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The spin-lattice relaxation time T& of atomic hydrogen in calcium Quoride has been measured at 3 kOe
and at temperatures from 2.1 to 165'K. The values of T& can be expressed by

1/T j ——BT+C(T/8)'J6(8/T)+DII exp (—TII/T),
where 8=0.028 sec "K ', C=2.7X10 sec ', and D=9X106 sec '. The characteristic temperatures are:
0=474'K and TII——850+60'K. The temperature dependence of the Grst two terms is consistent with the
usual direct and Raman processes, but their relative magnitudes are not well understood. Similar measure-
ments have been made on atomic deuterium centers. The relaxation data for deuterium centers can be
accurately 6tted by an expression of the above form in which: there is an additional term due to cross
relaxation; B, C, and 0 have the same values; and DD =8X10' sec ' and TD =640+80'K. The characteristic
temperatures of 850 and 640'K are interpreted in terms of local modes which involve the motion of the
interstitial hydrogen and deuterium atoms with respect to neighboring Quorines. The basis for this

identificat-

ionn is discussed in terms of Feynman diagrams.

I. INTRODUCTION

~ 'HE atomic-hydrogen center in calcium fluoride
has been studied in some detail. ' ' On the basis

of its electron-spin resonance and electron nuclear
double-resonance (ENDOR) spectra, Hall and
Schumacher' concluded that the center consists of a
neutral hydrogen atom occupying an interstitial site
at the center of a cube of eight Quorine ions. The
hydrogen center has an isotropic g value nearly equal
to that of the free atom. The well-resolved hyperfine
spectrum, due both to the proton and to nearby
Quorines, is consistent with an electronic ground state
which is quite similar to that of the free hydrogen atom.
No detailed crystal-field calculations on this center
have been published. There have been no reports of
optical spectra directly correlated with the spin con-
centration of H'.

Klemens has suggested' that local modes of vibration
at a defect site could dominate spin-lattice relaxation
in certain cases. Local modes have been observed
optically for substitutional H and D in calcium
Ruoride4 and for substitutional H in alkali halides. '
No direct evidence exists for local modes associated
with interstitial H in calcium Quoride. However, the
small mass of the proton and the size of the hydrogen
relative to the space in the fluorine cage suggest that
some vibration should occur at frequencies well above
the allowed bands for the normal CaF2 lattice and
therefore that local modes should exist. '

It is the purpose of this paper to present experimental
evidence on the atomic-hydrogen and atomic-deuterium
centers in calcium fluoride in the form of spin-relaxation
results and to suggest an interpretation in terms of local
modes.

II. THEORETICAL CONSIDERATIONS

Before considering the possible role of local modes in
spin-lattice relaxation we will briefly summarize the
usual theory that has been treated in detail elsewhere. ~ '
After the summary, we will outline the changes expected
in spin relaxation when the spin is localized near a
light-mass defect.

Logical completeness in the summary will be aided
by the introduction of diagrams. A particularly de-
scriptive presentation of spin-lattice relaxation proc-
esses is one that makes use of diagrams analogous to
those developed by Feynman" for quantum electro-
dynamics. It is felt that this approach is suKciently
unfamiliar in the present connection to warrant some
clarification.

A. Relaxation Diagrams

In the notation of quantum field theory, the spin-
lattice interaction Hamiltonian can be written as

SC'= g c,P,]e;4 (a,at)+P c,;to, teA (a,at), (1)

*This work was supported in part by the U. S. Air Force where y(a, a ) is a function of Phonon annihilation
Cambridge Research Laboratories. operators (a) and phonon creation operators (at), @,.

2 H ]]]u a d G ]] ]]enedek i]u]] gm phys Soc 8 6]9 (or 4; ) destroys (or creates) an electron in the state j,' J.L. Hall and R. T. Schumacher, Phys. Rev. 127, 1892 (1962).

(1963). and c;; are numerical coeKcients.
' P. G. Klemens, Phys. Rev. 125, 1795 (1962). Given the interaction (1), we can represent diagram-
4 W. Hayes, G. D. Jones, R. J. Elliott, and C. T. Sennett, in

proceedi'ngs oj the Conjerence on Lattice Dynamics, Copenhagen matically phonon absorption, emission, and scattering
1963 (Pergamon Press, Inc. , New York, 1964), p. 475.

'Akiyoshi Mitsushi and Hiroshi Yoshinoga, J. Phys. Soc. ' J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
Japan 18, 321 (1963). 8 R. Orbach, Proc. Roy. Soc. (London) A264, 458 (1961).' K. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955) J. W. Culvahouse, W. P. Unruh, and D. K. Brice, Phys. Rev.
and P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London) 129, 2430 (1963).
A273, 222 (1963). '0 R. P. Feynman, Phys. Rev. 74, 939 (1948).
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processes in RB orders of perturbation theory. For
processes involving the emission or absorption of single
phonons, the relevant part of Q(a, ut) is P~ biaq where
bI, is a number and the sum is over all lattice modes.
The direct relaxation processes' are calculated by using
this part of p(a, at) in Eq. (1) taken to first order.

For direct processes, we represent each term in the
6rst and second sums of Eq. (1) by the diagram shown
in Figs. 1(a) and 1(b), respectively. In all diagrams, we
use the convention of time increasing in the upward
direction, so that all lines converging on a vertex from
below denote states in which quanta are destroyed. and
those lines diverging upward from a vertex, quanta
created in the interaction. Wavy lines indicate electronic
states and straight lines, lattice states. Figure 1(a)
represents the destruction of one phonon in state k and
one electron in state j and the creation of one electron
in state i The. inverse transition is shown in Fig. 1(b).
Relaxation occurs at a rate determined by the appro-
priate sum of the transition probabilities from both
Figs. 1(a) and 1(b). In the remaining discussion,
diagrams will be shown corresponding to one transition
only. The inclusion of the inverse transitions for the
calculation of each case is to be understood.

FIG. i. Diagrams used in
first-order perturbation cal-
culation of relaxation proc-
esses arising from a spin-
lattice interaction which is
linear in strain. The two
diagrams correspond to the
two terms of Eq. (1}for the
case discussed. Symbolism
is discussed in the text.

For simplicity and aptness to the hydrogen atom,
we will restrict this discussion of relaxation to electronic
systems having an 5=~ ground state and no other
states within the frequency range of the phonon
spectrum. For these cases, all possible first-order spin-
lattice interactions which are linear in the strain are
represented by Fig. 1 where the symbols i and j
corrcspond to M g

=+g and cIlcl gy conservation
requires that co~ equal the Larmor frequency, +,.

After the populations of the states i and j are dis-
turbed from their thermal-equilibrium values, relaxation
takes place by emission and. absorption of resonant
phonons, as indicated in Fig. 1. To calculate the
relaxation-time constant characteristic of a direct
process as a function of 6eM and temperature, it is
necessary to have a speci6c model for the interaction
coeKcients c„"b~, including the frequency dependence
of the effective local strain, and for the distribution of
the lattice modes.

Any real relaxation involves anharmonic motions of
the surrounding atoms and diagrams can be used to
represent the calculation of the relaxation time by a
perturbation expansion in terms of harmonic modes of
the lattice. A direct process involving relaxation by

b) d 0
FIG. 2. Diagram representing spin-lattice interactions linear in

strain generated in the anharmonic lattice. The heavy line signiles
a broadened mode. The expansion assumes broadening by the
cubic anharmonicity of the lattice.

nearly harmonic motions is represented in Fig. 2, where

the heavy straight line in 2(a) stands for an eigenstate
of the anharmonic lattice Rnd the lighter straight lines
in 2(b), 2(c), and 2(d) represent modes of the harmonic
lattice. - Let us assume that the coupling that limits the
lifetime of phonons is the cubic anharmonicity of the
lattice. " Part of the expansion in terms of the cubic
anharmonicity is illustrated in Figs. 2(b), 2(c), and

2(d). Notice that the usual direct process with phonons

tFig. 1(a)j is just the zeroth-order term )Fig. 2(b)$
in this expansion. The second term, 2(c), represents the
effect to first order of the cubic anharmonicity and is
expected to be much smaller than the first term for
most real lattices.

Higher-order processes of relaxation can also be
represented diagrammatically. For example, the in-

clRstlc scattering of phonons involving th.c spin-1Rttlcc

coupling quadratic in the strain is shown in Fig. 3.
Another two-phonon process involving the linear

coupling in second order is shown in Fig. 4. The proc-
esses indicated in Figs. 3(b) and 4(b) are the only ones

usually considered as the Raman processes. Before
discussing them, we will pick a specific model and.

predict the temperature dependence for the direct
process.

FIG. 3. Diagram representing spin-lattice interactions quadratic
in strain. The symbolism is the same as in Fig. 2. The sum over
(c) includes application of the cubic anharmonicity prior to the
spin-lattice interaction.

"P.G. Klemens in SOHd State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1958), Vol. I, p. j..

B. Relaxation in the Unperturbed Lattice

Relaxation is usually pictured. as proceeding via
phonons which produce strain at the spin site propor-
tional to their frequency and to their amplitude. The
lattice is assumed to have an isotropic Debye spectrum.
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Fn. 4. Diagrams used in the second-order perturbation calcu-
lations for spin-lattice interactions linear in strain. The symbolism
is the same as in Fig. 2. The sum over (c) includes the application
of the cubic anharmonicity prior to the spin-lattice interaction.

vibrations. A spin system may also relax by transferring
its Zeeman energy to another system of spins. This
process, known as cross-relaxation, "involves (a) spatial
and usually spectral diffusion of Zeeman energy from
one spin system to the other, and (b) spin-lattice
relaxation of the spins which are acting as the energy
sink. The diffusion steps are expected to be temperature-
independent, while the spin-lattice relaxation will

probably take one of the forms discussed above.
The temperature dependence of any observable cross-

relaxation will be essentially determined by the step
which is the bottleneck for the process. The identity of
this step may change as the temperature is varied,
giving a different dependence on temperature in the
different temperature ranges. At high temperatures,
the diffusion is expected to be the limiting step and the
process independent of T.

The direct process involves long-wavelength phonons
for which this model is quite accurate. The reciprocal
of the relaxation time is proportional to the average
number of resonant phonons, as indicated for process
2(b). For AT))ha&„

1/Tin ~ T. (2)

The Raman process involves pairs of phonons whose
frequencies differ by M,. The assumed frequency de-
pendence of the strain certainly does not hold for
phonons near the Debye limit; however, using the
assumption for the sake of simplicity, the Raman
relaxation time is found in first-order perturbation to
be given by

1/T„(T/())U, (0/T), (3)

where 0 is the Debye temperature of the lattice and the
J function is a tabulated" transport integral. This form
results from an integration over pairs of phonons of
equal energies. The corresponding diagram is shown in
Fig. 3(b). For T very much less than 8, 1/Ttz is pro-
portional to Tr; for T greater than 8, 1/Tris is propor-
tional to T'.

Equation (3) applies when the spin-lattice inter-
action is magnetic (e.g., via an electron-nuclear hyper-
fine coupling). If the dominant coupling is via the
crystalline electric field and the spin-orbit interaction,
the appropriate expression for Tip of a one-electron
system is"

1/T„(T/0)ss,(e/T). (4)

This relation follows from second-order perturbation
theory using the spin-lattice interaction terms linear
in the strain. The appropriate diagram is shown in
Fig. 4(b).

C. Cross Relaxation

All of the spin-relaxation mechanisms discussed
above involve a system of isolated centers and lattice

"W. M. Rogers and R. L. Powell, Natl. Bur. Std. (U.S.)
Circ. 595 (1958).

D. In6uence of a Light-Mass Defect on
the Vibrational Syectrum

When an atom of a crystal is replaced by a lighter
atom, the normal modes of the lattice are perturbed.
It is possible to have a normal mode with a frequency
greater than the maximum frequency for the unper-
turbed lattice. The amplitudes of motion of the neigh-
boring particles at this frequency decrease exponentially
with distance from the defect atom. ' The higher the
frequency of this mode with respect to the maximum
of the unperturbed lattice, the more localized is the
motion. Local modes associated with defect atoms in
sites with cubic syrrimetry are triply degenerate.

Because of the localization, the strain at the defect
associated with the local mode is larger than that in

any of the band modes. The enhancement of the strain
at the defect increases with increasing localization of
the mode and would approach a limiting value of p'~'

where p is the ratio of the number of atoms in the
crystal to the number of atoms involved in the local
mode. This large a factor will not be realized in practice
owing to anharmonic effects.

In addition, the strain at the defect atom due to
each band mode is reduced from the strain that would
have been associated with a normal atom in a perfect
lattice at that frequency.

E. Relaxation by Altered Band Modes

It can be shown for a light substitutional defect in a
cubic lattice that the strain at the defect is still pro-
portional to frequency for suKciently low phonon
frequencies, but decreases with increasing frequency
near the Debye limit. The temperature dependence of
the direct processes is the same as discussed above for
a perfect lattice. At sufliciently low temperatures, the
Raman processes also have unaltered temperature

"N. Bloembergen, S. Shapiro, P. S. Pershan, and J.O. Artman,
Phys. Rev. 114, 445 (1959).
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dependences, as given by Eqs. (3) or (4). However,
the reduction in the strain near the Debye limit causes
the approach to T' dependence to set in at lower
teznperatures than those for Eqs. (3) and (4). Because
the transition probabilities for the Raman processes
are sums over the whole range of lattice frequencies
the temperature dependence may not be distinguishable
from that expected for the unaltered lattice.

F. Relaxation by Local Modes

We now consider the processes of Figs. 2(a), 3(a),
4(a), and 5(a) when local modes are involved in the
relaxation. We again consider the expansion in terms
of cubic anharmonicity. With the magnetic fields
available, the process 2(b) has zero probability of
occurring since it uses harmonic phonons. The processes
3(b) and 4(b) cannot conserve energy either. In Fig. 5
we illustrate a relaxation process involving the cubic
spin-lattice interaction. Note that if the local-mode
frequency is less than twice the Debye frequency,
process 5(b) will have a finite probability.

The transition probability for the direct process of
Fig. 2 (a) will presumably be very small for a reasonably
sharp local mode. The other processes that we have
diagrammed will show a distinctive temperature de-
pendence if they involve a local mode whose frequency
is well separated from the band frequencies. The first
nonvanishing contribution to Raman scattering of local
modes involves the coupling of two band modes via
the cubic anharmonicity. Figure 3(c) illustrates one
of the transitions in this process. Some of these terms
were omitted in the previous discussion. '

The second-order matrix element appropriate to
Fig. 3(c) is

(5)

where E=E„=E„,E is the cubic anharmonicity
coeScient, V2 is one half of the second derivative with
respect to displacement of the spin-lattice interaction,
and lo is the equilibrium particle separation. The strain
at the defect can be expressed as

~=pi &a(~a'+zzs), (6)

where SI, is the strain per quantum in the mode k of
the defect lattice and the sum is taken over all the
modes.

The largest contribution to Eq. (5) comes from the
terms involving any one of the triply degenerate local
modes in the intermediate state. We can represent the
occupation numbers for each of the three degenerate
local modes by N, (auz), N„(arz), and N, (co&). In the
case that the intermediate state involves the same local
mode as the initial state the temperature dependence
of the spin-lattice relaxation is given by Eq. 7(a). If
the intermediate state involves one of the other de-

+ 0 ~ ~

FiG. S. Diagrams representing spin-lattice interactions cubic
in strain. The symbolism is the same as in Fig. 2.

generate local modes, the temperature dependence is
given by Eq. 7(b)

(N.'(coz,))(N(caz)+1)(N(co2)+1), (7a)

(N. (~z))(IX'(~z)+1j')(N(&z)+1)(N(&*)+1) (7b)

Energy conservation in these transitions obviously
requires the frequency of the local mode ~& to be no
more than twice the Debye frequency or&. We neglect
or, . The temperature dependence of both of these
processes reduces to a simple form for a range of values
of or~. When kT is much less than Lr~ and also much
less than A(z0z, —a&n), then the occupation numbers of
all modes of interest in 3(c) can be written as

N((o) = exp( —Ao)/kT)«1.

In this limit (N3(~))=(N2(~))=(N(~)) and the tem-
perature depend ences (7a) and (7b) reduce to
exp (—Ao&z/k T).

The other terms in which two band mode phonons
are annihilated and one local-mode phonon is created
have the factor (N(~z))(N(~2))(LN(orz)+1]') for the
case where the final-state and intermediate-state local
modes are the same. In the same low-temperature limit
of (8), the factor becomes

exp( —Aevi/kT) exp( —A&o2/kT),

which by energy conservation is

1/Ti ~ exp( —her&/kT) .

Similar reasoning leads to the same temperature
dependence for the relaxation processes illustrated in
other figures, such as Figs. 4(c) and 5(b). So the local
mode can eAect an exponential temperature dependence
by several diferent relaxation processes. We will make
no eGort in this paper to distinguish between such
processes.

G. Orbach Process

It should be noted that, when the paramagnetic
center has one or more electronic states other than the
two for the observed EPR transition whose energy
splittings from the observed states lie within the
vibrational spectrum of the lattice, the relaxation may
be dominated by phonons whose energies are equal to
one of those splittings. The process could either be
resonant absorption, as in Fig. 2(b), or a scattering,
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FIG. 6. EPR absorption spectrum of the atomic-hydrogen center
in CaF2 at 8.8 Gc/sec. The magnetic field is parallel to $110j;
T=4.2'K. The abscissa is real time, and the field sweep is not
linear with respect to time. The splitting between fluorine hyper-
fine components is 22 Oe; between proton components, 530 Oe.

as in Fig. 4(b). A simplified calculation gives' ""the
temperature dependence to be

for 6 the appropriate energy splitting. This "Orbach"
process appears with an exponential dependence on
temperature, as in (9), when 6 applies to an excited
electronic state and d))kT.

H. Summary

III. EXPERIMENTAL TECHNIQUE

The samples were cleaved from single crystals of
calcium fluoride. The crystals were obtained from the
Harshaw Chemical Company or were grown by seed
pulling in a controlled atmosphere furnace in our
laboratory. The atomic-hydrogen centers were produced
by the techniques described by Hall and Schumacher. '
The crystals were annealed in hydrogen, at a pressure
of 100 Torr for several hours at 650'C. It was found
necessary to have the crystals in contact with aluminum
during the anneal. The role played by the aluminum is
obscure. After annealing, the crystals were subjected
to a dose of about 10'R of 0.5-MeV gamma rays. The
resulting concentrations of atomic hydrogen were of
the order of 10"cm 3.

The relaxation times were measured by the field-
sweep inversion recovery technique which has been
described elsewhere. " The net magnetization of the
spin system was reversed by field-sweep adiabatic rapid
passage and the return to equilibrium of the system is
monitored. Measurements were made at a frequency of
about 9 Gc/sec. Small Helmholtz coils mounted on a
sample cavity were used to sweep the field through the

We note that these mechanisms of relaxation are
assumed to be independent and that therefore their
sects are additive. If the atomic hydrogen center in
calcium fluoride is relaxed via hyperfine coupling, we

expect to be able to describe the relaxation by

1/T, =BT+C(T/8)'J~(8/T)+D exp( —T~/T), (11)

10

10
3

Hydrogen & ~ + Deuterium &»
B = 0. 028 sec 'K

4 -1
C = 2.7x 10 sec

I I I

Hydrogen and Deuterium In CaF2

1/r = 1/T, +Ct(T) .

Usually 0', (T)=A, independent of T.

(12)

"S. A. Al'tshuler, Sh. Sh. Boshkirov, and M. M. Zaripov, Fiz.
Tverd. Tela 4, 3367 (1962) )English transl. : Soviet Phys. —Solid
State 4, 2465 (1963)]."D. E. McCumber, Phys. Rev. 130, 2271 (1963).

where 8 is an effective Debye temperature and kTII/O
is the frequency of a local mode associated with the
hydrogen atom. The presence of a local mode may, in
addition to generating the third term, influence: (a) the
value of the coeKcient 8 in the direct process term;
and (b) the form of the term for the Raman process,
lowering the effective Debye temperature in the J6
function.

If the local mode involves motion of the paramagnetic
center with respect to its surroundings, the frequency
(col.) of the mode will depend on the mass of the center.
The details of this dependence will involve the nature
of the effective interatomic forces and the details of
the motion. As an example, if the mode involves motion
of only one atom moving in a harmonic potential, &&

will be proportional to M '' where M is the mass of
that atom.

If cross relaxation is present, we will represent it by
adding a term of unspecified temperature dependence
0', (T). Then the spin-relaxation time constant r may
be written

8 474 oK

Frc. 7. Reciprocal of relaxation time versus temperature ob-
served for atomic hydrogen and atomic deuterium in CaF2 at
8.8 Gc/sec. Both scales are logarithmic. The samples denoted by
triangles and circles were prepared from Harshaw crystals; the
squares denote crystals grown in our laboratories. Note that the
vertical scale for deuterium is shifted one decade with respect to
the hydrogen scale.

"J.G. Castle, Jr., D. W. Feldman, P. G. Klemens, and R. A.
Weeks, Phys. Rev. 130, 577 (1963).
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FIG. 8. Reciprocal of relaxation time versus temperature for atomic hydrogen and atomic deuterium in CaF2. Note that the
vertical scale for deuterium is shifted one decade from that for the hydrogen. Note also that the abscissa is linear in 1/T.

desired resonance lines in a time short compared to
the relaxation time being measured. A 5-% pulse of
9-Gc/sec radiation could be turned on during any
selected part of the field sweep to invert any desired
portion of the spectrum. The temperature of the sample
was monitored by thermocouples which were fre-
quently calibrated at the boiling points of helium and
nitrogen.

IV. RESULTS FOR HYDROGEN

Figure 6 shows the appearance of the absorption
spectrum of atomic hydrogen in calcium Quoride. ' The

magnetic field is parallel to the [110jdirection of the
crystal. The two groups of thirteen lines in Fig. 6
correspond to the two possible values of vs~ of the proton
spin. The well-resolved lines in each group are due to
the hyperfine coupling of the electron to the surrounding
fluorine nuclei.

It should be noted that an additional resonance
appears at a g value of approximately 2.00. This reso-
nance was always produced in the process of generating
hydrogen centers. The absorption in this resonance
relative to that of the hydrogen centers varied from
sample to sample, often being comparable. The presence
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of a weak resonance at g=2 was noted by Hall and
Schumacher. '

Various experiments were carried out in which a
selected portion of the spectrum was perturbed. It was
found at 4.2'K that the sets of absorption lines corre-
sponding to the two orientations of the proton moment
relaxed independently. In the discussion below this
independence will be interpreted as evidence that
modulation by the phonons of the hyperfine coupling
to the proton is not the mechanism responsible for the
electron spin relaxation.

In principle the same procedure could be used to
determine the role in the relaxation process of the
hyper6ne coupling to the fluorine nuclei. In practice
this is more dificult because of the overlap of adjacent
Quorine hyperfine components and has not as yet been
done.

Figures 7 and 8 show the temperature dependence of
the measured spin relaxation time of atomic hydrogen
centers in calcium Quoride from 1.2 to 200'K. Data
were taken for four samples prepared independently
from diGerent source crystals but only three are repre-
sented in the figures. Two of the samples, labeled g
and v, gave the same longest value of v at 4.2'K. For
T&30'K, the values for the z sample are accurately
given in sec ' by

1/.=2.8X10-2T. (13)

For the sample z the only other relaxation measured
was that of the deuterium lines at 4.2'K. The other
two samples had appreciably smaller values of 7 below
50'K than the z sample, and therefore they were not
plotted. At temperatures above 50'K there is good
agreement in the value of r measured for two samples,
as shown. The fourth sample was observed to have the
same relaxation times as the values shown from 40 to
97'K. For temperatures above 30'K, the observed
relaxation is clearly faster than that predicted by (13).
The excess relaxation over the values expected from
(13) can be accurately fitted in the range up to 75'K by
any of several functions and in the range above 75'K
by the expression

1/r =9)& 10' exp( —850/T) . (14)

Relaxation at temperatures between 30 and 75'K is
faster than that predicted by the sum of (13) and (14).
The excess over (13) and (14) can be well fitted by a
term of the form

(T/0)'~8(~/T) (15)

but these data do not cover a sufhcient range of T to
permit specification of a unique value for 8. The largest
value allowed by these data is approximately 8&, the
value of the Debye temperature determined by specific-
heat measurements. '~ The solid curve in Fig. 8 is the

"American Institute of Physics Handbook (McGraw-Hill Book
Company, New York, 1957), pp. 4-47.

sum

1/r=BT+C(T/9)'J6(8/T)+D~ exp( —Trr/T), (16)

where 0 was chosen to be 474'K in agreement with the
specific heat Debye temperature, " 8=(2.8+0.3)10—'
sec ' 'K ', C= (2.7&0.3)10 ' sec ', DIr= (9+2)10'
sec ' and TII=850+60'K.

Other descriptions of the data above 50'K were
attempted. These data cannot be fitted satisfactorily
by using the specihc heat for the Debye limit in ex-
pressions (3) or (4) for the Raman processes.

The relaxation time for the mystery resonance near
g=2 was measured to be about 1 sec at 4.2'K. The
relaxation time was observed to be about twice as long
at 2.1'K. Measurements at higher temperatures were
not made on this line. It was also found that there was
no appreciable cross relaxation between this line and
the hydrogen lines.

V. RESULTS FOR DEUTERIUM

Samples containing atomic deuterium were prepared
in a manner similar to that described above for
hydrogen. The EPR spectrum of deuterium is much
more complex in appearance than that of hydrogen.
Because of the smaller moment of the deuterium
nucleus the three groups of lines corresponding to
different orientations of the deuteron moment are not
resolved. The appearance of the deuterium resonance
was such that the resonance at g=2.0, which was
observed in all hydrogenated samples, would have been
hidden.

Figures 7 and 8 show the results of spin-relaxation
measurements for atomic deuterium in several samples.
In both 6gures the vertical scales have been shifted
for one decade from those for hydrogen to permit visual
discrimination.

At 4.2'K, the three samples had significao tly
different relaxation times, faster than the hydrogen
value by factors from 3 to 30. For the one labeled o
the longer of the two relaxation times was observed
18 months after the shorter one; at 48'K the same
effect of an 18-month wait was observed in the same
sample. From 4 to 45'K, the relaxation time decreases
slowly tending toward temperature independence
above 20'K at 0.12 sec. The same data might be fitted
by 1/r =0.4T.

For T)75'K, the excess of 1/r over 8 sec—' is
accurately given by

1/r ~ exp ( TD/T) . —(17)

There is, as can be seen in Figs. 7 and 8, observed
relaxation in excess of that expected from (17) plus
8 sec ' for the intermediate temperatures. This excess
for intermediate T is satisfactorily given by a term,
(T/0)7J6(0/T), identical to that used in (16) for the
atomic hydrogen center. Therefore, the relaxation time
observed for atomic deuterium centers at 8 koe is



accurately given by

1/r = A+BT+C(T/8) rJe(8/T)
+Do exp( —Tii/T), (18)

where A=8+2 sec ' D =(8+2)10' sec '
TD= 640+80'K and the other parameters are the same
as for hydrogen. Approximately the same 6t is obtained
if the terms A+BT are replaced by 0.4T.

VL DISCUSSION OP RESULTS

The principal feature discussed in this paper is the
exponential character of the temperature dependence
observed for the atomic hydrogen and deuterium
centers at temperatures above 75'K. We 6rst consider
the question of whether the observed relaxation times
are intrinsic to these electron-lattice systems. We then
discuss those values that appear to be intrinsic in terms
of normal relaxation processes dominant at the lower
temperatures. After predicting from this the relaxation
expected at the higher temperatures, likely sources of
the unusual temperature dependence are described.

A. Intrinsic

Above 50'K the values of v measured in several
samples using crystals from diferent sources agree to
within approximately the statistical uncertainty of
each point, both for hydrogen and for deuterium. These
values are therefore assigned as the intrinsic T» for the
isolated centers.

Below 50'K there is an appreciable disparity between
the values of measured for the several samples, both
for those containing hydrogen and for those containing
deuterium. However, one hydrogen sample had 1/r ~ T
below 30 K. This same sample also had the slowest re-
laxation at each temperature except at 4.2'K where the
same value was found in another sample. Therefore this
set of ~ values is labeled as the Tj values intrinsic to the
atomic hydrogen center.

Below 50'K, relaxation in every deuterium sample
was observed to be faster than that of the hydrogen
center. Since the proton moment is observed to play
no role in relaxing hydrogen centers at the lowest
temperatures, the mechanism of relaxation is either via
hyperhne coupling to the Quorine nuclei or via orbit
lattice interaction. In either case the deuterium center
should have the same transition probabilities for the
direct and Raman processes as the hydrogen center does.
It is on the basis of this reasoning and not on direct
experimental evidence that the expressions 6tting the
deuterium data include terms for the direct and Raman
processes that are identical to those for the hydrogen
center.

The added relaxation observed for deuterium centers
below T=50'K may be due to cross relaxation to the
spin system responsible for the mystery line at g=2.00
since at 4.2'K the observed in each deuterium sample
is within a factor of 4 of the value measured for that

line in one of the hydrogen samples. Cross relaxation
to this unknown spin system, probably vacancy centers
similar to Ii centers, is expected to be more effective for
deuterium than for hydrogen at equal densities because
of the superposition of the spectra in the case of the
deuterium. Therefore, the values observed for deu-
terium below 50'K are attributed to cross relaxation.
On this basis, the r observed to be 0.12 sec from 15 to
35'K shouM apply to the cross-relaxation process at
all higher temperatures.

With independent transition probabilities, relaxation
from the several intrinsic and cross-relaxation processes
are additive at each temperature. It is necessary,
therefore, to estimate the extent to which the processes
which dominate the relaxation at low temperatures
contribute to the relaxation at the highest tempera-
tures. To do this, we use the data ta'ken below 75'K
and the information known about the hydrogen centers'
equilibrium con6guration to construct the skeleton of a
relaxation model for the hydrogen center.

B. The Atomic Hydrogen Center
Rt Low TeIQpera, tgres

The data for hydrogen in the sample having the
longest r below 30'K are consistent with a direct
process and Eqs. (2) and (13) become 1/Ti ——2.8
&10—'T, assuming the data to be intrinsic to the
isolated center. Above 30'K relaxation varies more
rapidly with temperature. Normally this ls duc to
Raman scattering processes. A model for the Raman
processes should be based on the following: (1) The
g value of the center is essentially that of the free atom. '
(2) The optical splittings" of the center are probably
at least as large as the band gap of CaF&. (3) The
hyperfine coupling of the center to its surrounding
nuclei is rather large, ' and we 6nd that the proton
moment does not contribute signi6cantly to the center's
relaxation at the lowest temperatures. (4) Experiments
in alkali halides"" indicate the Raman processes for
electron-spin relaxation are due to hyperhne coupling
and are accurately described by the term (T/8) rJe(8/T),
as in Eq. (15), with 8=8n as determined by specific-
heat data. (5) Calcium Quoride is found to obey the
simple Debye specilc-heat law."

From assumptions (1) and (3), the most likely
candidate for spin-lattice coupling becomes the electron-
fluorine hyperfine interaction. Therefore, with (4) and
(5), the form expected for the Raman processes is that
of Eq. (15). The modification of the lattice vibrations
due to the light mass should, according to Sec. IIE,
cause the value of the cf'fective limit 8 to be lower than
0~. We are therefore overestimating the contribution

» G. Baldini, Phys. Rev. 136, A248 (1964).
'9 D. W. Feldman, R. W. Warren, and J. G. Castle, Jr., Phys.

Rev. 135, A470 (1964).
+ M. J. Weber, Phys. Rev. 130, 1 (1963).
"M. Blackman, Encyclopedic of Physics, edited by S. Fliigge

(Springer-Verlag, Berlin, t955l, VoL VH, p. 529.
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of the Raman processes at the highest temperatures
when we use 8= 8~ in the term of the form of Eq. (15).

It should be noted that one function which does fit
the relaxation data in Fig. 7 rather well above 50'K
is the form (T/8)'J6(8/T), discussed in Sec. IIB, but
with 0=1200'K. This 6t to the data is judged to be
spurious on the grounds that such a high value for the
effective upper limit of the lattice spectrum is un-
reasonable. The specific-heat value of 0D is 474'K.

No electronic excited level of the atomic-hydrogen
center exists within the vibrational spectrum of the
lattice, according to assumption (2). So we expect the
relaxation of the atomic-hydrogen center to contain the
following components:

(19)

where the coefFicients are fixed by the relaxation data
tak'en below 60'K, and 8 is not greater than the usual
Debye limit HD.

C. The Atomic Hydrogen Center
at Higher Temperatures

The data taken above 75'K are rather well fitted,
as in Fig. 8, by an exponential term of the form given
in Eq. (9). When the components of Eq. (19) are
subtracted, the remaining relaxation is accurately
given down to 60'K by the term D& exp( —TII/T)
with 2'0=850&'60'K. This value is larger than any
reported" for optical modes of CaF2.

Relaxation via local modes is suggested as the source
of this term. According to the discussion in Sec. II,
the presence of local modes of vibration at the site of
the spin center can lead to spin-lattice relaxation with
this temperature dependence by any of several specihc
processes. The frequency of any local mode involving
the motion of the hydrogen atom and therefore the
activation temperature shou'ld change upon substitution
by deuterium.

D. The Atomic-Deuterium Center

The relaxation data above 50'K has been judged to
be intrinsic to the isolated atomic deuterium center.
It is clear in Fig. 8 that from liquid-nitrogen tempera-
tures up the measured times are accurately given by

1/Tq Do exp( —640/T) . —— (20)

Subtraction of the expected direct and Raman processes,
as in Eq. (19), and the observed cross relaxation, from
the data observed above 50'K, make Eq. (20) an
excellent fit all the way. Therefore the activation tem-
perature of 640&80'K is intrinsic to the atomic deu-
terium center in calcium Quoride.

~ W. Kaiser, E. G. Spitzer, R, H. Kaiser, and L. K. Howarth,
Phys. Rev. 127, 1950 (1962).

E. Local Modes

The ratio of T~ to T~ is observed to be between 1.1
and 1.5. The fact that the activation temperature is
sensitive to the mass 3f of the defect atom is taken as
conarmation of the assignment of the observed effect
to local modes.

In the harmonic approximation for the defect lattice,
the frequency of a local mode, ~L,, is expected' to be
independent of M for ~l/&so=1, and to vary as M '~'

for ~1,/coD&)1. For a potential stronger than harmonic,
the variation with 3E would be somewhat stronger.
The harmonic approximation is consistent with the
data but the amplitude of the motion of the hydrogen
atom would be so large as to make this approximation
questionable.

The ratio of the coefBcients, DII and DD, determined
from the data in Figs. 7 and 8 depends sharply on the
activation temperature selected. Within the range of
the data, DII is between 5 and 20 times D~. This trend
is consistent with the expectation that the higher the
frequency of a local mode the larger is the local strain.

VII. SUMMARY

The time constant with which an atomic-hydrogen
center relaxes in the lattice of calcium Quoride at a
temperature in the range of 70 to 165'K is observed to
have an exponential temperature dependence. The
activation temperature of 850'K is characteristic of the
isolated center because the same values of ~ are ob-
served over this range in three diferent samples.
Similar observations on crystals containing atomic
deuterium show a characteristic activation temperature
of 640'K.

From relaxation measurements at temperatures down
to 1.2'K, tentative identification is made of the direct
and Raman relaxation processes.

We conclude that the observed activation tempera-
tures correspond to the energies of local modes involving
the motion of the hydrogenic defect atom relative to its
neighbors. Relaxation of the spin is accomplished by
excitation of these local modes. We further suggest
that the local strain generated by the local mode is
quite large, as expected.
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