 ! I
3O 2.5 5 7.5 10.

Radial distance (A)
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the region 0< %<k, indicating that the function G‘©
is not consistent with the experimental data, and (2) the
function F(@ will extend beyond %.x, since it is computed
from G© rather than measured experimentally. In
general, F(© will not coincide with F(® on transforming
the first trial value of G(©, but it is usually not obvious
how G should be changed from an observation of
[F®—F©],

The new value F(© is then terminated at %, and
transformed to give a new distribution function. This
distribution function contains a termination error, which
is obtained by subtraction and used to correct the
experimental function, G®. The corrected G‘®) may be
compared with G(©) and the comparison will indicate the
alteration required in G‘©. The procedure is repeated
until the match is arbitrarily good. The transform of the
final G is used to extend F(®, At this point we have a
function F(k), which matches the experimental values
up to k., and extends beyond %, to large values of .
This extended function may then be transformed to give
a final value of G(r) which is free from spurious detail,
and consistent with the experimental data.

Figure 4 illustrates the feasibility of this procedure.
In 4(a) we show G(r) obtained by termination of the
F (k) in Fig. 2 at values of 6, 10, and 14 A~ Each of the
curves in Fig. 4(a) was analyzed by the procedure
described above, and the results for these analyses are
shown in 4(b); the final curves coincide exactly and re-
produce the original value of G(r) shown in 1(a).

We have further tested the sensitivity of the pro-
cedure by changing the shape of the leading side of the
first correlation peak in the assumed G to a Gaussian
with the same half-width at half-maximum as the true
function. Even this small change in peak shape resulted
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in an obvious lack of fit, since the termination error
with a Gaussian leading edge is very different than the
experimental one. It is, in fact, the extreme sensitivity
of the termination error to the shape of the first peak
that makes the method useful.

Other attempts to deal with the termination error
have depended on the use of exponential damping
factors to mask the spurious oscillations. Damping
factors, however, severely change the shape of the re-
sulting correlation function and thus make subsequent
interpretation uncertain.

The method outlined above yields a G(r) function
which is consistent with the experimental data. Unlike
the initial result, however, it is a physically plausible
solution. The shape is correct below the first peak, ahd
the corresponding intensity function extends smoothly
beyond k., rather than dropping abruptly to zero. The
key feature of the method is the extension of F(%)
beyond ., in such a way that both the extension and the
resultant G(r) are physically reasonable. G(r) is not
unique in a mathematical sense, but we do not believe
it possible to obtain another function, which is signifi-
cantly different and yet satisfies the necessary criteria.

D. Combined Errors

We have considered the errors separately for clarity.
In practice these errors are combined, but their different
forms allow them to be separated. A normalization error
causes a very large peak close to 7=0. An (I/f?)e error
is also apparent in the region below the first peak and
generally decreases with increasing 7 in that range. The
termination error results in oscillations with an ap-
proximate period given by 2m/k contained within a
smooth envelope which has a maximum amplitude in
the vicinity of the first peak. After obtaining the best
normalization constant, it is helpful to terminate F (k)
at several values of % less than k. and to observe the
resultant effects on G. This makes it easier to correct for
the termination error first and to then analyze the re-
maining oscillations at small 7 in terms of other errors.
Several iterations may be necessary before a final value
of G(r) is obtained. Though many transforms are re-
quired, the availability of electronic computers and
suitable programs® makes the procedure entirely
feasible.

The efficacy of the correction procedure was tested by
introducing simultaneously normalization, (I/f?)e and
termination errors into the F (k) of Fig. 1 and analyzing
the result just as if it were experimental data with an
unknown G (7). The residual errors, AF and AG, which
are shown in Figs. 2(c) and 3(d), are negligible.

It should be noted that two additional types of errors,
not considered above, may be of consequence under
certain conditions. Instrumental broadening and the
combined presence of Ka; and Ka. radiations can both

8 R. Kaplow (to be published).
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cause a damping of the derived distribution function.
These errors can be readily corrected if necessary, but
are not significant in these experiments.

The data reductions were started in each case with
dispersion-corrected® Thomas-Fermi-Dirac theoretical
values for the scattering factors.”-® The precise values
used in the initial reduction are not critical because of
the error analysis discussed in the previous section. For
our present purposes it is not necessary to know the
source of the errors which were encountered and cor-
rected in the analysis, but it is interesting to note that,
apart from termination effects, the principal errors could
be ascribed to uncertainties in the scattering factors.? It
is not possible to be certain, with experimental data,
that all errors have in fact been removed, but the
magnitude of remaining oscillations at small values of 7
and the value of po in the final G(r) may be used as
measures of the over-all efficacy of the procedure. These
criteria have been well satisfied in the data presented
here.

In the final results, oscillations remaining at low
values of 7 were slight or absent and the deviations in po
from values calculated from other datal®! were 6 and
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S H. Templeton, Acta Cryst. 8, 841 (1955).

?L. H. Thomas and K. Umeda, J. Chem. Phys. 26,239 (1957).

8 International Tables for X-ray Crystallogmphy, (Kynoch
Press, Birmingham 1962), Vol. III.

'R Kaplow, S. L. Strong, and B. L. Averbach,”Acta Cryst.
(to be published).

10 Metals Handbook, edited by Taylor Lyman (American Society
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U Handbook of Chemistry and Physics (Chemical Rubber
Publishing Company, Cleveland, Ohio 1957).
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19%, respectively, for low- and high-temperature lead
and 39, for mercury.

IV. DISCUSSION OF RESULTS

The final corrected intensity functions F(%) for liquid
lead at 329 and 600°C and liquid mercury at 25°C are
shown in Fig. 5. The two curves for liquid lead are very
similar, despite the rather large difference in tempera-
ture. The final distribution results are shown in terms
of reduced radial density functions, H (r)=4nr2(p— po),
in Figs. 6(a), 7, and 8. Numerical values for the maxima
and minima of the oscillations in both F (k) and H(r) are
given in Table I. The F (%) data for mercury are close to
the results obtained by Pfannenschmid!? but differ from

20, Pfannenschmid, Z. Naturforsch. 15a, 603 (1960).
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TABLE I. Maxima and minima in intensity and density functions F (k) =k(I/f2—1), H(r) =4xr*(p (r) —po)-

Max and min
positions in

Fk) (14)
Hg 25°C Pb 600°C Pb 329°C Pb 331°C
k F(k) r H(r) k F(k) r H(r) kE  F(k) r H(r) k
2.33 3.43 3.10 10.00 2.19 2.95 3 6.80 2.19 3.90 3.42 8.08 2.2 max
347 —1.25 475 —2.90 3.19 —-1.15 4. —2.70 3.19 —1.30 4.80 —3.36 3.2 min
4.53 1.65 5.90 4.35 4.18 1.03 6. 3.38 4.11 1.22 6.52 447 4.2 max
5.59 —0.95 7.65 —2.55 510 —0.72 7. —-2.70 510 -—0.70 7.715 —=3.55 5.2 min
6.73 0.85 8.90 2.11 6.09 0.48 9. 2.40 6.09 0.62 9.25 3.53 6.0 max
7.2 —0.73 1040 —2.33 715 —0.33 10.70 —1.70 701 —0.45 10.70 —-3.10 7.1 min
8.92 0.55 11.70 2.45 8.14 0.32 12.20 1.42 8.00 0.35 12.25 2.88 8.1 max
991 —0.48 13.20 —1.90 9.13 -0.16 13.60 —0.85 9.06 —0.17 13.70 —2.10
11.04 0.33 14.50 1.70 10.19 0.12 15.10 0.88 9.98 0.13 15.10 2.10
12.18 —0.24 15.90  —1.45 16.70 0.68 16.55 —1.85
13.24 0.18 17.10 1.10 17.80 1.36
18.80 —1.10 19.35 —1.22
19.90 0.80

that obtained by Kruh ef al.,® as read from their
published figures. The positions of the oscillations in
F(k) for the low-temperature lead experiment are in
good agreement with those tabulated by Sharrah et al.,'*
which are reproduced in the table. Values and positions
for the first peak in the total density function, 4w72p(r),
are given in Table II, where they are compared with
previous results.!418

The radial-density functions are convenient descrip-
tions of the liquid structure, since they reflect the atomic
distribution more directly than the distribution func-
tions G (7). A common application of such data involves
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BR. F. Kruh, G. T. Clayton, C. Head, and G. Sandlin, Phys.
Rev. 129, 1479 (1963)

1P, C. Sharra.h J. L. Petz, and R. F. Kruh, J. Chem. Phys. 32,
241 (1960).

15 P, C. Sharrah and G. P. Smith, J. Chem. Phys. 21, 228 (1953).

TaBLE II. First peak in total density, 4x7% (7).

Mercury
(This
Reference  work) (12) 13)
r 3.03 3.03 3.05
4nr2o (r) 14.80 15.02 14.5»
‘ Lead
Tem- 329° 600°
perature (This (This 350° 550° 331°
(Refereuce) work) work) (15) 15) (14)
3.39 3.36 3.40 3.39
47rr o (r) 12.60 11.10 12 Oa 11.1s
a Estimated from published figures.
the evaluation of the quantity,
ri+A
Co=|  amrdr, ®)
ri—A

in the vicinity of each of the peaks, thus obtaining the
number of first, second, third, etc. neighbors about a
given atom. This procedure is uncertain here because of
the overlapping of the peaks. The functions H(r), how-
ever, contain a considerable amount of structural in-
formation and, since we believe that our method of
analysis has provided density functions with a reason-
ably true shape, we shall attempt to interpret the form
of the curve for each liquid. This analysis is approached
by obtaining radial density functions for random
polycrystals of the corresponding solid at temperatures
close to the melting point. The shapes of these functions
for the solid are adequately described in terms of a
crystal structure, a mean nearest neighbor distance 74,
a mean square thermal displacement o2, and coupling
coefficients +v;, which indicate whether the atomic
vibrations in the sth shell are independent of those of the
atom at the origin.'® In this section we show that the

18 R, Kaplow, B. L. Averbach, and S. Strong, J. Phys. Chem.
Solids 24, 1195 '(1964).
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structure of each liquid may be described reasonably
well in terms of modifications of the corresponding
crystalline structure, whereas the structures of liquid
lead and liquid mercury do not appear to be directly
related.

A. Lattice Parameter and Average Density

A comparison of crystalline lead just below the
melting point!® and the liquid just above shows that the
major oscillations in the solid radial distribution tend to
occur at slightly larger distances than corresponding
oscillations in the liquid. The deviations are best seen at
large radial distances (between 12 and 20 A) where a
decrease in the lattice parameter of 1.5%, brings the
solid into best agreement with the liquid. The radial-
density function of solid lead at 325°C is shown in
Fig. 6(b) with the radial distance rescaled to correspond
to a lattice parameter 1.5%, smaller than the experi-
mental solid value. (It should be noted that the ordinate
scale for the solid function differs from that of the liquid
for convenience in plotting.) The rescaling of the radial
distance also brings the first peak in solid and liquid lead
to virtually the same position. If we assume that the
structure of the liquid can be described in terms of the
solid, the specification of an apparent lattice parameter
which fits the liquid oscillations best (particularly at
large values of 7) is equivalent to the specification of an
apparent mean nearest neighbor distance. This distance
need not correspond exactly to a maximum in the
distribution function. The apparent mean first neighbor
distance 7; in liquid lead is thus 1.59, smaller than in
the solid at the melting temperature. This value re-
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mains unchanged in raising the liquid to 600°C. This
reduction is approximately equivalent to the total
lattice expansion up to the melting point, and it appears
that the crystal structure prevents the lead atoms in the
solid from achieving the closest possible nearest-neigh-
bor distance.

Using the first-neighbor distance 7, for the liquid, it is
possible to compute a “close-packed” lattice density,
0.0333 atoms/A3. This value may be compared with the
densities of 0.0309 and 0.0298 atoms/A3 obtained when
the solid density is adjusted by the experimental change
in density on melting and by the expansion on heating to
600°C.* The differences indicate that liquid lead has an
excess volume of 7.3, at 329°C and 10.49%, at 600°C.
Liquid mercury compared in the same way to the
corresponding rhombohedral structure has an excess of
39, at 25°C. These values of excess volume become the
percentages of vacancies if we assume that each vacant
site has the same volume as the corresponding atom.
The ratio of the excess volumes in liquid lead at 600 and
320°C is 1.43, and this is also the ratio between the two
temperatures, suggesting that the excess volume, or
vacancy concentration is proportional to the tempera-
ture. Although the nearest-neighbors in liquid lead are
closer than in the solid, the number of atoms at most
radial distances in the liquid is smaller. Since 7; does not
change as the temperature is raised, the expansion of the
liquid may be associated entirely with an increase in the
excess volume.

B. Critical Correlation Distance

A comparison of the liquid radial-density function for
lead in Fig. 6(a) with that of the corresponding solid in
Fig. 6(b) shows two principal differences: (1) the peaks
in the liquid curve are strongly damped as 7 is in-
creased; (2) the liquid peaks beyond the first are
broadened more than in the solid. From the nature of
the resultant transformations we assume that the
damping arises primarily from a consistent loss of
correlation at radial distances greater than some critical
value, and the broadening is associated principally with
atomic motions which may be a combination of vibra-
tional and diffusive displacements. These effects are
treated separately, and we shall first consider the
critical correlation distance. The existence of a critical
correlation length is analogous to the assumption of a
small particle size in a crystalline material. However, we
do not imply that physical boundaries cause this loss of
correlation in the liquid, and this effect is probably a
consequence of the large atomic displacements. For the
time being, however, it is convenient to describe the
liquid in terms of a critical correlation distance d and
mean square relative displacements o2 since these
quantities may be derived from the experimental func-
tions H (7). We assume nearly spherical perfect domains
of diameter & which fill all space, but which are randomly
oriented with respect to one another. The radial density
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Fi16. 9. Damping function arising from
critical correlation distance d.

function for a domain of infinite size is H (r). A spherical
shell of radius »<d, centered inside a particular domain
will lie partially inside the domain, where the density
function is H(r), and partially outside, where the
density function is zero. An average over all possible
origins inside the domain gives the modified density at
r, H*(r). The ratio, H*(r)/H (r), is shown in Fig. 9 as a
function of the reduced radius 7/d. Although both the
broadening and damping factors were adjusted to give
the best fit with the experimental liquid pattern, it is
interesting to observe the effect of the damping alone.
Figure 6(c) is the result of damping the solid function
given in 6(b), using the final value, d=22.4 A, and it is
evident that the resultant damped function has many
features of the liquid. The final value for lead at 600°C
was d=20.0 A, and d=40 A for mercury at 25°C.

C. Atomic Displacements

We may consider two types of atomic motion. The
atoms may oscillate about a mean radial distance in
analogy with the thermal vibration of an atom about a
lattice point. This is consistent with the ability of a
liquid to transmit longitudinal elastic waves. However,
there is also a rapid diffusive motion, as indicated by the
high values for the self-diffusion coefficients. In the case
of liquids, both types of motion have similar charac-
teristics ; the atomic displacements at large distances are
independent of the correlation distance r whereas at
smaller distances the motions of neighboring atoms are
coupled. Since the x-ray experiment averages over both
time and over the irradiated volume of the specimen,
the correlation probability for an atomic shell of radial
separation, 7; will be broadened by a mean-square
thermal displacement o2 and a mean-square diffusive
displacement ¢4% The diffusive displacement ¢ 42 is not
important in the solid correlation function, because the
number of atoms undertaking a diffusive jump is much
smaller than in the liquid. The x-ray experiment aver-
ages the diffusive excursions of atoms in the same way as
it averages the thermal vibrations, and it is thus im-
possible to separate these two motions in the liquid
without additional assumptions.

We define a mean-square total dlsplacement ol=g,?
=042, which includes both types of motion, and a series
of coupling coefficients ¢; where ¢;=0.%/0,,2 for the ith
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shell, and 0,,? is the mean-square displacement for an
infinite separation of the atoms. The meaning of the
coupling factors may be seen by considering only
vibrational displacements. Let %2 be the total mean-
square vibrational displacement of an atom from a
definite site. If the vibrations are isotropic, the mean-
square displacement along any direction, #,?, is #2/3. If
two atoms, separated by 7, vibrate independently, the
mean-square relative displacement o % along the vector
between them is 24,2 If the atoms vibrate completely in
harmony, however, then o2=0 regardless of #,%; that
is, g;=0. If the atoms tend to vibrate in phase, 0<¢:<1,
while if they tend to vibrate out of phase, 1<¢:<2. The
definition of o2 for the liquid, as the sum of ¢ and 042,
implies that the two types of displacements are
independent.

Using the solid structure as a basis, each atomic shell
is replaced by the function,

Ci (1' —7, ,7)2
exXp— |: ] ’ (9)
(2mqiz )2 2qi0s?

B(r—r)=

where C; is the number of atoms in the sth shell. A
Gaussian broadening has been assumed in Eq. (9), but
it is evident that this form can only be an approxima-
tion. The relative atomic motions at small values of »
are markedly asymmetric. However, neglecting this
asymmetry for the moment, if we assume that the
coupling factors vary in a continuous fashion with radial
separation, it is possible to obtain a fit with the observed
liquid functions. We start with the relative shell posi-
tions and occupation numbers of the crystal structure,
choose the nearest-neighbor distance which gives a best
fit to all the oscillations in the liquid structure, broaden
the shells with the expression given in Eq. (9), damp the
resultant function with the factors shown in Fig. 9, and
adjust the scale to account for the actual liquid density.
By varying the values of nearest neighbor distance 7y,
the critical correlation distance d, the mean square dis-
placement 2, and the coupling coefficients g;, it has been
possible to obtain a unique best fit to the experimental
result. It should be stressed that 7 is not necessarily the
exact position of the first-peak maximum in G(r), but is
the value derived from the structure lattice parameter
which gives the best fit to the experimental distribution
function.

The liquid parameters are summarized in Table III.
The resultant fit may be seen in Figures 6, 7, and 8,
where we compare the experimental liquid-density func-
tion with the one obtained by performing these trans-
formations on the corresponding solid structure. The
positions of the oscillations match well, and the fit is
nearly perfect over much of the function. The fit is
poorest in the region just beyond the first shell, where
the assumption of a symmetric atomic displacement
function is known to be poor. This and other differences
can probably be accounted for by a more exact diffusive
broadening function. It should be noted that we were
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TasLE III. Structure parameters.
Ap Coupling factors for ¢2

71 d po a? a2 aad? excess shell Refer

(&) (A) atomssA% (A?) (A? (A?) volume 1 2 3 5 7 10 15 20 ence-
Lead solid: 325°C 3.54 o 0.0317 0.175 0.175 0.47 0.59 0.68 0.76 0.81 0.86 0.92 0.95 16
(fec) liquid: 329°C  3.49 22.4 0.0309 0.28 0.175 0.105 73% 032 050 0.70 0.80 0.90 1.0 1.0 1.0} this

liquid: 600°C  3.49 20.0 0.0298 0.33 0.175 0.155 10.49% 032 0.50 0.70 0.80 090 1.0 1.0 1.0 work

split

shell
Mercury solid: —46°C ggg— o 0.0431
(Rhombohedral) liquid: 25°C 3:03 40.0 0.0407 0.70 3.0% 0.05 020 0.40 0.30 0.50 0.80 090 1.0 V&:ﬁ(

unable to start with the fcc Pb structure and fit the
liquid Hg pattern. Conversely, we were unable to start
with the rhombohedral Hg pattern and fit the liquid Pb
structure.

Even though the liquid and solid structures appear to
be uniquely related, it is not certain that the vibrational
and diffusive motions are separable. We may consider
the feasibility of such a separation by comparing the
total density function 4m7%, in the vicinity of the
nearest neighbor region. The width of the first peak, on
the small 7 side, should be determined primarily by the
mean vibrational amplitude. Figure 10 shows that the
maximum in the first neighbor peak for liquid lead at
329°C is 0.10 A closer to the origin than the solid peak,
and the maximum for the liquid at 600°C is about
0.13 A closer.

The extent of the radial shift appears to be pro-
portional to the excess volume in the liquid, and the
most probable separation appears to increase as the
number of neighbors increases. If we consider the half-
width at half-maximum, measuring from the peak posi-
tion to the left side of the curve, we obtain 0.31 A for the
solid at 325°C, 0.29 A for the liquid at 329°C, and
0.28 A for the liquid at 600°C. The mean and most
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FiG. 10. Total radial density function for Pb in
vicinity of nearest-neighbor distance.

probable positions do not coincide even in the solid,'
but if we use the mean positions 7, we also find that the
widths are substantially the same. We thus conclude
that the vibrational motion at both temperatures in the
liquid is substantially the same as in the solid. This also
implies that the nearest-neighbor coupling factors for
the thermal motion are also retained in the liquid.

The total mean atomic displacements, 2= g0,?, for
the solid as well as the liquids, are shown in Figs. 11 and
12. At large distances, the coupling coefficients, ¢;, must
approach unity and the displacement becomes 0,2 The
coupling coefficients for the liquid structures approach
unity at about 12 A. The coupling coefficients for solid
lead approach unity at about 20 A. If we assume that
the thermal motion for the liquid is that of the solid at
the melting temperature, the difference between the
solid and the liquid curves gives the mean square
diffusive displacements, o 42 These are shown in Fig. 13.
It should be noted that coupling factors less than unity
for the diffusive motion are observed at low values of 7,
and values which are apparently greater than unity at
intermediate distances of about 12 A. It may be, how-
ever, that the low values at low 7 are due in part to the
Gaussian assumption, and that the high ¢ region is an
artifact due to a more rapid loss of vibrational correla-
tion in the liquid than the solid.

We now assume that the excess volume in the liquid
consists of vacancies and use the crystalline random
walk model for self-diffusion. The diffusion coefficient

T I Liguid Pb 6009C
o e ] * Ly
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F16. 11. Total mean-square atomic displacements in lead.
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may be written as
D= (Cy/6)rs*for exp— (Q/kT), (10)

where 71 is the nearest-neighbor distance, Cy the number
of nearest neighbors, f, the fraction of vacancies, » the
mean vibrational frequency, and Q the activation
energy for motion. It has already been mentioned that
f» appears to be proportional to the absolute tempera-
ture. If we insert that relationship, f,=1.2X10~4T, the
mean frequency calculated from the Debye temperature
of the solid, 69°K, r;=3.5 A and C;=12, the equation
for the diffusivity of liquid lead contains only one free
parameter Q and

D=3.2X10""T exp(—Q/kT). (11)
Taking the value D=2.5X10"5 cm?/sec” at T'=600°K,
Q is calculated to be 0.10 eV. The fit to the available
diffusion coefficient data is good. Walls and Upthegrove!s
have previously suggested an identical form for the
temperature dependence and have shown that virtually
all liquid diffusion coefficient data can be described by
such an expression.

V. SUMMARY

We have presented a method of analysis which ap-
pears to eliminate the spurious detail from experi-
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Fi1c. 12. Total mean-square atomic displacements in mercury.

113, J. Rothman, L. D. Hall, J. Metals 8, 199 (1956).
18 H. A. Walls and W. R. Upthegrove, Acta Met. 12, 461 (1964).
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F16. 13. Mean-square diffusive displacements in liquid lead.

mentally derived radial-density functions. In attempting
to describe the resultant liquid-density functions for
liquid lead and liquid mercury, the following conclusions
may be drawn:

1. There is a close correspondence between the liquid
and the corresponding polycrystalline solid structure.
On the other hand, there does not appear to be a
common liquid structure which will describe the radial
density functions of both liquids.

2. If we start with the radial-density function of the
solid, we can describe the resultant liquid-density func-
tion by means of the following additional parameters:
ri=mean nearest-neighbor distance, po=average den-
sity of the liquid, d=critical correlation distance,
0,2=total mean square relative atomic displacement at
infinite separation, ¢;=coupling coefficients for the
atomic displacements.

The crystalline lattice is thus used as a framework for
describing the liquid. The separation of the atomic
displacements into thermal and diffusive components is
less certain, but the shape of the density function at the
nearest-neighbor distance suggests that the thermal
vibrations of the liquid are the same as those in the
solid at the melting point.
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