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The ferromagnetic transition is considered in detail for the Heisenberg Hamiltonian with all spins coupled
equally. For this special model the statistical problem is solved exactly. The transition develops very slowly
as the number N of particles in the system is increased; the spin order at the nominal Curie temperature is
proportional to N~14, The order in the most probable state differs from the mean value of the order, except
for N — «. The connections are studied with the molecular-field, spin-wave, and self-consistent approxi-
mations. The failure of the self-consistent approximation is relatively severe as compared with the nearest-
neighbor problem. The antiferromagnetic ground state is very close in energy to the Néel state.

INTRODUCTION

O few phase-transition problems are solvable that a
certain interest may perhaps attach to any model,
however artificial, which is solvable exactly. In this
paper we study the development of the ferromagnetic
transition for a special model. There are features to
the results which were not entirely anticipated by us.
The eigenvalues of the Heisenberg spin Hamiltonian
are known exactly for the special case of a uniform
interaction which couples all spins S; to all other spins
S; by an exchange interaction J :

H'=—=2]% 8:8;=—J(8:8—2 8%, (1)

i>j %

where $=Y;S; is the total-spin operator. It is con-
venient to write, for a system of N spins S,

H=—7Js-8+JNS(NS+1), )

for now the ground-state energy is zero.
For S=1 the eigenvalues of H are

Ap=J{(N+1)p—17}, ®)

where the pth eigenvalue belongs to total spin
8=3N—p. The result is independent of the geometry
of the spins. We may define a wave vector % if, for
example, we arrange the spins on a ring. The excitation
energy for p=1 is A;—Xe=NJ, so that the dispersion
relation for one-magnon excitation is wx=NJ, a
constant, except for the state =0 which belongs to
$=0, so that wy=0. The effect of magnon-magnon
interactions is in the term in p? in A,. We see that the
energy of the pth excitation is Ap—Np_1=J (N —2p+2);
the higher the order of the excitation, the lower is the
incremental excitation energy.
The degeneracy of the pth level is easily found!:

N
Gp=(N—=2p+ 1)t | 4
(V=21 s @
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a standard result. The partition function is

IN
Z=3 Gy, )

p=0

with =1/kpT. We assume that N is an even number.

INFINITE SYSTEMS

If we neglect terms of order 1/N and 1/p, and write
the Stirling approximation as x !=2x%, we have

Zgig exp{V InN— (N —p) In(N—p)
—pInp—BJ (Np—p}. (6)

The exponent is a maximum when d{-:-}/dp=0, so
that the most probable value of p is given by

Ing(N—p)—Inp—NBJ+2p8J=0. (7

We introduce as a measure of the order of the system
the quantity n defined by

n=(N—2p)/N; a=NBJ=NJ/ksT. (8)

To get a feeling for #, note that N—p is the number of
unreversed spins and p is the number of reversed spins.
Their difference is N—2p. The maximum possible value
of 9 is 1; the minimum possible value is zero, because
the minimum value of § is zero. Now (7) may be

rewritten as
In[(1+n)/(1—n)]=an )
or

tanh}an=1. (10)

This transcendental equation has a nonzero root only
for a>a,, where a,=2. From the definition of « in (8)

we have
ksT.=%NJ. 11

This defines the Curie temperature. For T slightly
below T., we establish by series expansion of (9) or
(10) that

r=(Te—T)/T.. (12)

For T=0, we find from (10) that y=1: The order is
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complete. For T>T,, we find =0 or p=3N: This is
called complete disorder.

The internal energy is constant for 7>T. and is
equal to 1V2J. This is also its value just below T. The
heat capacity (as T increases through T) drops
suddenly at T, from §Nkg to 0, and remains zero above
T.. The magnetic moment may be defined as guz(8.).
If we add to the Hamiltonian a term — gup8.3C, where
43¢ is the magnetic field intensity, we find that the most
probable value of 7 for T>T, is now given by (for

7<<1):
n= (g“B/ZkB)[C‘C/(T— Tc)] ) (13)
so that the magnetic susceptibility is
Nu 1
X=—- ) (14)
VkgT—T,

where V is the volume. This is of the form of the
Curie-Weiss law.

The results (10), (11), (12), (14) for the infinite
system are identical with those of the standard mo-
lecular-field approximation. In one statement of the
molecular-field approximation the interaction is taken
in the Ising form, but with an infinite-range interaction.
Thus the Hamiltonian is

Hi=-=2J 3 S&Spp=—J8+J > (Sf)2. (15)
i>j i
The eigenvalues for S=1% are, referred to Ao=0,
N=rJ(N—r7), (16)

where the 7th eigenvalue belongs to §.=3N—r. The
degeneracy of this level is

G,=N/(N—n)lr!, (17)

somewhat different from (4). The partition function on
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F1G. 1. Order parameter 7 as a function of the normalized
reciprocal temperature for various numbers of particles.
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the Ising model is
N
Zr=y G b, (18)

r=0

To the previous order in the Stirling approximation
we have

N
7=y exp{N InN— (N—7) In(N—7r)
r=0

—rlnr—BJ(Nr—12)}, (19)
identical with (6) except for the different upper limit.
The most probable value of 7 in this approximation is
identical with the most probable value of p found in
(7), and to the same approximation all the other results
are identical for the two models. Differences appear in
higher orders, as discussed in Appendix A.

EXACT NUMERICAL SOLUTIONS FOR FINITE
NUMBERS OF SPINS

The relative simplicity of the partition function (5)
with the exact expressions (3) and (4) for the energy
eigenvalues and the degeneracy induced us to program
exact numerical calculations for finite numbers of spins
with S=1, chiefly for N=200, 500, 2000, 5000, and
20 000 spins. The results are remarkable for the un-
expected width in temperature exhibited by the tran-
sition. The program was carried out for such high values
of N because preliminary results for lower values showed
a very poorly developed transition. We remark that for
the uniform interaction (1) we can handle 20 000 spins
with less difficulty than 10 spins coupled only by
nearest-neighbor interactions, as in calculations by
Orbach? and others.
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F16. 2. Exchange energy U per spin as a function of the normalized
reciprocal temperature. The curve is plotted for N.J=2.

2 R. Orbach, Phys. Rev. 112, 309 (1958).



DEVELOPMENT OF PHASE TRANSITION

Order Parameter Versus «

In Fig. 1 we present the results for the order parame-
ter versus a, where a=NJ/kgT. In an infinite system
the transition occurs at a=2. The uppermost curve,
labeled A4, is for 200 spins; for this number of spins the
variation of order with temperature is quite gradual.
Only when we get to 20 000 spins, as in the lowermost
curve labeled E, is the disorder reasonably well estab-
lished in the high-temperature region, a<2. At low
temperatures the differences in 5 for various N’s are
not pronounced.

The order parameter is calculated as

(y=1—2(p)/N=1—(2/NZ) L pGne™8, (20)

where the sum runs from p=0 to p=1N. Here Z is the
partition function.

Internal Energy Versus «

In Fig. 2 we present the exchange energy U per spin
as a function of a. The energy is calculated as

1
U=——3 Gprye 8,
NZ »

21

For convenience the value NJ =2 was taken.

Heat Capacity Versus «

In Fig. 3 the heat capacity C, per spin is plotted as
a function of a. The normalization of the heat capacity
is given by the relation

Co=—p4dU/dB),
and we have taken NJ=2.

(22)

Entropy Versus «

In Fig. 4 the entropy ¢ per spin is plotted as a
function of a. The entropy is given by

0= _ﬂ2(aF/aB) ’
where F= (1/NB) InZ.

(23)
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Fic. 3. Heat capacity C, per spin as a function of the normalized
reciprocal temperature. The curve is plotted for NJ=2.
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Fi1c. 4. Entropy o per spin as a function of the
normalized reciprocal temperature.

Magnetic Moment Versus «

In Fig. 5 we present the z component of the spin
{8.)/N and also the value of (§)/N, both curves evalu-
ated for a magnetic field 3¢ such that gugiC=0.1; also,
NJ=2. The curves 4 refer to 50 spins. The differences
between (8,) and (8) are an effect of the superpara-
magnetic situation. The field 3C is quite strong and the
transition would not be sharp even for an infinite
system.

EXPLANATION OF BEHAVIOR OF SYSTEMS
WITH FINITE NUMBER OF SPINS

We want to understand the slowness with which the
transition develops as the number N of spins is in-
creased. To do this we must retain several terms in the
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Fi1c. 5. Magnetic moment per spin and order versus . Both
are calculated for a magnetic field 3C such that gup3C=0.1 and
with NJ=2.
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partition function (5) which were neglected in the
approximation (6), and then we must evaluate the
partition function more carefully.

Let us consider the particular problem of finding the
value of the order parameter n=1—2p/N at the tem-
perature a=2=NJ/kgT which is, according to (11),
the Curie temperature of the infinite system. At this
temperature the exponent of the pth term of the par-
tition function is

N InN— (N—p+1) In(N— p)— p Inp+2 In(N—2p)
—2p4-25/ N+ InN—3} In(V—p)— 3} Inp,

where now we have taken the Stirling approximation as

(25)

(24)

x12xe—% (2mrx) 12,

The term (2mx)'/? will turn out to have little importance.
In (24) we have written In(V—p) for In(N—p+1) and
dropped terms of the order of unity.

It is convenient to rewrite (24) in terms of 5. If we
put to one side terms which do not involve # we obtain

$N{—In(1—»*)—n In(14n)/(1—n)+n*}
—3% In(1+n)—3% In(1—n)+2 Iny.

The extremum is given when the derivative of (26)
with respect to 7 is zero:

(26)

14+ 2p—1 2
Ny—N In—+ +-=0. 27
1=y 149 g
Equation (27) becomes, on expanding the In,
2p—1 2
— 3Ny ——+==0 (28)
14+7* 9

If we are concerned with N sufficiently large that g
will be <1 we may drop the term in (29—1)/(14+7?)

log o Z |-

0 20 40 60 80 100

p

F16. 6. The logyo of the individual contributions to the partition
function, for 200 spins and for three values of the normalized
reciprocal temperature. The nominal Curie temperature is at
a=2.0. No magnetic field is present. Here a=NJ/kpT.
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in (28), so that

3Ny*=2/n, (29)
whence the most probable value of 5 at the Curie tem-
perature given by

Nmp= (6/N)/4=1.56/N"4, (30)

Notice that it is the fourth root and not the square
root of N which enters. For N=10000, we have
Mmp=20.16; for N=100, we have 7,,~0.5. It takes a
large system to obtain a low value of the order at the
nominal Curie temperature.

From (29) we see that the leading #-dependent parts
of (25) are the terms

—1sN7*+21In+q, (31)

so that the argument of the partition function at small
7 is proportional to

i (32)
Thus, the mean value {n) of 4 at the transition tempera-
ture is given approximately by

2g—N7Y12

) 0 12 1/4
()= / dypPe—Vntie / / dnnpeNri2= (12)
0 0 INCONEL

or

(33)

(ny=1.52/N, (34)

We notice that for finite N the mean value (34) is
not identical with the most probable value (30). The

difference is
Nmp— (1) =20.04/N1/4, (35)

The contributions to the partition function at the
nominal Curie temperature are plotted in Fig. 6. Here
Zy is an individual term in the partition function (5);
that is, Z=3_,Z,. Notice how flat the maximum is,
even allowing for the logarithmic scale. The difference
(35) is the result of the poor definition shown by the
curve.

SELF-CONSISTENT APPROXIMATION

We reconsider our exact solution (9) for ferromag-
netic spin order in the light of the approximation
method developed by Bloch® and applied by her to
problems with nearest-neighbor interactions. It is
simple to adapt her method to the uniform interaction
which concerns us here. If we neglect the uniform mode,
we have to deal with NV oscillators of frequency e
(=NJ) in the absence of magnon interactions. In the
self-consistent (Bloch) approximation the ensemble
average occupancy of each oscillator is

(m)y=1/(efsM—1), (36)
where the renormalized oscillator is
e(T)=eo(1—2(n)). 37

3 M. Bloch, Phys. Rev. Letters 9, 286 (1962); J. Appl. Phys.
34, 1151 (1963).
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This result follows from our exact eigenvalue equation,
(3). In terms of the usual order parameter

n=1—-20n), (39)
we have
3(1—n)=1/(efor—1), (39)
or
In[ (3—n)/ (1—n)]=Bem, (40)
which may be compared with the exact result
In[ (1+n)/ (1—n) ]=Bem, (41)

obtained earlier as Eq. (9). Solutions of these two
equations are compared in Fig. 7.

It may be noted that the use of a fermion distribution
in place of (36) for (n) will lead to the correct result
(41). Hopfield (private communication) has proposed
an ingenious explanation of this, which will be de-
veloped by one of us (H.S.) in his thesis.

The inadequacy of the self-consistent approximation
here is quite unexpected, as it appears to be remarkably
good for nearest -neighbor interactions. In all instances,
however, the approximation leads to double-valued
results. Because our expression for ¢(7') is exact in the
present problem, it is evident that the statistics are
responsible for the difficulties, and not the energy. The
introduction of a chemical potential into the boson
distribution function has been examined by us, but this
does not appear to improve the situation.

ANTIFERROMAGNETIC GROUND STATE

The true antiferromagnetic ground state is also the
highest energy state of the Hamiltonian H'=—7J§-§
for positive J. How good an approximation to the
highest energy state is the alternating spin function

Yo=aiBeasBs- - -an_1Bn? (42)

This state is called the Néel state. The true maximum
energy of H' for even N is just zero, for 8uin=0.
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F1e. 7. Order parameter # as a function of the normalized
reciprocal temperature, for an infinite system. Curve A is for the
exact solution, Eq. (9); curve B is for the self-consistent
approximation.
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Now the expectation value of H' for ¢, is given by

(Kbal —J Z Si'SJ'_JZ Si2|‘pa>

i#]

= —INJLGN—D—3NI]-4NT=—3NJ, (43)
which is exceedingly close to the correct energy because
NJ is only of the order of kz7T¢.
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APPENDIX A: MEAN VALUES ON
THE MOLECULAR-FIELD MODEL

For the molecular-field model at the nominal Curie
temperature =2 we have

N N!
Zr= Z S—— 1)
0

(A1)
(N=n)lr!

With (25) as the Stirling approximation the condition

for the extremum of the terms of the partition function

is

147 2
N ln——2Np———=0. (A2)
1—9 1—q?
After expanding the In we have
SNn’=2n, (A3)
so that the most probable value of 4 is given by
mp= (3/N)'2. (A%)

Notice that this involves N2 and not N-Y4 The
mean value of n on this model is given by

0 00
(m= f dime=N"12 / / dneNnt12
0 0

= (12/N)"T'(3)/T'(3)=20.91/N14, (AS5)
This is different from the most probable value of 7
even in the dependence on N.

The common assumption in statistical mechanics
that mean values of variables are closely equal to their
most probable values is seen to be poorly satisfied by
the molecular-field model, except for extremely large
numbers of particles.



