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Development of a Phase Transition for a Rigorously Solvable Many-Body System*
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The ferromagnetic transition is considered in detail for the Heisenberg Hamiltonian with all spins coupled
equally. For this special model the statistical problem is solved exactly. The transition develops very slowly
as the number S of particles in the system is increased; the spin order at the nominal Curie temperature is
proportional to S '!".The order in the most probable state differs from the mean value of the order, except
for S~ cc. The connections are studied with the molecular-Beld, spin-wave, and self-consistent approxi-
mations. The failure of the self-consistent approximation is relatively severe as compared with the nearest-
neighbor problem. The antiferromagnetic ground state is very close in energy to the Neel state.

INTRODUCTION

S0 few phase-transition problems are solvable that a
certain interest may perhaps attach to any model,

however artificial, which is solvable exactly. In this
paper we study the development of the ferromagnetic
transition for a special model. There are features to
the results which were not entirely anticipated by us.

The eigenvalues of the Heisenberg spin Hamiltonian
are known exactly for the special case of a uniform
interaction which couples all spins S, to all other spins
S; by an exchange interaction J:

where S—=g; S; is the total-spin operator. It is con-
venient to write, for a system of S spins S,

a standard result. The partition function is

$N
Z= Q G,e s"~,

with P= 1/ksT. We assume that N is an even number.

INFINITE SYSTEMS

If we neglect terms of order 1/N and 1/p, and write
the Stirling approximation as x!—x'e, we have

AN

Z—g explN lnN —(N —p) ln(N —p)
@=0

—p lnp pJ(Np p—')) . (6)—

The expon. ent is a maximum when 8( )/Bp=O, so
that the most probable value of p is given by

JJ=—JS S+JNS(NS+1), (2)
lng (N P) lnP N—PJ+—2PP—J=0. (7)

for now the ground-state energy is zero.
For S=-,' the eigenvalues of H are

where the pth eigenvalue belongs to total spin
S=—,'N —p. The result is independent of the geometry
of the spins. We may define a wave vector k if, for
example, we arrange the spins on a ring. The excitation
energy for p=1 is Xi—Xo ——NJ, so that the dispersion
relation for one-magnon excitation is co~ =EJ, a
constant, except for the state k=0 which belongs to
p=0, so that &eo ——0. The effect of magnon. -magnon
interactions is in the term in p in X~. We see that the
energy of the pth excitation is X„—A~i ——J(N —2p+2);
the higher the order of the excitation, the lower is the
incremental excitation energy.

The degeneracy of the pth level is easily found':

or
»L(1+v)/(1 —n) j=nn

tanh

(9)

(10)

This transcendental equation has a nonzero root only
for n&n„where n, =2. From the definition of n in (S)
we have

kIg T.=—',SJ.

We introduce as a measure of the order of the system
the quantity p defined by

q= (N 2P)/N; n—=NPJ= NJ—/ksT—

To get a feeling for i!, note that N —p is the number of
Nlreversed spins and p is the number of reversed spins.
Their difference is N —2p. The maximum possible value
of g is 1; the minimum possible value is zero, because
the minimum value of S is zero. Now (7) may be
rewritten as

G~= (JV—2p+1)'—
(N —p+1)!p!
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(12)

For T=O, we iind from (10) that i!=1:The order is

(4) This defines the Curie temperature. For T slightly
below T„we establish by series expansion of (9) or
(10) that
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n = (e ~/2&e) k~/(2' —T.)] (13)

so that the magnetic susceptibility is

iV p' 1
x=

Vkgg T—T,

where V is the volume. This is of the form of the
Curie-Weiss law.

The results (10), (11), (12), (14) for the infinite

system are identical with those of the standard Ino-

lecular-field approximation. In one statement of the
molecular-field approximation the interaction is taken
in the Ising form, but with an infinite-range interaction.
Thus the Hamiltonian is

Hr'= —2J P 5'5'= —JS '+J Q (5,')'. (15)

The eigenvalues for 5=-,'are, referred to X0=0,

Z, =rJ(N r), — (16)

where the rth eigenvalue belongs to 8,=-,'Ã —r. The
degeneracy of this level is

complete. For T)T„we find g=0 or p=-21V: This is
called complete disorder.

The internal energy is constant for T&T, and is

equal to ~S'J. This is also its value just below T,. The
heat capacity (as 2' increases through T,) drops
suddenly at T, from 2Ekg to 0, and remains zero above
T,. The magnetic moment may be defined as gy&(S, ).
If we add to the Hamiltonian a term —gp~S,X, where

X is the magnetic 6eld intensity, we find that the most
probable value of rl for T) 2', is now given by (for

&1):

the Ising model is

N

Zr =P G,e
—~"".

s=0

To the previous order in the Stirling approximation
we have

Zr—P exp{.V 1niV —(.V r) In'(Ã——r)
r=O

—r lnr —PJ(Er—r')), (l9)

identical with (6) except for the different upper limit.
The most probable value of r in this approximation is
identical with the most probable value of p found in

(7), and to the same approximation all the other results
are identical for the two models. Differences appear in
higher orders, as discussed in Appendix A.

EXACT NUMERICAL SOLUTIONS FOR FINITE
NUMBERS OF SPINS

The relative simplicity of the partition function (5)
with the exact expressions (3) and (4) for the energy
eigenvalues and the degeneracy induced us to program
exact numerical calculations for finite numbers of spins
with S=~, chiefly for X=200 500& 2000) 5000) and
20000 spins. The results are remarkable for the un-

expected width in temperature exhibited by the tran-
sition. The program was carried out for such high values
of Ebecause preliminary results for lower values showed
a very poorly developed transition. We remark that for
the uniform interaction (1) we can handle 20 000 spins
with less difhculty than j.0 spins coupled only by
nearest-neighbor interactions, as in calculations by
Orbach' and others.

somewhat diferent from (4). The partition function on 0.5 "
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FIG. 1. Order parameter g as a function of the normalized
reciprocal temperature for various numbers of particles.
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FJG. 2. Exchange energy U per spin as a function of the normalized
reciprocal temperature, The curve is plotted for g7=2.

' R. Qrbach, Phys. Rev. 112, 309 (1958).



DEVELOPMENT OF PHASE TRANSITION

Order Parameter Versus 0,

In Fig. 1 we present the results for the order parame-
ter versus n, where n= X—J/AT. In an infinite system
the transition occurs at +=2. The uppermost curve,
labeled A, is for 200 spins; for this number of spins the
variation of order with temperature is quite gradual.
Only when we get to 20 000 spins, as in the lowermost
curve labeled E, is the disorder reasonably well estab-
lished in the high-temperature region, 0.&2. At low
temperatures the differences in q for various 1Ps are
not pronounced.

The order parameter is calculated as

(g)=I —2(p)/(V=I —(2/XZ) p pG„e "», -(20)

where the sum runs from p=0 to p=-', X. Here Z is the
partition function.
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Internal Energy Versus n

In Fig. 2 we present the exchange energy U per spin
as a function of a. The energy is calculated as

U=—Q G„X„e "». (2~)
&VZ ~

For convenience the value EJ=2 was taken.

Heat Capacity Versus 0.

In Fig. 3 the heat capacity C, per spin is plotted as
a function of 0.. The normalization of the heat capacity
is given by the relation

c.= p'(d&ld—p),
and we have taken XJ=2.

I'io. 4. Entropy 0. per spin as a function of the
normalized reciprocal temperature.

Magnetic Moment Versus e

In Fig. 5 we present the s component of the spin
(8,)/X and also the value of (S)/E, both curves evalu-
ated for a magnetic field K such that gp~3C=0. 1; also,
SJ=2. The curves A refer to 50 spins. The differences
between (S,) and (S) are an effect of the superpara-
magnetic situation. The held X is quite strong and the
transition would not be sharp even for an infinite
system.

EXPLANATION OF BEHAVIOR OF SYSTEMS
WITH FINITE NUMBER OF SPINS

Entropy Versus e
In Fig. 4 the entropy o- per spin

function of n. The entropy is given by

We want to understand the slowness with which the
transition develops as the number E of spins is in-
creased. To do this we must retain several terms in theis plotted as a

o.= p'(8'/8 p), —

where P= (1/Xp) lnZ.
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I ro. 3. Heat capacity C„per spin as a function of the normalized
reciprocal temperature. The curve is plotted for NJ =2.
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FIG. 5. Magnetic moment per spin and order versus ~. Both
are calculated for a magnetic GeM 3! such that gpgX=0. 1 and
with SJ=2.
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This result follows from our exact eigenvalue equation,
(3). In terms of the usual order parameter

Now the expectation value of H' for f, is given by

or

which may be compared with the exact result

(39)

(41)

~NJ[(', N -1)——21N]—asN J= ', N—J—, (43)

which is exceedingly close to the correct energy because
NJ is only of the order of AeTo.
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4 s &1P2&3P4 '&N 1PN''- (42)
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N

g P e 27+2 r&IN-
(N —r)!r!

(A1)

With (25) as the Stirling approximation the condition
for the extremum of the terms of the partition function
1s

1+g 2gS ln——2'— =0.
1 —

n

After expanding the ln we have

2''~2g,
so that the most probable value of q is given by

q 1,
= (3/N)'".

(A3)

(A4)

Notice that this involves Ã '~ and. not S '~. The
meae ea/Ne of q on this model is given by

APPENDIX A' MEAN VALUES ON
THE MOLECULAR-FIELD MODEL

For the molecular-field model at the nominal Curie
temperature n= 2 we have
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FIG. 7. Order parameter q as a function of the normalized
reciprocal temperature, for an inanite system. Curve A is for the
exact solution, Eq. (9); curve 8 is for the self-consistent
approximation.

= (12/N)'~'r (-,')/r (-,')—0.91/N'~'. (AS)

This is diferent from the most probable value of g
even in the dependence on E.

The con@non assumption in statistical mechanics
that mean values of variables are closely equal to their
most probable values is seen to be poorly satis6ed by
the molecular-field model, except for extremely large
numbers of particles.


